Antibiotic-Free Gene Vectors: A 25-Year Journey to Clinical Trials
Abstract
:1. Introduction
2. Chemical and Physical Delivery Techniques
3. Rationale for Plasmid Optimization
4. Non-Viral Expression Vectors Totally Devoid of Sequences of Prokaryotic Origin
5. Plasmids Devoid of Antibiotic Resistance Marker and Containing Minimized Prokaryotic Sequences
6. Plasmids Devoid of Antibiotic Resistance Gene and Using a Suppressor tRNA as Selection Marker
7. Transgene Chromosomal Integration Using Non-Viral Techniques
8. Non-Viral Strategy for Adoptive Immunotherapy
9. Conclusions and Perspectives
Author Contributions
Funding
Conflicts of Interest
References
- Nurk, S.; Koren, S.; Rhie, A.; Rautiainen, M.; Bzikadze, A.V.; Mikheenko, A.; Vollger, M.R.; Altemose, N.; Uralsky, L.; Gershman, A.; et al. The Complete Sequence of a Human Genome. Science 2022, 376, 44–53. [Google Scholar] [CrossRef]
- Aganezov, S.; Yan, S.M.; Soto, D.C.; Kirsche, M.; Zarate, S.; Avdeyev, P.; Taylor, D.J.; Shafin, K.; Shumate, A.; Xiao, C.; et al. A Complete Reference Genome Improves Analysis of Human Genetic Variation. Science 2022, 376, eabl3533. [Google Scholar] [CrossRef] [PubMed]
- Hickey, G.; Monlong, J.; Ebler, J.; Novak, A.M.; Eizenga, J.M.; Gao, Y.; Abel, H.J.; Antonacci-Fulton, L.L.; Asri, M.; Baid, G.; et al. Pangenome Graph Construction from Genome Alignments with Minigraph-Cactus. Nat. Biotechnol. 2023; ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Liao, W.W.; Asri, M.; Ebler, J.; Doerr, D.; Haukness, M.; Hickey, G.; Lu, S.; Lucas, J.K.; Monlong, J.; Abel, H.J.; et al. A Draft Human Pangenome Reference. Nature 2023, 617, 312–324. [Google Scholar] [CrossRef] [PubMed]
- Arabi, F.; Mansouri, V.; Ahmadbeigi, N. Gene Therapy Clinical Trials, Where Do We Go? An Overview. Biomed. Pharmacother. 2022, 153, 113324. [Google Scholar] [CrossRef] [PubMed]
- Mendell, J.R.; Al-Zaidy, S.; Shell, R.; Arnold, W.D.; Rodino-Klapac, L.R.; Prior, T.W.; Lowes, L.; Alfano, L.; Berry, K.; Church, K.; et al. Single-Dose Gene-Replacement Therapy for Spinal Muscular Atrophy. N. Engl. J. Med. 2017, 377, 1713–1722. [Google Scholar] [CrossRef]
- Farhood, H.; Serbina, N.; Huang, L. The Role of Dioleoyl Phosphatidylethanolamine in Cationic Liposome Mediated Gene Transfer. Biochim. Biophys. Acta 1995, 1235, 289–295. [Google Scholar] [CrossRef]
- Cheng, Q.; Wei, T.; Farbiak, L.; Johnson, L.T.; Dilliard, S.A.; Siegwart, D.J. Selective Organ Targeting (SORT) Nanoparticles for Tissue-Specific mRNA Delivery and CRISPR–Cas Gene Editing. Nat. Nanotechnol. 2020, 15, 313–320. [Google Scholar] [CrossRef]
- Dilliard, S.A.; Cheng, Q.; Siegwart, D.J.; Desimone, J. On the Mechanism of Tissue-Specific mRNA Delivery by Selective Organ Targeting Nanoparticles. Proc. Natl. Acad. Sci. USA 2021, 118, e2109256118. [Google Scholar] [CrossRef]
- Li, B.; Manan, R.S.; Liang, S.Q.; Gordon, A.; Jiang, A.; Varley, A.; Gao, G.; Langer, R.; Xue, W.; Anderson, D. Combinatorial Design of Nanoparticles for Pulmonary mRNA Delivery and Genome Editing. Nat. Biotechnol. 2023, 41, 1410–1415. [Google Scholar] [CrossRef]
- Bansal, R.; Singh, A.K.; Gandhi, R.P.; Pant, A.B.; Kumar, P.; Gupta, K.C. Galactomannan-PEI Based Non-Viral Vectors for Targeted Delivery of Plasmid to Macrophages and Hepatocytes. Eur. J. Pharm. Biopharm. 2014, 87, 461–471. [Google Scholar] [CrossRef]
- Satkauskas, S.; Bureau, M.F.; Puc, M.; Mahfoudi, A.; Scherman, D.; Miklavcic, D.; Mir, L.M. Mechanisms of in Vivo DNA Electrotransfer: Respective Contribution of Cell Electropermeabilization and DNA Electrophoresis. Mol. Ther. 2002, 5, 133–140. [Google Scholar] [CrossRef]
- Kisakov, D.N.; Belyakov, I.M.; Kisakova, L.A.; Yakovlev, V.A.; Tigeeva, E.V.; Karpenko, L.I. The Use of Electroporation to Deliver DNA-Based Vaccines. Expert Rev. Vaccines 2024, 23, 102–123. [Google Scholar] [CrossRef]
- Bachy, M.; Boudet, F.; Bureau, M.; Girerd-Chambaz, Y.; Wils, P.; Scherman, D.; Meric, C. Electric Pulses Increase the Immunogenicity of an Influenza DNA Vaccine Injected Intramuscularly in the Mouse. Vaccine 2001, 19, 1688–1693. [Google Scholar] [CrossRef]
- Broderick, K.E.; Humeau, L.M. Enhanced Delivery of DNA or RNA Vaccines by Electroporation. Methods Mol. Biol. 2017, 1499, 193–200. [Google Scholar] [CrossRef]
- Distler, J.H.W.; Jüngel, A.; Kurowska-Stolarska, M.; Michel, B.A.; Gay, R.E.; Gay, S.; Distler, O. Nucleofection: A New, Highly Efficient Transfection Method for Primary Human Keratinocytes. Exp. Dermatol. 2005, 14, 315–320. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Song, Y.K.; Liu, D. Hydrodynamics-Based Transfection in Animals by Systemic Administration of Plasmid DNA. Gene Ther. 1999, 6, 1258–1266. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Budker, V.; Wolff, J.A. High Levels of Foreign Gene Expression in Hepatocytes after Tail Vein Injections of Naked Plasmid DNA. Hum. Gene Ther. 1999, 10, 1735–1737. [Google Scholar] [CrossRef] [PubMed]
- Kamimura, K.; Kanefuji, T.; Yokoo, T.; Abe, H.; Suda, T.; Kobayashi, Y.; Zhang, G.; Aoyagi, Y.; Liu, D. Safety Assessment of Liver-Targeted Hydrodynamic Gene Delivery in Dogs. PLoS ONE 2014, 9, e107203. [Google Scholar] [CrossRef] [PubMed]
- Kamimura, K.; Kanefuji, T.; Suda, T.; Yokoo, T.; Zhang, G.; Aoyagi, Y.; Liu, D. Liver Lobe-Specific Hydrodynamic Gene Delivery to Baboons: A Preclinical Trial for Hemophilia Gene Therapy. Mol. Ther. Nucleic Acids 2023, 32, 903–913. [Google Scholar] [CrossRef]
- Clark, I.B.; Hanania, E.G.; Stevens, J.; Gallina, M.; Fieck, A.; Brandes, R.; Palsson, B.O.; Koller, M.R. Optoinjection for Efficient Targeted Delivery of a Broad Range of Compounds and Macromolecules into Diverse Cell Types. J. Biomed. Opt. 2006, 11, 014034. [Google Scholar] [CrossRef]
- Bez, M.; Foiret, J.; Shapiro, G.; Pelled, G.; Ferrara, K.W.; Gazit, D. Nonviral Ultrasound-Mediated Gene Delivery in Small and Large Animal Models. Nat. Protoc. 2019, 14, 1015–1026. [Google Scholar] [CrossRef] [PubMed]
- Sun, R.R.; Noble, M.L.; Sun, S.S.; Song, S.; Miao, C.H. Development of Therapeutic Microbubbles for Enhancing Ultrasound-Mediated Gene Delivery. J. Control. Release 2014, 182, 111–120. [Google Scholar] [CrossRef] [PubMed]
- Panté, N.; Kann, M. Nuclear Pore Complex Is Able to Transport Macromolecules with Diameters of ∼39 Nm. Mol. Biol. Cell 2002, 13, 425–434. [Google Scholar] [CrossRef] [PubMed]
- Jamali, T.; Jamali, Y.; Mehrbod, M.; Mofrad, M.R.K. Nuclear Pore Complex. Biochemistry and Biophysics of Nucleocytoplasmic Transport in Health and Disease. Int. Rev. Cell Mol. Biol. 2011, 287, 233–286. [Google Scholar] [CrossRef] [PubMed]
- Ahn, H.-H.; Carrington, C.; Hu, Y.; Liu, H.-W.; Ng, C.; Nam, H.; Park, A.; Stace, C.; West, W.; Mao, H.-Q.; et al. Nanoparticle-Mediated Tumor Cell Expression of mIL-12 via Systemic Gene Delivery Treats Syngeneic Models of Murine Lung Cancers. Sci. Rep. 2021, 11, 9733. [Google Scholar] [CrossRef] [PubMed]
- Kreiss, P.; Cameron, B.; Rangara, R.; Mailhe, P.; Aguerre-Charriol, O.; Airiau, M.; Scherman, D.; Crouzet, J.; Pitard, B. Plasmid DNA Size Does Not Affect the Physicochemical Properties of Lipoplexes but Modulates Gene Transfer Efficiency. Nucleic Acids Res. 1999, 27, 3792–3798. [Google Scholar] [CrossRef] [PubMed]
- Darquet, A.-M.; Rangara, R.; Kreiss, P.; Schwartz, B.; Naimi, S.; Delaère, P.; Crouzet, J.; Scherman, D. Minicircle: An Improved DNA Molecule for in Vitro and in Vivo Gene Transfer. Gene Ther. 1999, 6, 209–218. [Google Scholar] [CrossRef]
- Stenler, S.; Wiklander, O.P.B.; Badal-Tejedor, M.; Turunen, J.; Nordin, J.; Hallengärd, D.; Wahren, B.; Andaloussi, S.E.L.; Rutland, M.W.; Edvard Smith, C.I.; et al. Micro-Minicircle Gene Therapy: Implications of Size on Fermentation, Complexation, Shearing Resistance, and Expression. Mol. Ther. Nucleic Acids 2013, 2, e140. [Google Scholar] [CrossRef]
- Catanese, D.J.; Fogg, J.M.; Schrock, D.E.; Gilbert, B.E.; Zechiedrich, L. Supercoiled Minivector DNA Resists Shear Forces Associated with Gene Therapy Delivery. Gene Ther. 2012, 19, 94–100. [Google Scholar] [CrossRef]
- European Medicines Agency Site. Available online: https://www.ema.europa.eu/en/documents/scientific-guideline/guideline-quality-non-clinical-and-clinical-aspects-gene-therapy-medicinal-products_en.pdf (accessed on 20 December 2023).
- European Medicines Agency Site. Available online: https://www.ema.europa.eu/en/documents/scientific-guideline/guideline-non-clinical-studies-required-first-clinical-use-gene-therapy-medicinal-products_en.pdf (accessed on 20 December 2023).
- Mairhofer, J.; Cserjan-Puschmann, M.; Striedner, G.; Nöbauer, K.; Razzazi-Fazeli, E.; Grabherr, R. Marker-Free Plasmids for Gene Therapeutic Applications—Lack of Antibiotic Resistance Gene Substantially Improves the Manufacturing Process. J. Biotechnol. 2010, 146, 130–137. [Google Scholar] [CrossRef] [PubMed]
- Chadeuf, G.; Ciron, C.; Moullier, P.; Salvetti, A. Evidence for Encapsidation of Prokaryotic Sequences during Recombinant Adeno-Associated Virus Production and Their in Vivo Persistence after Vector Delivery. Mol. Ther. 2005, 12, 744–753. [Google Scholar] [CrossRef] [PubMed]
- Schnödt, M.; Schmeer, M.; Kracher, B.; Krüsemann, C.; Espinosa, L.E.; Grünert, A.; Fuchsluger, T.; Rischmüller, A.; Schleef, M.; Büning, H. DNA Minicircle Technology Improves Purity of Adeno-Associated Viral Vector Preparations. Mol. Ther. Nucleic Acids 2016, 5, e355. [Google Scholar] [CrossRef] [PubMed]
- Mccarty, D.M.; Pereira, D.J.; Zolotukhin, I.; Zhou, X.; Ryan, J.H.; Muzyczka, N.; Mccarty, D.M.; Ryan, J.H.; Zolutukhin, S.; Zhou, X.; et al. Identification of Linear DNA Sequences That Specifically Bind the Adeno-Associated Virus Rep Protein. J. Virol. 1994, 68, 4988–4997. [Google Scholar] [CrossRef] [PubMed]
- Shafaati, M.; Saidijam, M.; Soleimani, M.; Hazrati, F.; Mirzaei, R.; Amirheidari, B.; Tanzadehpanah, H.; Karampoor, S.; Kazemi, S.; Yavari, B.; et al. A Brief Review on DNA Vaccines in the Era of COVID-19. Future Virol. 2021, 17, 49–66. [Google Scholar] [CrossRef]
- Darquet, A.-M.; Cameron, B.; Wils, P.; Scherman, D.; Crouzet, J. A New DNA Vehicle for Nonviral Gene Delivery: Supercoiled Minicircle. Gene Ther. 1997, 4, 1341–1349. [Google Scholar] [CrossRef]
- Bigger, B.W.; Tolmachov, O.; Collombet, J.M.; Fragkos, M.; Palaszewski, I.; Coutelle, C. An AraC-Controlled Bacterial Cre Expression System to Produce DNA Minicircle Vectors for Nuclear and Mitochondrial Gene Therapy. J. Biol. Chem. 2001, 276, 23018–23027. [Google Scholar] [CrossRef]
- Nehlsen, K.; Broll, S.; Bode, J. Replicating Minicircles: Generation of Nonviral Episomes for the Efficient Modification of Dividing Cells. Gene Ther. Mol. Biol. 2006, 10, 233–244. [Google Scholar]
- Chen, Z.Y.; He, C.Y.; Ehrhardt, A.; Kay, M.A. Minicircle DNA Vectors Devoid of Bacterial DNA Result in Persistent and High-Level Transgene Expression in Vivo. Mol. Ther. 2003, 8, 495–500. [Google Scholar] [CrossRef]
- Kay, M.A.; He, C.Y.; Chen, Z.Y. A Robust System for Production of Minicircle DNA Vectors. Nat. Biotechnol. 2010, 28, 1287–1289. [Google Scholar] [CrossRef]
- Alves, C.P.A.; Prazeres, D.M.F.; Monteiro, G.A. Recombination Efficiency Measurement by Real-Time PCR: A Strategy to Evaluate ParA-Mediated Minicircle Production. Anal. Biochem. 2021, 628, 114285. [Google Scholar] [CrossRef]
- Mayrhofer, P.; Blaesen, M.; Schleef, M.; Jechlinger, W. Minicircle-DNA Production by Site Specific Recombination and Protein—DNA Interaction Chromatography. J. Gene Med. 2008, 10, 1253–1269. [Google Scholar] [CrossRef]
- Almeida, A.M.; António Queiroz, J.; Sousa, F.; Sousa, Â. Minicircle DNA: The Future for DNA-Based Vectors? Trends Biotechnol. 2020, 38, 1047–1051. [Google Scholar] [CrossRef]
- Wils, P.; Escriou, V.; Warnery, A.; Lacroix, F.; Lagneaux, D.; Ollivier, M.; Crouzet, J.; Mayaux, J.-F.; Scherman, D. Efficient Purification of Plasmid DNA for Gene Transfer Using Triple-Helix Affinity Chromatography. Gene Ther. 1997, 4, 323–330. [Google Scholar] [CrossRef]
- Hou, X.H.; Guo, X.Y.; Chen, Y.; He, C.Y.; Chen, Z.Y. Increasing the Minicircle DNA Purity Using an Enhanced Triplex DNA Technology to Eliminate DNA Contaminants. Mol. Ther. Methods Clin. Dev. 2015, 1, 14062. [Google Scholar] [CrossRef] [PubMed]
- Alves, C.P.A.; Šimčíková, M.; Brito, L.; Monteiro, G.A.; Prazeres, D.M.F. Development of a Nicking Endonuclease-Assisted Method for the Purification of Minicircles. J. Chromatogr. A 2016, 1443, 136–144. [Google Scholar] [CrossRef]
- Alves, C.P.A.; Šimčíková, M.; Brito, L.; Monteiro, G.A.; Prazeres, D.M.F. Production and Purification of Supercoiled Minicircles by a Combination of in Vitro Endonuclease Nicking and Hydrophobic Interaction Chromatography. Hum. Gene Ther. Methods 2018, 29, 157–168. [Google Scholar] [CrossRef]
- Madeira, C.; Rodrigues, C.A.V.; Reis, M.S.C.; Ferreira, F.F.C.G.; Correia, R.E.S.M.; Diogo, M.M.; Cabral, J.M.S. Nonviral Gene Delivery to Neural Stem Cells with Minicircles by Microporation. Biomacromolecules 2013, 14, 1379–1387. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Alshehri, F.; Manzanares, D.; Li, Y.; He, Z.; Qiu, B.; Zeng, M.; A., S.; Lara-Sáez, I.; Wang, W. Development of Minicircle Vectors Encoding Col7a1 Gene with Human Promoters for Non-Viral Gene Therapy for Recessive Dystrophic Epidermolysis Bullosa. Int. J. Mol. Sci. 2021, 22, 12774. [Google Scholar] [CrossRef]
- Florian, M.; Wang, J.P.; Deng, Y.; Souza-Moreira, L.; Stewart, D.J.; Mei, S.H.J. Gene Engineered Mesenchymal Stem Cells: Greater Transgene Expression and Efficacy with Minicircle vs. Plasmid DNA Vectors in a Mouse Model of Acute Lung Injury. Stem Cell Res. Ther. 2021, 12, 184. [Google Scholar] [CrossRef] [PubMed]
- Serra, J.; Alves, C.P.A.; Brito, L.; Monteiro, G.A.; Cabral, J.M.S.; Prazeres, D.M.F.; Da Silva, C.L. Engineering of Human Mesenchymal Stem/Stromal Cells with Vascular Endothelial Growth Factor-Encoding Minicircles for Angiogenic Ex Vivo Gene Therapy. Hum. Gene Ther. 2019, 30, 316–329. [Google Scholar] [CrossRef] [PubMed]
- Narsinh, K.H.; Jia, F.; Robbins, R.C.; Kay, M.A.; Longaker, M.T.; Wu, J.C. Generation of Adult Human Induced Pluripotent Stem Cells Using Nonviral Minicircle DNA Vectors. Nat. Protoc. 2011, 6, 78–88. [Google Scholar] [CrossRef]
- Prommersberger, S.; Reiser, M.; Beckmann, J.; Danhof, S.; Amberger, M.; Quade-Lyssy, P.; Einsele, H.; Hudecek, M.; Bonig, H.; Ivics, Z. CARAMBA: A First-in-Human Clinical Trial with SLAMF7 CAR-T Cells Prepared by Virus-Free Sleeping Beauty Gene Transfer to Treat Multiple Myeloma. Gene Ther. 2021, 28, 560–571. [Google Scholar] [CrossRef]
- Schakowski, F.; Gorschlüter, M.; Buttgereit, P.; Märten, A.; Lilienfeld-Toal, M.V.; Junghans, C.; Schroff, M.; König-Merediz, S.A.; Ziske, C.; Strehl, J.; et al. Minimal Size MIDGE Vectors Improve Transgene Expression In Vivo. In Vivo 2007, 21, 17–23. [Google Scholar]
- Leutenegger, C.M.; Boretti, F.S.; Mislin, C.N.; Flynn, J.N.; Schroff, M.; Habel, A.; Junghans, C.; Koenig-Merediz, S.A.; Sigrist, B.; Aubert, A.; et al. Immunization of Cats against Feline Immunodeficiency Virus (FIV) Infection by Using Minimalistic Immunogenic Defined Gene Expression Vector Vaccines Expressing FIV Gp140 Alone or with Feline Interleukin-12 (IL-12), IL-16, or a CpG Motif. J. Virol. 2000, 74, 10447–10457. [Google Scholar] [CrossRef] [PubMed]
- Boretti, F.S.; Leutenegger, C.M.; Mislin, C.; Hofmann-Lehmann, R.; Ko, S.; Schroff, M.; Junghans, C.; Fehr, D.; Huettner, S.W.; Habel, A.Â.; et al. Protection against FIV Challenge Infection by Genetic Vaccination Using Minimalistic DNA Constructs for FIV Env Gene and Feline IL-12 Expression. AIDS 2000, 14, 1749–1757. [Google Scholar] [CrossRef] [PubMed]
- López-Fuertes, L.; Pérez-Jiménez, E.; Vila-Coro, A.J.; Sack, F.; Moreno, S.; Konig, S.A.; Junghans, C.; Wittig, B.; Timón, M.; Esteban, M. DNA Vaccination with Linear Minimalistic (MIDGE) Vectors Confers Protection against Leishmania Major Infection in Mice. Vaccine 2002, 21, 247–257. [Google Scholar] [CrossRef]
- Endmann, A.; Baden, M.; Weisermann, E.; Kapp, K.; Schroff, M.; Kleuss, C.; Wittig, B.; Juhls, C. Immune Response Induced by a Linear DNA Vector: Influence of Dose, Formulation and Route of Injection. Vaccine 2010, 28, 3642–3649. [Google Scholar] [CrossRef]
- Schirmbeck, R.; König-Merediz, S.A.; Riedl, P.; Kwissa, M.; Sack, F.; Schroff, M.; Junghans, C.; Reimann, J.; Wittig, B. Priming of Immune Responses to Hepatitis B Surface Antigen with Minimal DNA Expression Constructs Modified with a Nuclear Localization Signal Peptide. J. Mol. Med. 2001, 79, 343–350. [Google Scholar] [CrossRef]
- Zheng, C.; Juhls, C.; Oswald, D.; Sack, F.; Westfehling, I.; Wittig, B.; Babiuk, L.A.; van Drunen Littel-van den Hurk, S. Effect of Different Nuclear Localization Sequences on the Immune Responses Induced by a MIDGE Vector Encoding Bovine Herpesvirus-1 Glycoprotein D. Vaccine 2006, 24, 4625–4629. [Google Scholar] [CrossRef]
- Volz, B.; Schmidt, M.; Heinrich, K.; Kapp, K.; Schroff, M.; Wittig, B. Design and Characterization of the Tumor Vaccine MGN1601, Allogeneic Fourfold Gene-Modified Vaccine Cells Combined with a TLR-9 Agonist. Mol. Ther. Oncolytics 2016, 3, 15023. [Google Scholar] [CrossRef]
- Nafissi, N.; Alqawlaq, S.; Lee, E.A.; Foldvari, M.; Spagnuolo, P.A.; Slavcev, R.A. DNA Ministrings: Highly Safe and Effective Gene Delivery Vectors. Mol. Ther. Nucleic Acids 2014, 3, e165. [Google Scholar] [CrossRef]
- Wong, S.; Lam, P.; Nafissi, N.; Denniss, S.; Slavcev, R. Production of Double-Stranded DNA Ministrings. J. Vis. Exp. 2016, 108, 53177. [Google Scholar] [CrossRef]
- Barreira, M.; Kerridge, C.; Jorda, S.; Olofsson, D.; Neumann, A.; Horton, H.; Smith-Moore, S. Enzymatically Amplified Linear DbDNATM as a Rapid and Scalable Solution to Industrial Lentiviral Vector Manufacturing. Gene Ther. 2023, 30, 122–131. [Google Scholar] [CrossRef]
- Mucker, E.M.; Brocato, R.L.; Principe, L.M.; Kim, R.K.; Zeng, X.; Smith, J.M.; Kwilas, S.A.; Kim, S.; Horton, H.; Caproni, L.; et al. SARS-CoV-2 Doggybone DNA Vaccine Produces Cross-Variant Neutralizing Antibodies and Is Protective in a COVID-19 Animal Model. Vaccines 2022, 10, 1104. [Google Scholar] [CrossRef]
- Bishop, D.C.; Caproni, L.; Gowrishankar, K.; Legiewicz, M.; Karbowniczek, K.; Tite, J.; Gottlieb, D.J.; Micklethwaite, K.P. CAR T Cell Generation by PiggyBac Transposition from Linear Doggybone DNA Vectors Requires Transposon DNA-Flanking Regions. Mol. Ther. Methods Clin. Dev. 2020, 17, 359–368. [Google Scholar] [CrossRef]
- Grabherr, R.; Bayer, K. Impact of Targeted Vector Design on Col E1 Plasmid Replication. Trends Biotechnol. 2002, 20, 257–260. [Google Scholar] [CrossRef]
- Filutowicz, M.; McEachern, M.J.; Mukhopadhyay, P.; Greener, A.; Yang, S.L.; Helinski, D.R. DNA and Protein Interactions in The Regulation of Plasmid Replication. J. Cell Sci. Suppl. 1987, 7, 15–31. [Google Scholar] [CrossRef] [PubMed]
- Soubrier, F.; Cameron, B.; Manse, B.; Somarriba, S.; Dubertret, C.; Jaslin, G.; Jung, G.; Le Caer, C.; Dang, D.; Mouvault, J.M.; et al. pCOR: A New Design of Plasmid Vectors for Nonviral Gene Therapy. Gene Ther. 1999, 6, 1482–1488. [Google Scholar] [CrossRef] [PubMed]
- Soubrier, F.; Laborderie, B.; Cameron, B. Improvement of pCOR Plasmid Copy Number for Pharmaceutical Applications. Appl. Microbiol. Biotechnol. 2005, 66, 683–688. [Google Scholar] [CrossRef] [PubMed]
- Cranenburgh, R.M.; Hanak, J.A.J.; Williams, S.G.; Sherratt, D.J. Escherichia coli Strains That Allow Antibiotic-Free Plasmid Selection and Maintenance by Repressor Titration. Nucleic Acids Res. 2001, 29, E26. [Google Scholar] [CrossRef]
- Cranenburgh, R.M.; Lewis, K.S.; Hanak, J.A.J. Effect of Plasmid Copy Number and Lac Operator Sequence on Antibiotic-Free Plasmid Selection by Operator-Repressor Titration in Escherichia Coli. J. Mol. Microbiol. Biotechnol. 2004, 7, 197–203. [Google Scholar] [CrossRef] [PubMed]
- Ramos, I.; Alonso, A.; Peris, A.; Marcen, J.M.; Abengozar, M.A.; Alcolea, P.J.; Castillo, J.A.; Larraga, V. Antibiotic Resistance Free Plasmid DNA Expressing LACK Protein Leads towards a Protective Th1 Response against Leishmania Infantum Infection. Vaccine 2009, 27, 6695–6703. [Google Scholar] [CrossRef] [PubMed]
- Kamensek, U.; Rencelj, A.; Jesenko, T.; Remic, T.; Sersa, G.; Cemazar, M. Maintenance and Gene Electrotransfer Efficiency of Antibiotic Resistance Gene-Free Plasmids Encoding Mouse, Canine and Human Interleukin-12 Orthologues. Heliyon 2022, 8, e08879. [Google Scholar] [CrossRef]
- Spanggaard, I.; Snoj, M.; Cavalcanti, A.; Bouquet, C.; Sersa, G.; Robert, C.; Cemazar, M.; Dam, E.; Vasseur, B.; Attali, P.; et al. Gene Electrotransfer of Plasmid Antiangiogenic Metargidin Peptide (AMEP) in Disseminated Melanoma: Safety and Efficacy Results of a Phase i First-in-Man Study. Hum. Gene Ther. Clin. Dev. 2013, 24, 99–107. [Google Scholar] [CrossRef] [PubMed]
- Spanggaard, I.; Dahlstroem, K.; Laessoee, L.; Hansen, R.H.; Johannesen, H.H.; Hendel, H.W.; Bouquet, C.; Attali, P.; Gehl, J. Gene Therapy for Patients with Advanced Solid Tumors: A Phase I Study Using Gene Electrotransfer to Muscle with the Integrin Inhibitor Plasmid AMEP. Acta Oncol. 2017, 56, 909–916. [Google Scholar] [CrossRef]
- Mairhofer, J.; Pfaffenzeller, I.; Merz, D.; Grabherr, R. A Novel Antibiotic Free Plasmid Selection System: Advances in Safe and Efficient DNA Therapy. Biotechnol. J. 2008, 3, 83–89. [Google Scholar] [CrossRef]
- Carnes, A.E.; Luke, J.M.; Vincent, J.M.; Anderson, S.; Schukar, A.; Hodgson, C.P.; Williams, J.A. Critical Design Criteria for Minimal Antibiotic-Free Plasmid Vectors Necessary to Combine Robust RNA Pol II and Pol III-Mediated Eukaryotic Expression with High Bacterial Production Yields. J. Gene Med. 2010, 12, 818–831. [Google Scholar] [CrossRef]
- Luke, J.; Carnes, A.E.; Hodgson, C.P.; Williams, J.A. Improved Antibiotic-Free DNA Vaccine Vectors Utilizing a Novel RNA Based Plasmid Selection System. Vaccine 2009, 27, 6454–6459. [Google Scholar] [CrossRef]
- Costello, C.; Derman, B.A.; Kocoglu, M.H.; Deol, A.; Ali, A.A.; Gregory, T.; Dholaria, B.; Berdeja, J.G.; Cohen, A.D.; Patel, K.K.; et al. Clinical Trials of BCMA-Targeted CAR-T Cells Utilizing a Novel Non-Viral Transposon System. Blood 2021, 138, 3858. [Google Scholar] [CrossRef]
- Ostertag, E. Manufacturing Matters in CAR-T: Small Changes Can Have a Big Impact. Poseida Therapeutics Site. Available online: https://poseida.com/wp-content/uploads/2021/01/Manufacturing-Matters-in-CAR-T.pdf (accessed on 20 December 2023).
- Su, Y.; Romeu-Bonilla, E.; Anagnostou, A.; Fitz-Patrick, D.; Hearl, W.; Heiland, T. Safety and Long-Term Immunological Effects of CryJ2-LAMP Plasmid Vaccine in Japanese Red Cedar Atopic Subjects: A Phase I Study. Hum. Vaccines Immunother. 2017, 13, 2804–2813. [Google Scholar] [CrossRef] [PubMed]
- Teixeira, L.; Medioni, J.; Garibal, J.; Adotevi, O.; Doucet, L.; Durey, M.A.D.; Ghrieb, Z.; Kiladjian, J.J.; Brizard, M.; Laheurte, C.; et al. A First-in-Human Phase I Study of INVAC-1, an Optimized Human Telomerase DNA Vaccine in Patients with Advanced Solid Tumors. Clin. Cancer Res. 2020, 26, 588–597. [Google Scholar] [CrossRef] [PubMed]
- Hoogewoud, F.; Buggage, R.; Behar-Cohen, F. EYS606 for the Treatment of Non-Infectious Uveitis. Acta Ophthalmol. 2019, 97. [Google Scholar] [CrossRef]
- Buggage, R.; Behar-Cohen, F. EYS606 for the Treatment of Chronic Non-Infectious Uveitis (NIU): Results from Part 1 of a First-in-Human (EYS606-CT1) Study. Investig. Ophthalmol. Vis. Sci. 2020, 61, 3170. [Google Scholar]
- Luke, J.M.; Simon, G.G.; Söderholm, J.; Errett, J.S.; August, J.T.; Gale, M.; Hodgson, C.P.; Williams, J.A. Coexpressed RIG-I Agonist Enhances Humoral Immune Response to Influenza Virus DNA Vaccine. J. Virol. 2011, 85, 1370–1383. [Google Scholar] [CrossRef] [PubMed]
- Steinberg, G.D.; Kalota, S.J.; Lotan, Y.; Warner, L.; Dauphinee, S.; Mazanet, R. Clinical Results of a Phase 1 Study of Intravesical EG-70 in Patients with BCG-Unresponsive NMIBC. J. Clin. Oncol. 2023, 41, 512. [Google Scholar] [CrossRef]
- Chandra, J.; Woo, W.P.; Dutton, J.L.; Xu, Y.; Li, B.; Kinrade, S.; Druce, J.; Finlayson, N.; Griffin, P.; Laing, K.J.; et al. Immune Responses to a HSV-2 Polynucleotide Immunotherapy COR-1 in HSV-2 Positive Subjects: A Randomized Double Blinded Phase I/IIa Trial. PLoS ONE 2019, 14, e0226320. [Google Scholar] [CrossRef]
- Marie, C.; Vandermeulen, G.; Quiviger, M.; Richard, M.; Préat, V.; Scherman, D. PFARs, Plasmids Free of Antibiotic Resistance Markers, Display High-Level Transgene Expression in Muscle, Skin and Tumour Cells. J. Gene Med. 2010, 12, 323–332. [Google Scholar] [CrossRef]
- Belch, J.; Hiatt, W.R.; Baumgartner, I.; Driver, V.; Nikol, S.; Norgren, L.; Van Belle, E. Effect of Fibroblast Growth Factor NV1FGF on Amputation and Death: A Randomised Placebo-Controlled Trial of Gene Therapy in Critical Limb Ischaemia. Lancet 2011, 377, 1929–1937. [Google Scholar] [CrossRef]
- Bakker, N.A.M.; de Boer, R.; Marie, C.; Scherman, D.; Haanen, J.B.A.G.; Beijnen, J.H.; Nuijen, B.; van den Berg, J.H. Small-Scale GMP Production of Plasmid DNA Using a Simplified and Fully Disposable Production Method. J. Biotechnol. 2019, 306S, 100007. [Google Scholar] [CrossRef]
- Hernandez, M.; Recalde, S.; Garcia-Garcia, L.; Bezunartea, J.; Miskey, C.; Johnen, S.; Diarra, S.; Sebe, A.; Rodriguez-Madoz, J.R.; Pouillot, S.; et al. Preclinical Evaluation of a Cell-Based Gene Therapy Using the Sleeping Beauty Transposon System in Choroidal Neovascularization. Mol. Ther. Methods Clin. Dev. 2019, 15, 403–417. [Google Scholar] [CrossRef]
- Garcia-Garcia, L.; Recalde, S.; Hernandez, M.; Bezunartea, J.; Rodriguez-Madoz, J.R.; Johnen, S.; Diarra, S.; Marie, C.; Izsvák, Z.; Ivics, Z.; et al. Long-Term PEDF Release in Rat Iris and Retinal Epithelial Cells after Sleeping Beauty Transposon-Mediated Gene Delivery. Mol. Ther. Nucleic Acids 2017, 9, 1–11. [Google Scholar] [CrossRef]
- Pastor, M.; Johnen, S.; Harmening, N.; Quiviger, M.; Pailloux, J.; Kropp, M.; Walter, P.; Ivics, Z.; Izsvák, Z.; Thumann, G.; et al. The Antibiotic-Free pFAR4 Vector Paired with the Sleeping Beauty Transposon System Mediates Efficient Transgene Delivery in Human Cells. Mol. Ther. Nucleic Acids 2018, 11, 57–67. [Google Scholar] [CrossRef]
- Johnen, S.; Harmening, N.; Marie, C.; Scherman, D.; Izsvák, Z.; Ivics, Z.; Walter, P.; Thumann, G. Electroporation-Based Genetic Modification of Primary Human Pigment Epithelial Cells Using the Sleeping Beauty Transposon System. J. Vis. Exp. 2021, 168, e61987. [Google Scholar] [CrossRef]
- Thumann, G.; Harmening, N.; Prat-Souteyrand, C.; Marie, C.; Pastor, M.; Sebe, A.; Miskey, C.; Hurst, L.D.; Diarra, S.; Kropp, M.; et al. Engineering of PEDF-Expressing Primary Pigment Epithelial Cells by the SB Transposon System Delivered by pFAR4 Plasmids. Mol. Ther. Nucleic Acids 2017, 6, 302–314. [Google Scholar] [CrossRef]
- Quiviger, M.; Arfi, A.; Mansard, D.; Delacotte, L.; Pastor, M.; Scherman, D.; Marie, C. High and Prolonged Sulfamidase Secretion by the Liver of MPS-IIIA Mice Following Hydrodynamic Tail Vein Delivery of Antibiotic-Free pFAR4 Plasmid Vector. Gene Ther. 2014, 21, 1001–1007. [Google Scholar] [CrossRef] [PubMed]
- Pastor, M.; Quiviger, M.; Pailloux, J.; Scherman, D.; Marie, C. Reduced Heterochromatin Formation on the pFAR4 Miniplasmid Allows Sustained Transgene Expression in the Mouse Liver. Mol. Ther. Nucleic Acids 2020, 21, 28–36. [Google Scholar] [CrossRef] [PubMed]
- Gogishvili, T.; Monjezi, R.; Marie, C.; Machwirth, M.; Einsele, H.; Ivics, Z.; Scherman, D.; Hudecek, M. Enhanced engineering of chimeric antigen receptor (CAR)-modified T Cells using non-viral Sleeping Beauty transposition from pFAR vectors. In Proceedings of the European Society of Gene and Cell Therapy, Berlin, Germany, 17–20 October 2017. [Google Scholar]
- Zabaleta, N.; Hommel, M.; Salas, D.; Gonzalez-Aseguinolaza, G. Genetic-Based Approaches to Inherited Metabolic Liver Diseases. Hum. Gene Ther. 2019, 30, 1190–1203. [Google Scholar] [CrossRef] [PubMed]
- Riu, E.; Chen, Z.-Y.; Xu, H.; He, C.-Y.; Kay, M.A. Histone Modifications Are Associated with the Persistence or Silencing of Vector-Mediated Transgene Expression in Vivo. Mol. Ther. 2007, 15, 1348–1355. [Google Scholar] [CrossRef] [PubMed]
- Aliño, S.F.; Crespo, A.; Dasí, F. Long-Term Therapeutic Levels of Human Alpha-1 Antitrypsin in Plasma after Hydrodynamic Injection of Nonviral DNA. Gene Ther. 2003, 10, 1672–1679. [Google Scholar] [CrossRef] [PubMed]
- Miao, C.H.; Ohashi, K.; Patijn, G.A.; Meuse, L.; Ye, X.; Thompson, A.R.; Kay, M.A. Inclusion of the Hepatic Locus Control Region, an Intron, and Untranslated Region Increases and Stabilizes Hepatic Factor IX Gene Expression in Vivo but Not in Vitro. Mol. Ther. 2000, 1, 522–532. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.Y.; He, C.-Y.; Meuse, L.; Kay, M.A. Silencing of Episomal Transgene Expression by Plasmid Bacterial DNA Elements in Vivo. Gene Ther. 2004, 11, 856–864. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Zhang, F.; Xu, S.; Fire, A.Z.; Kay, M.A. The Extragenic Spacer Length between the 5′ and 3′ Ends of the Transgene Expression Cassette Affects Transgene Silencing from Plasmid-Based Vectors. Mol. Ther. 2012, 20, 2111–2119. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Zhang, F.; Fire, A.Z.; Kay, M.A. Sequence-Modified Antibiotic Resistance Genes Provide Sustained Plasmid-Mediated Transgene Expression in Mammals. Mol. Ther. 2017, 25, 1187–1198. [Google Scholar] [CrossRef] [PubMed]
- Gracey Maniar, L.E.; Maniar, J.M.; Chen, Z.Y.; Lu, J.; Fire, A.Z.; Kay, M.A. Minicircle DNA Vectors Achieve Sustained Expression Reflected by Active Chromatin and Transcriptional Level. Mol Ther. 2013, 21, 131–138. [Google Scholar] [CrossRef] [PubMed]
- Segal, E.; Widom, J. Poly(DA:DT) Tracts: Major Determinants of Nucleosome Organization. Curr. Opin. Struct. Biol. 2009, 19, 65–71. [Google Scholar] [CrossRef]
- Mendenhall, E.M.; Koche, R.P.; Truong, T.; Zhou, V.W.; Issac, B.; Chi, A.S.; Ku, M.; Bernstein, B.E. GC-Rich Sequence Elements Recruit PRC2 in Mammalian ES Cells. PLoS Genet. 2010, 6, e1001244. [Google Scholar] [CrossRef]
- Kropp, M.; Harmening, N.; Bascuas, T.; Johnen, S.; De Clerck, E.; Fernández, V.; Ronchetti, M.; Cadossi, R.; Zanini, C.; Scherman, D.; et al. GMP-Grade Manufacturing and Quality Control of a Non-Virally Engineered Advanced Therapy Medicinal Product for Personalized Treatment of Age-Related Macular Degeneration. Biomedicines 2022, 10, 2777. [Google Scholar] [CrossRef]
- Pinyon, J.L.; von Jonquieres, G.; Crawford, E.N.; Duxbury, M.; Al Abed, A.; Lovell, N.H.; Klugmann, M.; Wise, A.K.; Fallon, J.B.; Shepherd, R.K.; et al. Neurotrophin Gene Augmentation by Electrotransfer to Improve Cochlear Implant Hearing Outcomes. Hear. Res. 2019, 380, 137–149. [Google Scholar] [CrossRef]
- Pinyon, J.L.; Tadros, S.F.; Froud, K.E.; Wong, A.C.Y.; Tompson, I.T.; Crawford, E.N.; Ko, M.; Morris, R.; Klugmann, M.; Housley, G.D. Close-Field Electroporation Gene Delivery Using the Cochlear Implant Electrode Array Enhances the Bionic Ear. Sci. Transl. Med. 2014, 6, 233ra54. [Google Scholar] [CrossRef]
- Wang, Z.; Troilo, P.J.; Wang, X.; Griffiths, T.G.; Pacchione, S.J.; Barnum, A.B.; Harper, L.B.; Pauley, C.J.; Niu, Z.; Denisova, L.; et al. Detection of Integration of Plasmid DNA into Host Genomic DNA Following Intramuscular Injection and Electroporation. Gene Ther. 2004, 11, 711–721. [Google Scholar] [CrossRef] [PubMed]
- Ledwith, B.J.; Manam, S.; Troilo, P.J.; Barnum, A.B.; Pauley, C.J.; Griffiths, T.G.; Harper, L.B.; Beare, C.M.; Bagdon, W.J.; Nichols, W.W. Plasmid DNA Vaccines: Investigation of Integration into Host Cellular DNA Following Intramuscular Injection in Mice. Intervirology 2000, 43, 258–272. [Google Scholar] [CrossRef] [PubMed]
- Mcclintock, B. The Origin and Behavior of Mutable Loci in Maize. Proc. Natl. Acad. Sci. USA 1950, 36, 344–355. [Google Scholar] [CrossRef] [PubMed]
- Lander, S.; Linton, L.M.; Birren, B.; Nusbaum, C.; Zody, M.C.; Baldwin, J.; Devon, K.; Dewar, K.; Doyle, M.; FitzHugh, W.; et al. Initial Sequencing and Analysis of the Human Genome. Nature 2001, 409, 860–921. [Google Scholar] [CrossRef]
- Ivics, Z.; Hackett, P.B.; Plasterk, R.H.; Izsvák, Z. Molecular Reconstruction of Sleeping Beauty, a Tc1-like Transposon from Fish, and Its Transposition in Human Cells. Cell 1997, 91, 501–510. [Google Scholar] [CrossRef]
- Mátés, L.; Chuah, M.K.L.; Belay, E.; Jerchow, B.; Manoj, N.; Acosta-Sanchez, A.; Grzela, D.P.; Schmitt, A.; Becker, K.; Matrai, J.; et al. Molecular Evolution of a Novel Hyperactive Sleeping Beauty Transposase Enables Robust Stable Gene Transfer in Vertebrates. Nat. Genet. 2009, 41, 753–761. [Google Scholar] [CrossRef]
- Izsvák, Z.; Stüwe, E.E.; Fiedler, D.; Katzer, A.; Jeggo, P.A.; Ivics, Z.N. Healing the Wounds Inflicted by Sleeping Beauty Transposition by Double-Strand Break Repair in Mammalian Somatic. Mol. Cell 2004, 13, 279–290. [Google Scholar] [CrossRef]
- Vigdal, T.J.; Kaufman, C.D.; Izsvák, Z.; Voytas, D.F.; Ivics, Z. Common Physical Properties of DNA Affecting Target Site Selection of Sleeping Beauty and Other Tc1/Mariner Transposable Elements. J. Mol. Biol. 2002, 323, 441–452. [Google Scholar] [CrossRef]
- Grabundzija, I.; Irgang, M.; Mátés, L.; Belay, E.; Matrai, J.; Gogol-Döring, A.; Kawakami, K.; Chen, W.; Ruiz, P.; Chuah, M.K.L.; et al. Comparative Analysis of Transposable Element Vector Systems in Human Cells. Mol. Ther. 2010, 18, 1200–1209. [Google Scholar] [CrossRef]
- Zayed, H.; Izsvák, Z.; Walisco, O.; Ivics, Z. Development of Hyperactive Sleeping Beauty Transposon Vectors by Mutational Analysis. Mol. Ther. 2004, 9, 292–304. [Google Scholar] [CrossRef]
- Gogol-Doring, A.; Ammar, I.; Gupta, S.; Bunse, M.; Miskey, C.; Chen, W.; Uckert, W.; Schulz, T.F.; Izsvak, Z.; Ivics, Z. Genome-Wide Profiling Reveals Remarkable Parallels between Insertion Site Selection Properties of the MLV Retrovirus and the PiggyBac Transposon in Primary Human CD4+ T Cells. Mol. Ther. 2016, 24, 592–606. [Google Scholar] [CrossRef] [PubMed]
- Miskey, C.; Kesselring, L.; Querques, I.; Abrusán, G.; Barabas, O.; Ivics, Z. Engineered Sleeping Beauty Transposase Redirects Transposon Integration Away from Genes. Nucleic Acids Res. 2022, 50, 2807–2825. [Google Scholar] [CrossRef] [PubMed]
- Cary, L.C.; Goebel, M.; Corsaro, B.G.; Wang, H.-G.; Rosen, E.; Fraser, M.J. Transposon Mutagenesis of Baculoviruses: Analysis of Trichoplusia Ni Transposon IFP2 Insertions within the FP-Locus of Nuclear Polyhedrosis Viruses. Virology 1989, 172, 156–169. [Google Scholar] [CrossRef] [PubMed]
- Elick, T.A.; Bauser, C.A.; Fraser, M.J. Excision of the PiggyBac Transposable Element in Vitro Is a Precise Event That Is Enhanced by the Expression of Its Encoded Transposase. Genetica 1996, 98, 33–41. [Google Scholar] [CrossRef] [PubMed]
- Ding, S.; Wu, X.; Li, G.; Han, M.; Zhuang, Y.; Xu, T. Efficient Transposition of the PiggyBac (PB) Transposon in Mammalian Cells and Mice. Cell 2005, 122, 473–483. [Google Scholar] [CrossRef] [PubMed]
- Cadiñanos, J.; Bradley, A. Generation of an Inducible and Optimized PiggyBac Transposon Systemy. Nucleic Acids Res. 2007, 35, e87. [Google Scholar] [CrossRef]
- Wen, W.; Song, S.; Han, Y.; Chen, H.; Liu, X.; Qian, Q. An Efficient Screening System in Yeast to Select a Hyperactive Piggybac Transposase for Mammalian Applications. Int. J. Mol. Sci. 2020, 21, 3064. [Google Scholar] [CrossRef]
- Yusa, K.; Zhou, L.; Li, M.A.; Bradley, A.; Craig, N.L. A Hyperactive PiggyBac Transposase for Mammalian Applications. Proc. Natl. Acad. Sci. USA 2011, 108, 1531–1536. [Google Scholar] [CrossRef]
- Galvan, D.L.; Nakazawa, Y.; Kaja, A.; Kettlun, C.; Cooper, L.J.N.; Rooney, C.M.; Wilson, M.H. Genome-Wide Mapping of Piggybac Transposon Integrations in Primary Human T Cells. J. Immunother. 2009, 32, 837–844. [Google Scholar] [CrossRef]
- Takahashi, K.; Yamanaka, S. Induction of Pluripotent Stem Cells from Mouse Embryonic and Adult Fibroblast Cultures by Defined Factors. Cell 2006, 126, 663–676. [Google Scholar] [CrossRef]
- Yusa, K.; Rad, R.; Takeda, J.; Bradley, A. Generation of Transgene-Free Induced Pluripotent Mouse Stem Cells by the PiggyBac Transposon. Nat. Methods 2009, 6, 363–369. [Google Scholar] [CrossRef]
- Li, X.; Burnight, E.R.; Cooney, A.L.; Malani, N.; Brady, T.; Sander, J.D.; Staber, J.; Wheelan, S.J.; Joung, J.K.; McCray, P.B.; et al. PiggyBac Transposase Tools for Genome Engineering. Proc. Natl. Acad. Sci. USA 2013, 110, E2279–E2287. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Zhuang, Y.; Han, M.; Xu, T.; Wu, X. PiggyBac as a High-Capacity Transgenesis and Gene-Therapy Vector in Human Cells and Mice. Dis. Models Mech. 2013, 6, 828–833. [Google Scholar] [CrossRef] [PubMed]
- Rostovskaya, M.; Fu, J.; Obst, M.; Baer, I.; Weidlich, S.; Wang, H.; Smith, A.J.H.; Anastassiadis, K.; Francis Stewart, A. Transposon-Mediated BAC Transgenesis in Human ES Cells. Nucleic Acids Res. 2012, 40, e150. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Guo, H.; Tammana, S.; Jung, Y.C.; Mellgren, E.; Bassi, P.; Cao, Q.; Tu, Z.J.; Kim, Y.C.; Ekker, S.C.; et al. Gene Transfer Efficiency and Genome-Wide Integration Profiling of Sleeping Beauty, Tol2, and PiggyBac Transposons in Human Primary T Cells. Mol. Ther. 2010, 18, 1803–1813. [Google Scholar] [CrossRef]
- Richards, S.; Gibbs, R.A.; Weinstock, G.M.; Brown, S.; Denell, R.; Beeman, R.W.; Bucher, G.; Friedrich, M.; Grimmelikhuijzen, C.J.P.; Klingler, M.; et al. The Genome of the Model Beetle and Pest Tribolium Castaneum. Nature 2008, 452, 949–955. [Google Scholar] [CrossRef] [PubMed]
- Patrinostro, X.; Hermanson, D.; Silaika, S. Accelerating Cell Therapy Discovery and Development with Non-Viral Gene Engineering. Cell Gene Ther. Insights 2022, 8, 1023–1032. [Google Scholar] [CrossRef]
- Pomeroy, E.J.; Lahr, W.S.; Chang, J.W.; Krueger, J.; Wick, B.J.; Slipek, N.J.; Skeate, J.G.; Webber, B.R.; Moriarity, B.S. Non-Viral Engineering of CAR-NK and CAR-T Cells Using the Tc Buster Transposon SystemTM. BioRxiv 2021. [Google Scholar] [CrossRef]
- Woodard, L.E.; Li, X.; Malani, N.; Kaja, A.; Hice, R.H.; Atkinson, P.W.; Bushman, F.D.; Craig, N.L.; Wilson, M.H. Comparative Analysis of the Recently Discovered hAT Transposon TcBuster in Human Cells. PLoS ONE 2012, 7, e42666. [Google Scholar] [CrossRef]
- Li, X.; Ewis, H.; Hice, R.H.; Malani, N.; Parker, N.; Zhou, L.; Feschotte, C.; Bushman, F.D.; Atkinson, P.W.; Craig, N.L. A Resurrected Mammalian hAT Transposable Element and a Closely Related Insect Element Are Highly Active in Human Cell Culture. Proc. Natl. Acad. Sci. USA 2013, 110, E478–E487. [Google Scholar] [CrossRef]
- Amberger, M.; Ivics, Z. Latest Advances for the Sleeping Beauty Transposon System: 23 Years of Insomnia but Prettier than Ever: Refinement and Recent Innovations of the Sleeping Beauty Transposon System Enabling Novel, Nonviral Genetic Engineering Applications. BioEssays 2020, 42, e2000136. [Google Scholar] [CrossRef]
- Yagyu, S.; Nakazawa, Y. PiggyBac-Transposon-Mediated CAR-T Cells for the Treatment of Hematological and Solid Malignancies. Int. J. Clin. Oncol. 2023, 28, 736–747. [Google Scholar] [CrossRef]
- Micklethwaite, K.P.; Gowrishankar, K.; Gloss, B.S.; Li, Z.; Street, J.A.; Moezzi, L.; Mach, M.A.; Sutrave, G.; Clancy, L.E.; Bishop, D.C.; et al. Investigation of product-derived lymphoma following infusion of piggyBac-modified CD19 chimeric antigen receptor T cells. Blood 2021, 138, 1391–1405. [Google Scholar] [CrossRef]
- Bishop, D.C.; Clancy, L.E.; Renee Simms, R.; Burgess, J.; Mathew, G.; Moezzi, L.; Street, J.A.; Sutrave, G.; Atkins, E.; McGuire, H.M.; et al. Development of CAR T-cell lymphoma in 2 of 10 patients effectively treated with piggyBac-modified CD19 CAR T cells. Blood 2021, 138, 1504–1509. [Google Scholar] [CrossRef]
- Dagher, O.K.; Posey, A.D. Forks in the Road for CAR T and CAR NK Cell Cancer Therapies. Nat. Immunol. 2023, 24, 1994–2007. [Google Scholar] [CrossRef] [PubMed]
- Balke-Want, H.; Keerthi, V.; Cadinanos-Garai, A.; Fowler, C.; Gkitsas, N.; Brown, A.K.; Tunuguntla, R.; Abou-el-Enein, M.; Feldman, S.A. Non-Viral Chimeric Antigen Receptor (CAR) T Cells Going Viral. Immuno-Oncol. Technol. 2023, 18, 100375. [Google Scholar] [CrossRef] [PubMed]
- Witkowsky, L.; Norstad, M.; Glynn, A.R.; Kliegman, M. Towards Affordable CRISPR Genomic Therapies: A Task Force Convened by the Innovative Genomics Institute. Gene Ther. 2023, 30, 747–752. [Google Scholar] [CrossRef] [PubMed]
- Izsvák, Z.; Ivics, Z.; Plasterk, R.H. Sleeping Beauty, a Wide Host-Range Transposon Vector for Genetic Trensformation in Vertebrates. J. Mol. Biol. 2000, 302, 93–102. [Google Scholar] [CrossRef] [PubMed]
- Monjezi, R.; Miskey, C.; Gogishvili, T.; Schleef, M.; Schmeer, M.; Einsele, H.; Ivics, Z.; Hudecek, M. Enhanced CAR T-Cell Engineering Using Non-Viral Sleeping Beauty Transposition from Minicircle Vectors. Leukemia 2017, 31, 186–194. [Google Scholar] [CrossRef]
- Jin, Y.; Chen, Y.; Zhao, S.; Guan, K.L.; Zhuang, Y.; Zhou, W.; Wu, X.; Xu, T. DNA-PK Facilitates PiggyBac Transposition by Promoting Paired-End Complex Formation. Proc. Natl. Acad. Sci. USA 2017, 114, 7408–7413. [Google Scholar] [CrossRef] [PubMed]
- Clauss, J.; Obenaus, M.; Miskey, C.; Ivics, Z.; Izsvák, Z.; Uckert, W.; Bunse, M. Efficient Non-Viral T-Cell Engineering by Sleeping Beauty Minicircles Diminishing DNA Toxicity and miRNAs Silencing the Endogenous T-Cell Receptors. Hum. Gene Ther. 2018, 29, 569–584. [Google Scholar] [CrossRef] [PubMed]
- Gurney, M.; O’Reilly, E.; Corcoran, S.; Brophy, S.; Krawczyk, J.; Otto, N.M.; Hermanson, D.L.; Childs, R.W.; Szegezdi, E.; O’Dwyer, M.E. Concurrent Transposon Engineering and CRISPR/Cas9 Genome Editing of Primary CLL-1 Chimeric Antigen Receptor–Natural Killer Cells. Cytotherapy 2022, 24, 1087–1094. [Google Scholar] [CrossRef] [PubMed]
- Batchu, R.B.; Gruzdyn, O.V.; Tavva, P.S.; Kolli, B.K.; Dachepalli, R.; Weaver, D.W.; Gruber, S.A. Engraftment of Mesothelin Chimeric Antigen Receptor Using a Hybrid Sleeping Beauty/Minicircle Vector into NK-92MI Cells for Treatment of Pancreatic Cancer. Surgery 2019, 166, 503–508. [Google Scholar] [CrossRef] [PubMed]
- Tipanee, J.; Samara-Kuko, E.; Gevaert, T.; Chuah, M.K.; VandenDriessche, T. Universal Allogeneic CAR T Cells Engineered with Sleeping Beauty Transposons and CRISPR-CAS9 for Cancer Immunotherapy. Mol. Ther. 2022, 30, 3155–3175. [Google Scholar] [CrossRef]
- Hudecek, M.; Ivics, Z. Non-Viral Therapeutic Cell Engineering with the Sleeping Beauty Transposon System. Curr. Opin. Genet. Dev. 2018, 52, 100–108. [Google Scholar] [CrossRef]
- Blattner, F.R.; Plunkett, G.; Bloch, C.A.; Perna, N.T.; Burland, V.; Riley, M.; Collado-Vides, J.; Glasner, J.D.; Rode, C.K.; Mayhew, G.F.; et al. The Complete Genome Sequence of Escherichia Coli K-12. Science 1997, 277, 1453–1462. [Google Scholar] [CrossRef]
- Van der Heijden, I.; Gomez-Eerland, R.; van den Berg, J.H.; Oosterhuis, K.; Schumacher, T.N.; Haanen, J.B.A.G.; Beijnen, J.H.; Nuijen, B. Transposon Leads to Contamination of Clinical PDNA Vaccine. Vaccine 2013, 31, 3274–3280. [Google Scholar] [CrossRef]
Antibiotic-Free Gene Vector | Trial ID | Trial Title | Health Conditions | Phase (Status) |
---|---|---|---|---|
Minicircle | NCT04499339 | A Phase I/IIa Clinical Trial to Assess Feasibility, Safety and Antitumor Activity of Autologous SLAMF7 CAR-T Cells in Multiple Myeloma | Multiple Myeloma | I/IIa (Active) |
MIDGE | DRKS00005723 a | Phase I Study with non-viral jet-injection-gene transfer of a TNF-α expressing MIDGE-vector in cutaneous metastases of malignant melanoma | Malignant melanoma of skin | I (Recruiting) |
NCT01265368 | A Clinical Study to Assess Safety and Efficacy of a Tumor Vaccine in Patients With Advanced Renal Cell Carcinoma (ASET) | Stage IV Renal Cell Cancer | I/II (Completed) | |
pORT | NCT01045915 | Safety and Efficacy Study of Electrotransfer of Plasmid AMEP to Treat Advance or Metastatic Melanoma | Melanoma | I (Terminated) |
NCT01664273 | Gene Electrotransfer to Muscle With Plasmid AMEP in Patients With Disseminated Cancer | Metastatic Malignant Neoplasm | I (Terminated) | |
Nanoplasmids | NCT01707069 | A Safety and Immunogenicity Phase I Study of CryJ2-DNA-Lysosomal Associated Membrane Protein (CryJ2 -DNA-LAMP) Plasmid | Allergic Rhinoconjunctivitis | I (Completed) |
NCT01966224 | A Safety and Immunogenicity Phase IB Study of CryJ2-DNA-Lysosomal Associated Membrane Protein (CryJ2 -DNA-LAMP) Plasmid Assessing the Long Term Safety of Previously Treated Subjects | Allergic Rhinoconjunctivitis | I (Completed) | |
NCT02146781 | A Safety and Immunogenicity Phase IC Study of CryJ2 -DNA-LAMP Plasmid Vaccine for Assessment of Intradermal (ID) Route of Administration Using the Biojector 2000 Device | Allergic Rhinitis | I (Completed) | |
NCT02301754 | INVAC-1 Anti-Cancer hTERT DNA Immunotherapy | Solid Tumors | I (Completed) | |
NCT03265717 | DNA Plasmid Encoding a Modified Human Telomerase Reverse Transcriptase (hTERT), Invac-1 in Chronic Lymphocytic Leukemia | Leukemia, Lymphocytic, Chronic, B-Cell | II (Terminated) | |
NCT03288493 | P-BCMA-101 Tscm CAR-T Cells in the Treatment of Patients With Multiple Myeloma | Multiple Myeloma | I/II (Terminated) | |
NCT03308045 | Evaluation of EYS606 in Patients With Non-infectious Posterior, Intermediate or Panuveitis | Non-infectious Uveitis | I/II (Completed) | |
NCT04207983 | A 48 Week Study to Evaluate the Efficacy and Safety of Two EYS606 Treatment Regimens in Subjects With Active Chronic Non-infectious Uveitis (CNIU) | Non-infectious Uveitis | II (Completed) | |
NCT04515043 | EXPLORATORY STUDY Addendum to INVAC1-CT-101 (NCT02301754) | Solid Tumor, Adult | I (Completed) | |
NCT04591184 | A Clinical Trial of a Prophylactic Plasmid DNA Vaccine for COVID-19 [Covigenix VAX-001] in Adults | SARS-CoV-2 | I/II (Recruiting) | |
NCT04752722 | LEGEND Study: EG-70 in NMIBC Patients BCG-Unresponsive and High-Risk NMIBC Incompletely Treated With BCG or BCG-Naïve | Non-muscle Invasive Bladder Cancer With Carcinoma in Situ; Superficial Bladder Cancer | I/II (Recruiting) | |
ACTRN 12613000831785 b | A Phase I, Proof of Concept, Open Label, Escalating Dose Study to Assess the Safety, Tolerability and Immunogenicity of a Herpes Simplex Virus (HSV) Deoxyribonucleic Acid (DNA) Vaccine in Healthy Volunteers | Genital Herpes | I (Completed) | |
ACTRN 12615000094572 b | A Phase I/IIa, randomized, double blind, placebo-controlled, parallel group, pilot study to assess the safety and efficacy of a therapeutic HSV-2 DNA vaccine in HSV-2 positive adults | Genital Herpes | I/IIa (Completed) | |
pCOR | NCT00566657 | Efficacy and Safety of XRP0038/NV1FGF in Critical Limb Ischemia Patients With Skin Lesions | Peripheral Vascular Diseases | III (Completed) |
pFAR | ACTRN 12618001556235 b | A phase I/II non-randomized, controlled trial, evaluating the safety and efficacy of neurotrophin gene therapy delivered during cochlear implant surgery | Hearing loss, deafness | I/II (Recruiting) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marie, C.; Scherman, D. Antibiotic-Free Gene Vectors: A 25-Year Journey to Clinical Trials. Genes 2024, 15, 261. https://doi.org/10.3390/genes15030261
Marie C, Scherman D. Antibiotic-Free Gene Vectors: A 25-Year Journey to Clinical Trials. Genes. 2024; 15(3):261. https://doi.org/10.3390/genes15030261
Chicago/Turabian StyleMarie, Corinne, and Daniel Scherman. 2024. "Antibiotic-Free Gene Vectors: A 25-Year Journey to Clinical Trials" Genes 15, no. 3: 261. https://doi.org/10.3390/genes15030261
APA StyleMarie, C., & Scherman, D. (2024). Antibiotic-Free Gene Vectors: A 25-Year Journey to Clinical Trials. Genes, 15(3), 261. https://doi.org/10.3390/genes15030261