Genetic Advancements in Infantile Epileptic Spasms Syndrome and Opportunities for Precision Medicine
Abstract
:1. Introduction
2. The Growing Field of Epilepsy Genetics
3. Mechanisms of IESS
3.1. Acute Models
3.1.1. NMDA Models
3.1.2. Down Syndrome GABA Model
3.2. Chronic Models
4. Spectrum of Genetic Aetiologies of IESS
4.1. Chromosomal Disorders
4.2. Single-Gene Disorders
4.3. Trinucleotide Repeat Disorders
4.4. Mitochondrial Disorders
4.5. Candidate Genes
5. Genetic Testing for IESS
Study | Karyotype | CMA | Epilepsy Panel | WES | WGS | Mitochondrial Genome Analysis |
---|---|---|---|---|---|---|
Peng et al. (2022) [10] | n = 2/183 yield = 1.1% | n = 12/207 yield = 5.8% | n = 27/105 yield = 25.7% | n = 63/234 yield = 26.9% | n = 1/34 yield = 2.9% | |
Lee et al. (2022) [103] | n = 4/16 yield = 25% n = 6/16 if including candidate genes yield = 37.5% | |||||
Liu et al. (2021) [12] | n = 24/289 yield = 8.3% | |||||
D’Gama et al. (2023) [104] | n = 6/32 yield = 19% | |||||
DeMarest et al. (2021) [70] | n = 5/21 yield = 23.8% n = 10/21 if including candidate genes yield = 47.6% |
6. The Future of Genetics in IESS
6.1. Opportunities for Precision Medicine
6.2. Opportunities for Gene Discovery
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zuberi, S.M.; Wirrell, E.; Yozawitz, E.; Wilmshurst, J.M.; Specchio, N.; Riney, K.; Pressler, R.; Auvin, S.; Samia, P.; Hirsh, E.; et al. ILAE classification and definition of epilepsy syndromes with onset in neonates and infants: Position statement by the ILAE Task Force on Nosology and Definitions. Epilepsia 2022, 63, 1349–1397. [Google Scholar] [CrossRef]
- Fukuyama, Y. History of clinical identification of West syndrome–in quest after the classic. Brain Dev. 2001, 23, 779–787. [Google Scholar] [CrossRef]
- O’Callaghan, F.J.; Lux, A.L.; Darke, K.; Edwards, S.W.; Hancock, E.; Johnson, A.L.; Kennedy, C.; Newton, R.W.; Verity, C.M.; Osborne, J.P. The effect of lead time to treatment and of age of onset on developmental outcome at 4 years in infantile spasms: Evidence from the United Kingdom Infantile Spasms Study. Epilepsia 2011, 52, 1359–1364. [Google Scholar] [CrossRef]
- Symonds, J.D.; Elliott, K.S.; Shetty, J.; Armstrong, M.; Brunklaus, A.; Cutcutache, I.; Diver, L.A.; Dorris, L.; Gardiner, S.; Jollands, A.; et al. Early childhood epilepsies: Epidemiology, classification, aetiology, and socio-economic determinants. Brain 2021, 144, 2879–2891. [Google Scholar] [CrossRef] [PubMed]
- Pavone, P.; Striano, P.; Falsaperla, R.; Pavone, L.; Ruggieri, M. Infantile spasms syndrome, West syndrome and related phenotypes: What we know in 2013. Brain Dev. 2014, 36, 739–751. [Google Scholar] [CrossRef] [PubMed]
- Riikonen, R. Infantile spasms: Outcome in clinical studies. Pediatr. Neurol. 2020, 108, 54–64. [Google Scholar] [CrossRef]
- Specchio, N.; Wirrell, E.C.; Scheffer, I.E.; Nabbout, R.; Riney, K.; Samia, P.; Guerreiro, M.; Gwer, S.; Zuberi, S.; Wilmhurst, J.M.; et al. International League Against Epilepsy classification and definition of epilepsy syndromes with onset in childhood: Position paper by the ILAE Task Force on Nosology and Definitions. Epilepsia 2022, 63, 1398–1442. [Google Scholar] [CrossRef]
- Lux, A.L.; Edwards, S.W.; Hancock, E.; Johnson, A.L.; Kennedy, C.R.; Newton, R.W.; O’Callaghan, F.J.K.; Verity, C.M.; Osborne, J.P. The United Kingdom Infantile Spasms Study (UKISS) comparing hormone treatment with vigabatrin on developmental and epilepsy outcomes to age 14 months: A multicentre randomized trial. Lancet Neurol. 2005, 4, 712–717. [Google Scholar] [CrossRef] [PubMed]
- Darke, K.; Edwards, S.W.; Hancock, E.; Johnson, A.L.; Kennedy, C.R.; Lux, A.L.; Newton, R.W.; O’Callaghan, F.J.K.; Verity, C.M.; Osborne, J.P. Developmental and epilepsy outcomes at age 4 years in the UKISS trial comparing hormonal treatments to vigabatrin for infantile spasms: A multi-centre randomized trial. Arch. Dis. Child. 2010, 95, 382. [Google Scholar] [CrossRef]
- Peng, P.; Kessi, M.; Mao, L.; He, F.; Zhang, C.; Chen, C.; Pang, N.; Yin, F.; Pan, P.; Peng, J. Etiologic classification of 541 infantile spasms cases: A cohort study. Front. Pediatr. 2022, 10, 774828. [Google Scholar] [CrossRef]
- Michaud, J.L.; Lachance, M.; Hamdan, F.F.; Carmant, L.; Lortie, A.; Diadori, P.; Major, P.; Meijer, I.A.; Lemyre, E.; Cossette, P.; et al. The genetic landscape of infantile spasms. Hum. Mol. Genet. 2014, 23, 4846–4858. [Google Scholar] [CrossRef]
- Liu, L.Y.; Lu, Q.; Wang, Q.H.; Wang, Y.Y.; Zhang, B.; Zou, L.P. Diagnostic yield of a multi-strategy genetic testing procedure in a nationwide cohort of 728 patients with infantile spasms in China. Seizure 2022, 103, 51–57. [Google Scholar] [CrossRef]
- Nagarajan, B.; Gowda, V.K.; Yoganathan, S.; Sharawat, I.K.; Srivastava, K.; Vora, N.; Badheka, R.; Danda, S.; Kalane, S.; Kaur, K.; et al. Landscape of genetic infantile epileptic spasms syndrome—A multicenter cohort of 124 children from India. Epilepsia Open 2023, 8, 1383–1404. [Google Scholar] [CrossRef]
- Oliver, K.L.; Scheffer, I.E.; Bennett, M.F.; Grinton, B.E.; Bahlo, M.; Berkovic, S.F. Genes4Epilepsy: An epilepsy gene resource. Epilepsia 2023, 64, 1368–1375. [Google Scholar] [CrossRef]
- McTague, A.; Howell, K.B.; Cross, J.H.; Kurian, M.A.; Scheffer, I.E. The genetic landscape of the epileptic encephalopathies of infancy and childhood. Lancet Neurol. 2016, 15, 304–316. [Google Scholar] [CrossRef]
- Menezes, L.F.S.; Sabiá Júnior, E.F.; Tibery, D.V.; Carneiro, L.D.A.; Schwartz, E.F. Epilepsy-related voltage-gated sodium channelopathies: A review. Front. Pharmacol. 2020, 11, 1276. [Google Scholar] [CrossRef]
- Ng, A.C.H.; Choudhary, A.; Barrett, K.T.; Gavrilovici, C.; Scantlebury, M.H. Mechanisms of Infantile Epileptic Spasms Syndrome: What have we learned from animal models? Epilepsia 2023, 65, 266–280. [Google Scholar] [CrossRef] [PubMed]
- Appenzeller, S.; Balling, R.; Barisic, N.; Baulac, S.; Caglayan, H.; Craiu, D.; De Jonghe, P.; Depienne, C.; Dimova, P.; Djemie, T.; et al. De novo mutations in synaptic transmission genes including DNM1 cause epileptic encephalopathies. Am. J. Hum. Genet. 2014, 95, 360–370. [Google Scholar] [CrossRef] [PubMed]
- Paciorkowski, A.R.; Thio, L.L.; Dobyns, W.B. Genetic and biologic classification of infantile spasms. Pediatr. Neurol. 2011, 45, 355–367. [Google Scholar] [CrossRef] [PubMed]
- Stafstrom, C.E. Infantile spasms: A critical review of emerging animal models. Epilepsy Curr. 2009, 9, 75–81. [Google Scholar] [CrossRef] [PubMed]
- Stafstrom, C.E.; Holmes, G.L. Infantile spasms: Criteria for an animal model. Int. Rev. Neurobiol. 2002, 49, 391–411. [Google Scholar]
- Dulla, C.G. Utilizing animal models of infantile spasms. Epilepsy Curr. 2018, 18, 107–112. [Google Scholar] [CrossRef]
- Galanopoulou, A.S.; Moshé, S.L. Pathogenesis and new candidate treatments for infantile spasms and early life epileptic encephalopathies: A view from preclinical studies. Neurobiol. Dis. 2015, 79, 135–149. [Google Scholar] [CrossRef] [PubMed]
- Velíšek, L.; Jehle, K.; Asche, S.; Velíšková, J. Model of infantile spasms induced by N-methyl-D-aspartic acid in prenatally impaired brain. Ann. Neurol. Off. J. Am. Neurol. Assoc. Child Neurol. Soc. 2007, 61, 109–119. [Google Scholar] [CrossRef]
- Mareš, P.; Velišek, L. N-methyl-D-aspartate (NMDA)-induced seizures in developing rats. Dev. Brain Res. 1992, 65, 185–189. [Google Scholar] [CrossRef] [PubMed]
- Shi, X.Y.; Yang, X.F.; Tomonoh, Y.; Hu, L.Y.; Ju, J.; Hirose, S.; Zou, L.P. Development of a mouse model of infantile spasms induced by N-methyl-D-aspartate. Epilepsy Res. 2015, 118, 29–33. [Google Scholar] [CrossRef] [PubMed]
- Kabova, R.; Veresova, S.; Velisek, L. West syndrome model: Seek and you will find. Sb. Lek. 1997, 98, 115–126. [Google Scholar] [PubMed]
- Lemke, J.R.; Hendrickx, R.; Geider, K.; Laube, B.; Schwake, M.; Harvey, R.J.; Weckhuysen, S. GRIN2B mutations in West syndrome and intellectual disability with focal epilepsy. Ann. Neurol. 2014, 75, 147–154. [Google Scholar] [CrossRef] [PubMed]
- Chachua, T.; Yum, M.S.; Velíšková, J.; Velíšek, L. Validation of the rat model of cryptogenic infantile spasms. Epilepsia 2011, 52, 1666–1677. [Google Scholar] [CrossRef]
- Yum, M.S.; Chachua, T.; Velíšková, J.; Velíšek, L. Prenatal stress promotes development of spasms in infant rats. Epilepsia 2012, 53, e46–e49. [Google Scholar] [CrossRef]
- Wang, J.; Wang, J.; Zhang, Y.; Yang, G.; Zhou, W.J.; Shang, A.J.; Zou, L.P. Proteomic analysis of adrenocorticotropic hormone treatment of an infantile spasm model induced by N-methyl-D-aspartic acid and prenatal stress. PLoS ONE 2012, 7, e45347. [Google Scholar] [CrossRef] [PubMed]
- Shi, X.Y.; Zou, L.P.; Yang, G.; Ding, Y.X. Prenatal stress exposure hypothesis for infantile spasms. Med. Hypotheses 2012, 78, 735–737. [Google Scholar] [CrossRef] [PubMed]
- Palo, J.; Savolainen, H. The effect of high doses of synthetic ACTH on rat brain. Brain Res. 1974, 70, 313–320. [Google Scholar] [CrossRef] [PubMed]
- Holmes, G.L.; Weber, D.A. Effects of ACTH on seizure susceptibility in the developing brain. Ann. Neurol. Off. J. Am. Neurol. Assoc. Child Neurol. Soc. 1986, 20, 82–88. [Google Scholar] [CrossRef] [PubMed]
- Huttenlocher, P.R. Dendritic development in neocortex of children with mental defect and infantile spasms. Neurology 1974, 24, 203. [Google Scholar] [CrossRef] [PubMed]
- Riikonen, R. Biochemical mechanisms in pathogenesis of infantile epileptic spasm syndrome. Seizure 2023, 105, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Korhonen, L.; Riikonen, R.; Nawa, H.; Lindholm, D. Brain derived neurotrophic factor is increased in cerebrospinal fluid of children suffering from asphyxia. Neurosci. Lett. 1998, 240, 151–154. [Google Scholar] [CrossRef] [PubMed]
- Riikonen, R.S.; Korhonen, L.T.; Lindholm, D.B. Cerebrospinal nerve growth factor—A marker of asphyxia? Pediatr. Neurol. 1999, 20, 137–141. [Google Scholar] [CrossRef]
- Levi-Montalcini, R.; Dal Toso, R.; della Valle, F.; Skaper, S.D.; Leon, A. Update of the NGF saga. J. Neurol. Sci. 1995, 130, 119–127. [Google Scholar] [CrossRef]
- Riikonen, R.; Kokki, H. CSF nerve growth factor (β-NGF) is increased but CSF insulin-like growth factor-(IGF-1) is normal in children with tuberous sclerosis and infantile spasms. Eur. J. Paediatr. Neurol. 2019, 23, 191–196. [Google Scholar] [CrossRef]
- Aloe, L.; Rocco, M.L.; Bianchi, P.; Manni, L. Nerve growth factor: From the early discoveries to the potential clinical use. J. Transl. Med. 2012, 10, 239. [Google Scholar] [CrossRef]
- Riikonen, R.S.; Jääskeläinen, J.; Turpeinen, U. Insulin-like growth factor-1 is associated with cognitive outcome in infantile spasms. Epilepsia 2010, 51, 1283–1289. [Google Scholar] [CrossRef]
- Joshi, K.; Shen, L.; Michaeli, A.; Salter, M.; Thibault-Messier, G.; Hashmi, S.; Eubanks, J.H.; Snead, O.C. Infantile spasms in Down syndrome: Rescue by knockdown of the GIRK2 channel. Ann. Neurol. 2016, 80, 511–521. [Google Scholar] [CrossRef]
- Blichowski, M.; Shephard, A.; Armstrong, J.; Shen, L.; Cortez, M.A.; Eubanks, J.H.; Snead, O.C., III. The GIRK 2 subunit is involved in IS-like seizures induced by GABA B receptor agonists. Epilepsia 2015, 56, 1081–1087. [Google Scholar] [CrossRef]
- Peerboom, C.; Wierenga, C.J. The postnatal GABA shift: A developmental perspective. Neurosci. Biobehav. Rev. 2021, 124, 179–192. [Google Scholar] [CrossRef]
- Crino, P.B. Focal brain malformations: Seizures, signaling, sequencing. Epilepsia 2009, 50, 3–8. [Google Scholar] [CrossRef]
- Jansen, L.A.; Peugh, L.D.; Ojemann, J.G. GABAA receptor properties in catastrophic infantile epilepsy. Epilepsy Res. 2008, 81, 188–197. [Google Scholar] [CrossRef] [PubMed]
- Monfrini, E.; Borellini, L.; Zirone, E.; Yahya, V.; Mauri, E.; Molisso, M.T.; Mameli, F.; Ruggiero, F.; Comi, G.C.; Barbieri, S.; et al. GABRB1-related early onset developmental and epileptic encephalopathy: Clinical trajectory and novel de novo mutation. Epileptic Disord. 2023, 25, 867–873. [Google Scholar] [CrossRef] [PubMed]
- Farnaes, L.; Nahas, S.A.; Chowdhury, S.; Nelson, J.; Batalov, S.; Dimmock, D.M.; Kingsmore, S.F.; RCIGM Investigators. Rapid whole-genome sequencing identifies a novel GABRA1 variant associated with West syndrome. Mol. Case Stud. 2017, 3, a001776. [Google Scholar] [CrossRef] [PubMed]
- Kodera, H.; Ohba, C.; Kato, M.; Maeda, T.; Araki, K.; Tajima, D.; Matsuo, M.; Hino-Fukuyo, N.; Kohashi, K.; Ishiyama, A.; et al. De novo GABRA1 mutations in Ohtahara and West syndromes. Epilepsia 2016, 57, 566–573. [Google Scholar] [CrossRef] [PubMed]
- Janve, V.S.; Hernandez, C.C.; Verdier, K.M.; Hu, N.; Macdonald, R.L. Epileptic encephalopathy de novo GABRB mutations impair γ-aminobutyric acid type A receptor function. Ann. Neurol. 2016, 79, 806–825. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.L.; Frost, J.D., Jr.; Swann, J.W.; Hrachovy, R.A. A new animal model of infantile spasms with unprovoked persistent seizures. Epilepsia 2008, 49, 298–307. [Google Scholar] [CrossRef] [PubMed]
- Frost, J.D., Jr.; Le, J.T.; Lee, C.L.; Ballester-Rosado, C.; Hrachovy, R.A.; Swann, J.W. Vigabatrin therapy implicates neocortical high frequency oscillations in an animal model of infantile spasms. Neurobiol. Dis. 2015, 82, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Friocourt, G.; Parnavelas, J.G. Mutations in ARX result in several defects involving GABAergic neurons. Front. Cell. Neurosci. 2010, 4, 1437. [Google Scholar] [CrossRef] [PubMed]
- Price, M.G.; Yoo, J.W.; Burgess, D.L.; Deng, F.; Hrachovy, R.A.; Frost, J.D.; Noebels, J.L. A triplet repeat expansion genetic mouse model of infantile spasms syndrome, Arx (GCG) 10 + 7, with interneuronopathy, spasms in infancy, persistent seizures, and adult cognitive and behavioral impairment. J. Neurosci. 2009, 29, 8752–8763. [Google Scholar] [CrossRef] [PubMed]
- Marsh, E.; Fulp, C.; Gomez, E.; Nasrallah, I.; Minarcik, J.; Sudi, J.; Christian, S.L.; Mancini, G.; Labosky, P.; Dobyns, W.; et al. Targeted loss of Arx results in a developmental epilepsy mouse model and recapitulates the human phenotype in heterozygous females. Brain 2009, 132, 1563–1576. [Google Scholar] [CrossRef] [PubMed]
- Simonet, J.C.; Sunnen, C.N.; Wu, J.; Golden, J.A.; Marsh, E.D. Conditional loss of Arx from the developing dorsal telencephalon results in behavioral phenotypes resembling mild human ARX mutations. Cereb. Cortex 2015, 25, 2939–2950. [Google Scholar] [CrossRef]
- Scantlebury, M.H.; Galanopoulou, A.S.; Chudomelova, L.; Raffo, E.; Betancourth, D.; Moshé, S.L. A model of symptomatic infantile spasms syndrome. Neurobiol. Dis. 2010, 37, 604–612. [Google Scholar] [CrossRef]
- Langlais, P.J.; Wardlow, M.L.; Yamamoto, H. Changes in CSF neurotransmitters in infantile spasms. Pediatr. Neurol. 1991, 7, 440–445. [Google Scholar] [CrossRef]
- Galanopoulou, A.S.; Mowrey, W.B.; Liu, W.; Li, Q.; Shandra, O.; Moshé, S.L. Preclinical screening for treatments for infantile spasms in the multiple hit rat model of infantile spasms: An update. Neurochem. Res. 2017, 42, 1949–1961. [Google Scholar] [CrossRef]
- Gygax, M.J.; Klein, B.D.; White, H.S.; Kim, M.; Galanopoulou, A.S. Efficacy and tolerability of the galanin analog NAX 5055 in the multiple-hit rat model of symptomatic infantile spasms. Epilepsy Res. 2014, 108, 98–108. [Google Scholar] [CrossRef] [PubMed]
- Berg, A.T.; Chakravorty, S.; Koh, S.; Grinspan, Z.M.; Shellhaas, R.A.; Saneto, R.P.; Wirrell, E.C.; Coryell, J.; Chu, C.J.; Mytinger, J.R.; et al. Why West? Comparisons of clinical, genetic and molecular features of infants with and without spasms. PLoS ONE 2018, 13, e0193599. [Google Scholar] [CrossRef] [PubMed]
- Frost, J.D., Jr.; Hrachovy, R.A. Pathogenesis of infantile spasms: A model based on developmental desynchronization. J. Clin. Neurophysiol. 2005, 22, 25–36. [Google Scholar] [CrossRef] [PubMed]
- Arya, R.; Kabra, M.; Gulati, S. Epilepsy in children with Down syndrome. Epileptic Disord. 2011, 13, 1–7. [Google Scholar] [CrossRef]
- Kats, D.J.; Roche, K.J.; Skotko, B.G. Epileptic spasms in individuals with Down syndrome: A review of the current literature. Epilepsia Open 2020, 5, 344–353. [Google Scholar] [CrossRef] [PubMed]
- Harvey, S.; Allen, N.M.; King, M.D.; Lynch, B.; Lynch, S.A.; O’Regan, M.; O’Rourke, D.; Shahwan, A.; Webb, D.; Gorman, K.M.; et al. Response to treatment and outcomes of infantile spasms in Down syndrome. Dev. Med. Child Neurol. 2022, 64, 780–788. [Google Scholar] [CrossRef]
- Inoue, H.; Orita, T.; Matsushige, T.; Hasegawa, S.; Ichiyama, T. Klinefelter’s syndrome complicated with West syndrome in a 4-month-old boy. Brain Dev. 2012, 34, 148–150. [Google Scholar] [CrossRef]
- Jaspersen, S.L.; Bruns, D.A.; Candee, M.S.; Battaglia, A.; Carey, J.C.; Fishler, K.P. Seizures in trisomy 18: Prevalence, description, and treatment. Am. J. Med. Genet. Part A 2023, 191, 1026–1037. [Google Scholar] [CrossRef]
- Toyo-Oka, K.; Shionoya, A.; Gambello, M.J.; Cardoso, C.; Leventer, R.; Ward, H.L.; Wynshaw-Boris, A. 14-3-3ε is important for neuronal migration by binding to NUDEL: A molecular explanation for Miller–Dieker syndrome. Nat. Genet. 2003, 34, 274–285. [Google Scholar] [CrossRef]
- Demarest, S.; Calhoun, J.; Eschbach, K.; Yu, H.C.; Mirsky, D.; Angione, K.; Shaikh, T.H.; Carvill, G.L.; Benke, T.A.; WES Support Group; et al. Whole-exome sequencing and adrenocorticotropic hormone therapy in individuals with infantile spasms. Dev. Med. Child Neurol. 2022, 64, 633–640. [Google Scholar] [CrossRef]
- Palmer, E.E.; Sachdev, R.; Macintosh, R.; Melo, U.S.; Mundlos, S.; Righetti, S.; Kandula, T.; Minoche, A.E.; Puttick, C.; Gayevskiy, V.; et al. Diagnostic yield of whole genome sequencing after nondiagnostic exome sequencing or gene panel in developmental and epileptic encephalopathies. Neurology 2021, 96, e1770–e1782. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Liu, F.; Wang, Q.; Xie, H.; Li, Z.; Lu, Q.; Wang, Y.; Zhang, M.; Zhang, Y.; Picker, J.; et al. Confirming the contribution and genetic spectrum of de novo mutation in infantile spasms: Evidence from a Chinese cohort. Mol. Genet. Genom. Med. 2021, 9, e1689. [Google Scholar] [CrossRef]
- Duc, N.M.; Thu, N.T.M.; Bui, C.B.; Hoa, G.; Hieu, N.L.T. Genotype and phenotype characteristics of west syndrome in 20 Vietnamese children: Two novel variants detected by next-generation sequencing. Epilepsy Res. 2023, 190, 107094. [Google Scholar] [CrossRef] [PubMed]
- Essajee, F.; Urban, M.; Smit, L.; Wilmshurst, J.M.; Solomons, R.; van Toorn, R.; Moosa, S. Utility of genetic testing in children with developmental and epileptic encephalopathy (DEE) at a tertiary hospital in South Africa: A prospective study. Seizure 2022, 101, 197–204. [Google Scholar] [CrossRef]
- Byrne, S.; Jansen, L.; U-King-Im, J.M.; Siddiqui, A.; Lidov, H.G.; Bodi, I.; Smith, L.; Mein, R.; Cullup, T.; Dionisi-Vici, C.; et al. EPG5-related Vici syndrome: A paradigm of neurodevelopmental disorders with defective autophagy. Brain 2016, 139, 765–781. [Google Scholar] [CrossRef]
- Cohen, A.L.; Mulder, B.P.; Prohl, A.K.; Soussand, L.; Davis, P.; Kroeck, M.R.; McManus, P.; Gholipour, A.; Scherrer, B.; Bebin, E.M.; et al. Tuberous Sclerosis Complex Autism Center of Excellence Network Study Group. Tuber locations associated with infantile spasms map to a common brain network. Ann. Neurol. 2021, 89, 726–739. [Google Scholar] [CrossRef]
- Aronica, E.; Specchio, N.; Luinenburg, M.J.; Curatolo, P. Epileptogenesis in tuberous sclerosis complex-related developmental and epileptic encephalopathy. Brain. 2023, 146, 2694–2710. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.; Wei, Z.H.; Liu, C.; Li, G.Y.; Qiao, X.Z.; Gan, Y.J.; Qiao, X.Z.; Gan, Y.J.; Zhang, C.C.; Deng, Y.C. Genetic variations in GABA metabolism and epilepsy. Seizure 2022, 101, 22–29. [Google Scholar] [CrossRef]
- Gjerulfsen, C.E.; Mieszczanek, T.S.; Johannesen, K.M.; Liao, V.W.; Chebib, M.; Nørby, H.A.; Gardella, E.; Rubboli, G.; Ahring, P.; Møller, R.S. Vinpocetine improved neuropsychiatric and epileptic outcomes in a patient with a GABRA1 loss-of-function variant. Ann. Clin. Transl. Neurol. 2023, 10, 1493–1498. [Google Scholar] [CrossRef]
- Billakota, S.; Andresen, J.M.; Gay, B.C.; Stewart, G.R.; Fedorov, N.B.; Gerlach, A.C.; Devinsky, O. Personalized medicine: Vinpocetine to reverse effects of GABRB3 mutation. Epilepsia 2019, 60, 2459–2465. [Google Scholar] [CrossRef]
- Absalom, N.L.; Liao, V.W.; Kothur, K.; Indurthi, D.C.; Bennetts, B.; Troedson, C.; Mohammad, S.S.; Gupta, S.; McGregor, I.S.; Bowen, M.T.; et al. Gain-of-function GABRB3 variants identified in vigabatrin-hypersensitive epileptic encephalopathies. Brain Commun. 2020, 2, fcaa162. [Google Scholar] [CrossRef]
- Verhage, M.; Sørensen, J.B. SNAREopathies: Diversity in mechanisms and symptoms. Neuron 2020, 107, 22–37. [Google Scholar] [CrossRef] [PubMed]
- McLeod, F.; Dimtsi, A.; Marshall, A.C.; Lewis-Smith, D.; Thomas, R.; Clowry, G.J.; Trevelyan, A.J. Altered synaptic connectivity in an in vitro human model of STXBP1 encephalopathy. Brain 2023, 146, 850–857. [Google Scholar] [CrossRef] [PubMed]
- Houtman, S.J.; Lammertse, H.C.; van Berkel, A.A.; Balagura, G.; Gardella, E.; Ramautar, J.R.; Reale, C.; Moller, R.S.; Zara, F.; Striano, P.; et al. STXBP1 syndrome is characterized by inhibition-dominated dynamics of resting-state EEG. Front. Physiol. 2021, 12, 2293. [Google Scholar] [CrossRef]
- Freibauer, A.; Wohlleben, M.; Boelman, C. STXBP1-Related Disorders: Clinical Presentation, Molecular Function, Treatment, and Future Directions. Genes 2023, 14, 2179. [Google Scholar] [CrossRef] [PubMed]
- Guiberson, N.G.L.; Pineda, A.; Abramov, D.; Kharel, P.; Carnazza, K.E.; Wragg, R.T.; Dittman, J.S.; Burré, J. Mechanism-based rescue of Munc18-1 dysfunction in varied encephalopathies by chemical chaperones. Nat. Commun. 2018, 9, 3986. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.C.; Xiong, Z.Q. Molecular and synaptic bases of CDKL5 disorder. Dev. Neurobiol. 2019, 79, 8–19. [Google Scholar] [CrossRef] [PubMed]
- Leonard, H.; Downs, J.; Benke, T.A.; Swanson, L.; Olson, H.; Demarest, S. CDKL5 deficiency disorder: Clinical features, diagnosis, and management. Lancet Neurol. 2022, 21, 563–576. [Google Scholar] [CrossRef]
- Olson, H.E.; Amin, S.; Bahi-Buisson, N.; Devinsky, O.; Marsh, E.D.; Pestana-Knight, E.; Rajaraman, R.R.; Aimetti, A.A.; Rybak, E.; Kong, F.; et al. Long-term treatment with ganaxolone for seizures associated with cyclin-dependent kinase-like 5 deficiency disorder: 2-year open-label extension follow-up. Epilepsia 2023, 65, 37–45. [Google Scholar] [CrossRef]
- Malik, I.; Kelley, C.P.; Wang, E.T.; Todd, P.K. Molecular mechanisms underlying nucleotide repeat expansion disorders. Nat. Rev. Mol. Cell Biol. 2021, 22, 589–607. [Google Scholar] [CrossRef]
- Guerrini, R.; Moro, F.; Kato, M.; Barkovich, A.J.; Shiihara, T.; McShane, M.A.; Hurst, J.; Loi, M.; Tohyama, J.; Norci, V.; et al. Expansion of the first PolyA tract of ARX causes infantile spasms and status dystonicus. Neurology 2007, 69, 427–433. [Google Scholar] [CrossRef]
- Paciorkowski, A.R.; Shafrir, Y.; Hrivnak, J.; Patterson, M.C.; Tennison, M.B.; Clark, H.B.; Gomez, C.M. Massive expansion of SCA2 with autonomic dysfunction, retinitis pigmentosa, and infantile spasms. Neurology 2011, 77, 1055–1060. [Google Scholar] [CrossRef] [PubMed]
- Syrbe, S.; Harms, F.L.; Parrini, E.; Montomoli, M.; Mütze, U.; Helbig, K.L.; Polster, T.; Albrecht, B.; Bernbeck, U.; van Binsbergen, E.; et al. Delineating SPTAN1 associated phenotypes: From isolated epilepsy to encephalopathy with progressive brain atrophy. Brain 2017, 140, 2322–2336. [Google Scholar] [CrossRef]
- Tohyama, J.; Nakashima, M.; Nabatame, S.; Gaik-Siew, C.N.; Miyata, R.; Rener-Primec, Z.; Kato, M.; Matsumoto, M.; Saitsu, H. SPTAN1 encephalopathy: Distinct phenotypes and genotypes. J. Hum. Genet. 2015, 60, 167–173. [Google Scholar] [CrossRef]
- Tsuji, M.; Kuroki, S.; Maeda, H.; Yoshioka, M.; Maihara, T.; Fujii, T.; Ito, M. Leigh syndrome associated with West syndrome. Brain Dev. 2003, 25, 245–250. [Google Scholar] [CrossRef] [PubMed]
- Finsterer, J.; Mahjoub, S.Z. Epilepsy in mitochondrial disorders. Seizure 2012, 21, 316–321. [Google Scholar] [CrossRef]
- Wray, C.D.; Friederich, M.W.; du Sart, D.; Pantaleo, S.; Smet, J.; Kucera, C.; Fenton, F.; Scharer, G.; Van Coster, R.; Van Hove, J.L. A new mutation in MT-ND1 m. 3928G> C p. V208L causes Leigh disease with infantile spasms. Mitochondrion 2013, 13, 656–661. [Google Scholar] [CrossRef] [PubMed]
- Brennan, G.P.; Henshall, D.C. MicroRNAs as regulators of brain function and targets for treatment of epilepsy. Nat. Rev. Neurol. 2020, 16, 506–519. [Google Scholar] [CrossRef]
- Morrison-Levy, N.; Borlot, F.; Jain, P.; Whitney, R. Early-onset developmental and epileptic encephalopathies of infancy: An overview of the genetic basis and clinical features. Pediatr. Neurol. 2021, 116, 85–94. [Google Scholar] [CrossRef]
- Hixson, L.; Goel, S.; Schuber, P.; Faltas, V.; Lee, J.; Narayakkadan, A.; Leung, H.; Osborne, J. An overview on prenatal screening for chromosomal aberrations. J. Lab. Autom. 2015, 20, 562–573. [Google Scholar] [CrossRef]
- Belkadi, A.; Bolze, A.; Itan, Y.; Cobat, A.; Vincent, Q.B.; Antipenko, A.; Shang, L.; Boisson, B.; Casanova, J.L.; Abel, L. Whole-genome sequencing is more powerful than whole-exome sequencing for detecting exome variants. Proc. Natl. Acad. Sci. USA 2015, 112, 5473–5478. [Google Scholar] [CrossRef]
- Ewans, L.J.; Minoche, A.E.; Schofield, D.; Shrestha, R.; Puttick, C.; Zhu, Y.; Drew, A.; Gayevskiy, V.; Elakis, G.; Walsh, C.; et al. Whole exome and genome sequencing in mendelian disorders: A diagnostic and health economic analysis. Eur. J. Hum. Genet. 2022, 30, 1121–1131. [Google Scholar] [CrossRef]
- Lee, S.; Jang, S.; Kim, J.I.; Chae, J.H.; Kim, K.J.; Lim, B.C. Whole genomic approach in mutation discovery of infantile spasms patients. Front. Neurol. 2022, 13, 944905. [Google Scholar] [CrossRef]
- D’Gama, A.M.; Mulhern, S.; Sheidley, B.R.; Boodhoo, F.; Buts, S.; Chandler, N.J.; Cobb, J.; Curtis, M.; Higginbotham, E.J.; Holland, J.; et al. Evaluation of the feasibility, diagnostic yield, and clinical utility of rapid genome sequencing in infantile epilepsy (Gene-STEPS): An international, multicentre, pilot cohort study. Lancet Neurol. 2023, 22, 812–825. [Google Scholar] [CrossRef]
- Smith, L.; Malinowski, J.; Ceulemans, S.; Peck, K.; Walton, N.; Sheidley, B.R.; Lippa, N. Genetic testing and counseling for the unexplained epilepsies: An evidence-based practice guideline of the National Society of Genetic Counselors. J. Genet. Couns. 2023, 32, 266–280. [Google Scholar] [CrossRef]
- Howell, K.B.; Eggers, S.; Dalziel, K.; Riseley, J.; Mandelstam, S.; Myers, C.T.; McMahon, J.M.; Schneider, A.; Carvill, G.L.; Mefford, H.C.; et al. A population-based cost-effectiveness study of early genetic testing in severe epilepsies of infancy. Epilepsia 2018, 59, 1177–1187. [Google Scholar] [CrossRef] [PubMed]
- Palmer, E.E.; Schofield, D.; Shrestha, R.; Kandula, T.; Macintosh, R.; Lawson, J.A.; Andrews, I.; Sampaio, H.; Johnson, A.M.; Farrar, M.A.; et al. Integrating exome sequencing into a diagnostic pathway for epileptic encephalopathy: Evidence of clinical utility and cost effectiveness. Mol. Genet. Genom. Med. 2018, 6, 186–199. [Google Scholar] [CrossRef] [PubMed]
- Sanchez Fernandez, I.; Loddenkemper, T.; Gaínza-Lein, M.; Sheidley, B.R.; Poduri, A. Diagnostic yield of genetic tests in epilepsy: A meta-analysis and cost-effectiveness study. Neurology 2019, 92, e418–e428. [Google Scholar] [CrossRef] [PubMed]
- Varesio, C.; Gana, S.; Asaro, A.; Ballante, E.; Cabini, R.F.; Tartara, E.; Bagnaschi, M.; Pasca, L.; Valente, M.; Orcesi, S.; et al. Diagnostic yield and cost-effectiveness of “dynamic” exome analysis in epilepsy with neurodevelopmental disorders: A tertiary-center experience in northern Italy. Diagnostics 2021, 11, 948. [Google Scholar] [CrossRef] [PubMed]
- Jegathisawaran, J.; Tsiplova, K.; Hayeems, R.; Ungar, W.J. Determining accurate costs for genomic sequencing technologies—A necessary prerequisite. J. Community Genet. 2020, 11, 235–238. [Google Scholar] [CrossRef] [PubMed]
- Pavone, P.; Polizzi, A.; Marino, S.D.; Corsello, G.; Falsaperla, R.; Marino, S.; Ruggieri, M. West syndrome: A comprehensive review. Neurol. Sci. 2020, 41, 3547–3562. [Google Scholar] [CrossRef]
- Al-Shehhi, W.; Chau, V.; Boyd, J.; Snead, C.; Sharma, R.; Donner, E.; Go, C.; Jain, P. Treatment with High-Dose Prednisolone in Vigabatrin-Refractory Infantile Spasms. Can. J. Neurol. Sci. 2022, 49, 532–539. [Google Scholar] [CrossRef]
- Kuchenbuch, M.; Lo Barco, T.; Chemaly, N.; Chiron, C.; Nabbout, R. Fifteen years of real-world data on the use of vigabatrin in individuals with infantile epileptic spasms syndrome. Epilepsia 2023, 65, 430–444. [Google Scholar] [CrossRef]
- Dzau, W.; Cheng, S.; Snell, P.; Fahey, M.; Scheffer, I.E.; Harvey, A.S.; Howell, K.B. Response to sequential treatment with prednisolone and vigabatrin in infantile spasms. J. Paediatr. Child Health 2022, 58, 2197–2202. [Google Scholar] [CrossRef]
- Grinspan, Z.M.; Knupp, K.G.; Patel, A.D.; Yozawitz, E.G.; Wusthoff, C.J.; Wirrell, E.C.; Valencia, I.; Singhal, N.S.; Nordli, D.R.; Wirrell, E.C.; et al. Comparative effectiveness of initial treatment for infantile spasms in a contemporary US cohort. Neurology 2021, 97, e1217–e1228. [Google Scholar] [CrossRef] [PubMed]
- Whitney, R.; Jain, P. Steroids in infantile spasms syndrome: Another trial, another drug, another dose, what’s next? Ann. Indian Acad. Neurol. 2022, 25, 799. [Google Scholar]
- Gettings, J.V.; Shafi, S.; Boyd, J.; Snead, O.C.; Rutka, J.; Drake, J.; McCoy, B.; Jain, P.; Whitney, R.; Go, C. The Epilepsy Surgery Experience in Children With Infantile Epileptic Spasms Syndrome at a Tertiary Care Center in Canada. J. Child Neurol. 2023, 38, 08830738231151993. [Google Scholar] [CrossRef] [PubMed]
- Specchio, N.; Pietrafusa, N.; Ferretti, A.; De Palma, L.; Santarone, M.E.; Pepi, C.; Trivisano, M.; Curatolo, P. Treatment of infantile spasms: Why do we know so little? Expert Rev. Neurother. 2020, 20, 551–566. [Google Scholar] [CrossRef] [PubMed]
- Nouri, M.N.; Zak, M.; Jain, P.; Whitney, R. Epilepsy management in tuberous sclerosis Complex: Existing and evolving therapies and future considerations. Pediatr. Neurol. 2022, 126, 11–19. [Google Scholar] [CrossRef]
- Bebin, E.M.; Peters, J.M.; Porter, B.E.; McPherson, T.O.; O’Kelley, S.; Sahin, M.; Taub, K.S.; Rajaraman, R.; Randle, S.C.; McClintock, W.M.; et al. Early Treatment with Vigabatrin Does Not Decrease Focal Seizures or Improve Cognition in Tuberous Sclerosis Complex: The PREVeNT Trial. Ann. Neurol. 2023, 95, 15–26. [Google Scholar] [CrossRef]
- Kotulska, K.; Kwiatkowski, D.J.; Curatolo, P.; Weschke, B.; Riney, K.; Jansen, F.; Feucht, M.; Krsek, P.; Nabbout, R.; Jansen, A.C.; et al. Prevention of epilepsy in infants with tuberous sclerosis complex in the EPISTOP trial. Ann. Neurol. 2021, 89, 304–314. [Google Scholar] [CrossRef] [PubMed]
- Samueli, S.; Abraham, K.; Dressler, A.; Gröppel, G.; Mühlebner-Fahrngruber, A.; Scholl, T.; Kasprian, G.; Laccone, F.; Feucht, M. Efficacy and safety of Everolimus in children with TSC-associated epilepsy–Pilot data from an open single-center prospective study. Orphanet J. Rare Dis. 2016, 11, 145. [Google Scholar] [CrossRef] [PubMed]
- He, W.; Chen, J.; Wang, Y.Y.; Zhang, M.N.; Wang, Q.H.; Luo, X.M.; Chen, X.Q.; Zou, L.P. Sirolimus improves seizure control in pediatric patients with tuberous sclerosis: A prospective cohort study. Seizure 2020, 79, 20–26. [Google Scholar] [CrossRef] [PubMed]
- Curatolo, P.; Nabbout, R.; Lagae, L.; Aronica, E.; Ferreira, J.C.; Feucht, M.; Hertzberg, C.; Jansen, A.C.; Jansen, F.; Kotulska, K.; et al. Management of epilepsy associated with tuberous sclerosis complex: Updated clinical recommendations. Eur. J. Paediatr. Neurol. 2018, 22, 738–748. [Google Scholar] [CrossRef]
- Velíšek, L.; Velíšková, J. Modeling epileptic spasms during infancy: Are we heading for the treatment yet? Pharmacol. Ther. 2020, 212, 107578. [Google Scholar] [CrossRef] [PubMed]
- Hack, J.B.; Horning, K.; Juroske Short, D.M.; Schreiber, J.M.; Watkins, J.C.; Hammer, M.F. Distinguishing loss-of-function and gain-of-function SCN8A variants using a random forest classification model trained on clinical features. Neurol. Genet. 2023, 9, e200060. [Google Scholar] [CrossRef]
- Wolff, M.; Johannesen, K.M.; Hedrich, U.B.; Masnada, S.; Rubboli, G.; Gardella, E.; Lesca, G.; Ville, D.; Milh, M.; Villard, L.; et al. Genetic and phenotypic heterogeneity suggest therapeutic implications in SCN2A-related disorders. Brain 2017, 140, 1316–1336. [Google Scholar] [CrossRef]
- Hussain, S.A.; Heesch, J.; Weng, J.; Rajaraman, R.R.; Numis, A.L.; Sankar, R. Potential induction of epileptic spasms by nonselective voltage-gated sodium channel blockade: Interaction with etiology. Epilepsy Behav. 2021, 115, 107624. [Google Scholar] [CrossRef]
- Olivetti, P.R.; Maheshwari, A.; Noebels, J.L. Neonatal estradiol stimulation prevents epilepsy in Arx model of X-linked infantile spasms syndrome. Sci. Transl. Med. 2014, 6, 220ra12. [Google Scholar] [CrossRef]
- Kerrigan, J.F.; Shields, W.D.; Nelson, T.Y.; Bluestone, D.L.; Dodson, W.E.; Bourgeois, B.F.; Pellock, J.M.; Morton, L.D.; Monaghan, E.P. Ganaxolone for treating intractable infantile spasms: A multicenter, open-label, add-on trial. Epilepsy Res. 2000, 42, 133–139. [Google Scholar] [CrossRef] [PubMed]
- Ho, P.T.; Clark, I.M.; Le, L.T. MicroRNA-based diagnosis and therapy. Int. J. Mol. Sci. 2022, 23, 7167. [Google Scholar] [CrossRef]
- Mendell, J.R.; Al-Zaidy, S.; Shell, R.; Arnold, W.D.; Rodino-Klapac, L.R.; Prior, T.W.; Lowes, L.; Alfano, L.; Berry, K.; Church, K.; et al. Single-dose gene-replacement therapy for spinal muscular atrophy. New Engl. J. Med. 2017, 377, 1713–1722. [Google Scholar] [CrossRef]
- Mich, J.K.; Ryu, J.; Wei, A.D.; Gore, B.B.; Guo, R.; Bard, A.M.; Martinez, R.A.; Bishaw, Y.; Luber, E.; Santos, L.M.O.; et al. AAV-mediated in-terneuron-specific gene replacement for Dravet syndrome. bioRxiv 2023, 2023-12. [Google Scholar] [CrossRef]
- Shaimardanova, A.A.; Chulpanova, D.S.; Mullagulova, A.I.; Afawi, Z.; Gamirova, R.G.; Solovyeva, V.V.; Rizvanov, A.A. Gene and cell therapy for epilepsy: A mini review. Front. Mol. Neurosci. 2022, 15, 868531. [Google Scholar] [CrossRef]
- Goodspeed, K.; Liu, J.S.; Nye, K.L.; Prasad, S.; Sadhu, C.; Tavakkoli, F.; Bilder, D.A.; Minassian, B.A.; Bailey, R.M. SLC13A5 deficiency disorder: From genetics to gene therapy. Genes 2022, 13, 1655. [Google Scholar] [CrossRef] [PubMed]
- Johannesen, K.M.; Tümer, Z.; Weckhuysen, S.; Barakat, T.S.; Bayat, A. Solving the unsolved genetic epilepsies: Current and future perspectives. Epilepsia 2023, 65, 3143–3154. [Google Scholar] [CrossRef] [PubMed]
- Wanigasinghe, J.; Sahu, J.K.; Madaan, P.; Fatema, K.; Linn, K.; Chand, P.; Poudel, P.; Hamed, E.; Mynak, M.L.; Hassan, S. Classifying etiology of infantile spasms syndrome in resource-limited settings: A study from the South Asian region. Epilepsia Open 2021, 6, 736–747. [Google Scholar] [CrossRef] [PubMed]
- Knowles, J.K.; Helbig, I.; Metcalf, C.S.; Lubbers, L.S.; Isom, L.L.; Demarest, S.; Goldberg, E.M.; George, A.L., Jr.; Lerche, H.; Weckhuysen, S.; et al. Precision medicine for genetic epilepsy on the horizon: Recent advances, present challenges, and suggestions for continued progress. Epilepsia 2022, 63, 2461–2475. [Google Scholar] [CrossRef] [PubMed]
Animal Model | Protocol | Clinical Importance | |
---|---|---|---|
Acute Models | N-methyl-D-aspartate (NMDA) model | Administration of NMDA postnatally induces emprosthotonic seizures (similar to flexion tonic spasms) | Suggests role of NMDA in spasm expression |
Betamethasone/prenatal-stress NMDA model | In addition to postnatal NMDA administration, mice exposed to prenatal stressors such as betamethasone, forced restraint and forced swimming in cold water | Faster-onset and higher-frequency seizures suggest phenotypic interaction of spasms with perinatal stress | |
Ts65Dn mouse model of Down syndrome | Administration of GABAB receptor agonist induces extensor spasms and electrodecremental response on EEG; effect not seen in mice that are GIRK2 (−/−) | Provides evidence that GIRK2 channel subunit is required for development of spasms in this model | |
Chronic Models | Tetrodotoxin rat model | Chronic infusion of sodium channel blocker results in development of epileptic spasms and hypsarrhythmia | Useful in monitoring ictal and interictal patterns seen in IESS in older animals |
ARX mouse model | Mutant mice with non-functional ARX gene, which typically has role in GABAergic differentiation and migration | Provides evidence for association between interneuronopathy and spasm development | |
Multiple-hit rat model | Postnatal intracranial infusion of doxorubicin and lipopolysaccharide to target grey and white matter, respectively, followed by injection of tryptophan hydroxylase inhibitor to deplete serotonin | Model of refractory IESS secondary to structural lesions |
Chromosomal disorders | Trisomy 18; Trisomy 21; 47, XXY (Klinefelter syndrome); 2q24.3 duplication; 5p12-11 duplication; 15q11.2 duplication; Xq27.2q28 duplication; 1p36 deletion; 3p25.3 deletion; 4q32.3q35.1 deletion; 7q11 deletion; 9q33.3-34.11 deletion; 9p24.3-22.3 deletion; 17p13.3 deletion (Miller–Dieker syndrome); 20q13.3 deletion; Xp22.13 deletion; tetrasomy 12p (Pallister–Killian syndrome) | |
Single-gene disorders | De novo, dominant | ALG13; CACNA1A; CHD2; CDK19; CSNK2A1; CYFIP2; DNM1; EHMT1; FOXG1; GABBR2; GNAO1; GNB1; GRIN1; GRIN2B; HDAC4; IRF2BPL; KANSL1; KCNB1; KCNMA1; KCNT1; KCNQ2; KMT2C; KMT2D; KMT2E; MBD5; MEF2C; NEDD4L; NF1; NPRL3; NTRK2; PACS2; PPP2R1A; PPP3CA; PRRT2; PURA; SATB1; SCN1A; SCN2A; SCN8A; SLC2A1; SLC35A2; SMARCA2; SPTAN1; STXBP1; SYNGAP1; TCF4; TSC1; TSC2; TUBB2A |
Autosomal recessive | ADSL; ALDH7A1; AMT; ASAH1; ASNS; CPLX1; CUBN; DOCK7; EPG5; GRM7; MBOAT7; MIPEP; NRROS; NRXN1; PLEKHG2; PLPBP; PNPO; RARS2; RYR3; SLC2A1; TBC1D24; TBCD; TNK2; UGP2; VRK2; WWOX | |
X-linked | ARX; ALG13; CLCN4; CDKL5; DCX; GABRE; HUWE1; IQSEC2; MECP2; NONO | |
Trinucleotide repeat disorders | ARX; ATXN2 | |
Mitochondrial disorders | MT-ND1, MT-ND5, POLG, SUCLA2 | |
Candidate genes | ABCD1; ALPL; ASXL1; ATP2A2; CACNA1C; CD99L2; CLCN6; COL4A1; CYF1P1; CREBBP; DYNC1I1; GPT2; HDAC8; MED12; MED25; MYO18A; NDUFA10; PEMT; RALGAPB; SHROOM4; SOX5; STRADA; TAF1; TCF4; TCF20 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Snyder, H.E.; Jain, P.; RamachandranNair, R.; Jones, K.C.; Whitney, R. Genetic Advancements in Infantile Epileptic Spasms Syndrome and Opportunities for Precision Medicine. Genes 2024, 15, 266. https://doi.org/10.3390/genes15030266
Snyder HE, Jain P, RamachandranNair R, Jones KC, Whitney R. Genetic Advancements in Infantile Epileptic Spasms Syndrome and Opportunities for Precision Medicine. Genes. 2024; 15(3):266. https://doi.org/10.3390/genes15030266
Chicago/Turabian StyleSnyder, Hannah E., Puneet Jain, Rajesh RamachandranNair, Kevin C. Jones, and Robyn Whitney. 2024. "Genetic Advancements in Infantile Epileptic Spasms Syndrome and Opportunities for Precision Medicine" Genes 15, no. 3: 266. https://doi.org/10.3390/genes15030266
APA StyleSnyder, H. E., Jain, P., RamachandranNair, R., Jones, K. C., & Whitney, R. (2024). Genetic Advancements in Infantile Epileptic Spasms Syndrome and Opportunities for Precision Medicine. Genes, 15(3), 266. https://doi.org/10.3390/genes15030266