Whole-Exome Sequencing (WES) Reveals Novel Sex-Specific Gene Variants in Non-Alcoholic Steatohepatitis (MASH)
Abstract
:1. Introduction
2. Methods
2.1. Ethics Statement
2.2. DNA Extraction and Whole-Exome Sequencing (WES-Seq)
2.3. WES Data Processing
2.4. PCR and Sanger Sequencing
2.5. Western Blot Analysis
2.6. Statistical Analysis of Western Blot
3. Results
3.1. Clinical Characteristics of the Study Population
3.2. WES, Data Filtering and Mutation Landscape of Liver Tissue Samples
3.3. WES Identifies ALPK2 Variant in Female Cases
3.4. Validation of the ALPK2 Variant
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Younossi, Z.; Anstee, Q.M.; Marietti, M.; Hardy, T.; Henry, L.; Eslam, M.; George, J.; Bugianesi, E. Global burden of NAFLD and NASH: Trends, predictions, risk factors and prevention. Nat. Rev. Gastroenterol. Hepatol. 2018, 15, 11–20. [Google Scholar] [CrossRef]
- Chalasani, N.; Younossi, Z.; LaVine, J.E.; Charlton, M.; Cusi, K.; Rinella, M.; Harrison, S.A.; Brunt, E.M.; Sanyal, A.J. The diagnosis and management of nonalcoholic fatty liver disease: Practice guidance from the American Association for the study of liver diseases. Hepatology 2018, 67, 328–357. [Google Scholar] [CrossRef]
- Araujo, A.R.; Rosso, N.; Bedogni, G.; Tiribelli, C.; Bellentani, S. Global epidemiology of non-alcoholic fatty liver disease/non-alcoholic steatohepatitis: What we are need in the future. Liver Int. 2017, 38, 47–51. [Google Scholar] [CrossRef] [PubMed]
- Koch, L.K.; Yeh, M.M. Nonalcoholic fatty liver disease (NAFLD): Diagnosis, pitfalls, and staging. Ann. Diagn. Pathol. 2018, 37, 83–90. [Google Scholar] [CrossRef] [PubMed]
- Balakrishnan, M.; Patel, P.; Dunn-Valadez, S.; Dao, C.; Khan, V.; Ali, H.; El-Serag, L.; Hernaez, R.; Sisson, A.; Thrift, A.P.; et al. Women have a lower risk of nonalcoholic fatty liver disease but higher risk of progression vs men: A systematic review and meta-analysis. Clin. Gastroenterol. Hepatol. 2021, 19, 61–71. [Google Scholar] [CrossRef]
- Burra, P.; Bizzaro, D.; Gonta, A.; Shalaby, S.; Gambato, M.; Morelli, M.C.; Trapani, S.; Floreani, A.; Marra, F.; Brunetto, M.R.; et al. Clinical impact of sexual dimorphism in non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH). Liver Int. 2021, 41, 1713–1733. [Google Scholar] [CrossRef]
- Yeh, M.M.; Shi, X.; Yang, J.; Li, M.; Fung, K.M.; Daoud, S.S. Perturbation of Wnt/β-catenin signaling and sexual dimorphism in non-alcoholic fatty liver disease. Hepatol. Res. 2022, 52, 433–448. [Google Scholar] [CrossRef] [PubMed]
- Ackers, I.; Malgor, R. Interrelationship of canonical and non-canonical Wnt signaling pathways in chronic metabolic diseases. Diabetes Vasc. Dis. Res. 2018, 15, 3–13. [Google Scholar] [CrossRef]
- Wang, X.M.; Wang, X.Y.; Huang, Y.M.; Chen, X.; Lü, M.H.; Shi, L.; Li, C.P. Role and mechanisms of action of microRNA21 as regards the regulation of the Wnt/β-catenin signaling pathway in the pathogenesis of non-alcoholic fatty liver disease. Int. J. Mol. Med. 2019, 44, 2201–2212. [Google Scholar]
- Go, G.W. Low-density lipoprotein receptor-related 6 (LRP6) is a novel nutritional therapeutic target for hyperlipidemia, non-alcoholic fatty liver disease, and atherosclerosis. Nutrients 2015, 7, 4453–4464. [Google Scholar] [CrossRef]
- Albhaisi, S.; Sanyal, A. Gene-environmental interactions as metabolic drivers of nonalcoholic steatohepatitis. Front. Endocrinol. 2021, 12, 665987. [Google Scholar] [CrossRef] [PubMed]
- Büchler, T.; Ohlebusch, E. An improved encoding of genetic variations in a Burrows-Wheeler transform. Bioinformatics 2020, 36, 1413–1419. [Google Scholar] [CrossRef] [PubMed]
- Ulintz, P.J.; Wu, W.; Gates, C.M. Bioinformatics analysis of whole exome sequencing data. Methods Mol. Biol. 2019, 1881, 277–318. [Google Scholar] [PubMed]
- Yang, H.; Wang, K. Genomic variant annotation, and prioritization with ANNOVAR and wANNOVAR. Nat. Protoc. 2015, 10, 1556–1566. [Google Scholar] [CrossRef]
- Zito, A.; Lualdi, M.; Granata, P.; Cocciadiferro, D.; Novelli, A.; Alberio, T.; Casalone, R.; Fasano, M. Gene set enrichment analysis of interaction networks weighted by node centrality. Front. Genet. 2021, 12, 577623. [Google Scholar] [CrossRef]
- Davis, M.W.; Jorgensen, E.M. ApE, A Plasmid Editor: A freely available DNA manipulation and visualization program. Front. Bioinform. 2022, 2, 818619. [Google Scholar] [CrossRef] [PubMed]
- Shen, R.; Seshan, V.E. FACETS: Allele-specific copy number and clonal heterogeneity analysis tool for high-throughput DNA sequencing. Nucleic Acids Res. 2016, 44, e131. [Google Scholar] [CrossRef]
- Granata, I.; Sangiovanni, M.; Maiorano, F.; Miele, M.; Guarracino, M.R. Var2GO: A web-based tool for gene variants selection. BMC Bioinform. 2016, 11, 376–382. [Google Scholar] [CrossRef]
- Hofsteen, P.; Robitaille, A.M.; Strash, N.; Palpant, N.; Moon, R.T.; Pabon, L.; Murry, C.E. ALPK2 promotes cardiogenesis in Zebrafish and human pluripotent stem cells. iScience 2018, 2, 88–100. [Google Scholar] [CrossRef]
- Eslam, M.; George, J. Genetic contribution to NAFLD: Leveraging shared genetics to uncover system biology. Nat. Rev. Gastroenterol. Hepatol. 2020, 17, 40–52. [Google Scholar] [CrossRef]
- Sookoian, S.; Pirola, C.J. Genetic predisposition in nonalcoholic fatty liver disease. Clin. Mol. Hepatol. 2017, 23, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Luukkonen, P.K.; Qadri, S.; Ahlholm, N.; Porthan, K.; Männistö, V.; Sammalkorpi, H.; Penttilä, A.K.; Hakkarainen, A.; Lehtimäki, T.E.; Gaggini, M.; et al. Distinct contributions of metabolic dysfunction and genetic risk factors in the pathogenesis of non-alcoholic fatty liver disease. J. Hepatol. 2022, 76, 526–535. [Google Scholar] [CrossRef] [PubMed]
- Carlsson, B.; Lindén, D.; Brolén, G.; Liljeblad, M.; Bjursell, M.; Romeo, S.; Loomba, R. The emerging role of genetics in precision medicine for patients with non-alcoholic steatohepatitis. Aliment. Pharmacol. Ther. 2020, 51, 1305–1320. [Google Scholar] [CrossRef]
- Ma, X.-L.; Zhu, K.-Y.; Chen, Y.-D.; Tang, W.-G.; Xie, S.-H.; Zheng, H.; Tong, Y.; Wang, Y.-C.; Ren, N.; Guo, L.; et al. Identification of a novel Calpain-2-SRC feed-back loop as necessity for β-Catenin accumulation and signaling activation in hepatocellular carcinoma. Oncogene 2022, 41, 3554–3569. [Google Scholar] [CrossRef] [PubMed]
- Seike, T.; Boontem, P.; Yanagi, M.; Li, S.; Kido, H.; Yamamiya, D.; Nakagawa, H.; Okada, H.; Yamashita, T.; Harada, K.; et al. Hydroxynonenal causes hepatocyte death by disrupting lysosomal integrity in non-alcoholic steatohepatitis. Cell. Mol. Gastroenterol. Hepatol. 2022, 14, 925–944. [Google Scholar] [CrossRef] [PubMed]
- Dai, D.; Wu, D.; Ni, R.; Li, P.; Tian, Z.; Shui, Y.; Hu, H.; Wei, Q. Novel insights into the progression and prognosis of the calpain family members in hepatocellular carcinoma: A comprehensive integrated analysis. Front. Mol. Biosci. 2023, 10, 1162409–1162422. [Google Scholar] [CrossRef]
- Matsuzawa, A.; Kanno, S.I.; Nakayama, M.; Mochiduki, H.; Wei, L.; Shimaoka, T.; Furukawa, Y.; Kato, K.; Shibata, S.; Yasui, A.; et al. The BRCA1/BARD1-interacting protein OLA1 functions in centrosome regulation. Mol. Cell. 2014, 53, 101–114. [Google Scholar] [CrossRef]
- Takahashi, M.; Chiba, N.; Shimodaira, H.; Yoshino, Y.; Mori, T.; Sumii, M.; Nomizu, T.; Ishioka, C. OLA1 gene sequencing in patients with BRCA1/2 mutation negative suspected hereditary breast and ovarian cancer. Breast Cancer 2017, 24, 336–340. [Google Scholar] [CrossRef]
- Huang, S.; Zhang, C.; Sun, C.; Hou, Y.; Zhang, Y.; Tam, N.L.; Wang, Z.; Yu, J.; Huang, B.; Zhuang, H.; et al. Obg-like ATPase 1 (OLA1) overexpression predicts poor prognosis and promotes tumor progression by regulating P21/CDK2 in hepatocellular carcinoma. Aging 2020, 12, 3025–3041. [Google Scholar] [CrossRef]
- Meng, Z.; Geng, X.; Lin, X.; Wang, Z.; Chen, D.; Liang, H.; Zhu, Y.; Sui, Y. A prospective diagnostic and prognostic biomarker for hepatocellular carcinoma that functions in glucose metabolism regulation: Solute carrier family 37 member 3. Biochim. Biophys. Acta Mol. Basis Dis. 2023, 1868, 166661. [Google Scholar] [CrossRef]
- Millo, T.; Rivera, A.; Obolensky, A.; Marks-Ohana, D.; Xu, M.; Li, Y.; Wilhelm, E.; Gopalakrishnan, P.; Gross, M.; Rosin, B.; et al. Identification of autosomal recessive novel genes and retinal phenotypes in members of the solute carrier (SLC) superfamily. Genet. Med. 2022, 24, 1523–1535. [Google Scholar] [CrossRef] [PubMed]
- Ishikawa, Y.; Kawashima, N.; Atsuta, Y.; Sugiura, I.; Sawa, M.; Dobashi, N.; Yokoyama, H.; Doki, N.; Tomita, A.; Kiguchi, T.; et al. Prospective evaluation of prognostic impact of KIT mutations on acute myeloid leukemia with RUNX1-RUNX1T1 and CBFB-MYH11. Blood Adv. 2020, 4, 66–75. [Google Scholar] [CrossRef] [PubMed]
- Kadioglu, O.; Saeed, M.; Munder, M.; Spuller, A.; Greten, H.J.; Efferth, T. Identification of novel ABCC1 transporter mutations in tumor biopsies of cancer patients. Cells 2020, 9, 299. [Google Scholar] [CrossRef] [PubMed]
- Michelucci, A.; Garcia-Castaneda, M.; Boncompagni, S.; Kirksen, R.T. Role of STIM1/ORAI1-mediated store-operated Ca2+ entry in skeletal muscle physiology and disease. Cell Calcium 2018, 76, 101–115. [Google Scholar] [CrossRef] [PubMed]
- Ali, E.S.; Rychkov, G.; Barritt, G. Metabolic disorders, and cancer: Hepatocyte store operated Ca2+ channels in nonalcoholic fatty liver disease. Adv. Exp. Med. Biol. 2017, 993, 595–621. [Google Scholar]
- Petko, J.; Thileepan, M.; Sargen, M.; Canfield, V.; Levenson, R. Alternative splicing of the Wnt trafficking protein, Wntless and its effects on protein-protein interactions. BMC Mol. Cell Biol. 2019, 20, 22–31. [Google Scholar] [CrossRef]
- Sun, Z.; Pan, X.; Tian, A.; Surakka, I.; Wang, T.; Jiao, X.; He, S.; Song, J.; Tian, X.; Tong, D.; et al. Genetic variants in HFE are associated with non-alcoholic fatty liver disease in lean individuals. JHEP Rep. 2023, 5, 100744. [Google Scholar] [CrossRef]
- Li, Y.Y.; Chung, G.T.; Lui, V.W.; To, K.F.; Ma, B.B.; Chow, C.; Woo, J.K.S.; Yip, K.Y.; Seo, J.; Hui, E.P.; et al. Exome and genome sequencing of nasopharynx cancer identifies NF-kB pathway activating mutations. Nat. Commun. 2017, 8, 14121–14131. [Google Scholar] [CrossRef]
- Bauer, S.; Hezinger, L.; Rexhepi, F.; Ramanathan, S.; Kufer, T.A. NOD-like receptors-emerging links to obesity and associated morbidities. Int. J. Mol. Sci. 2023, 24, 8595. [Google Scholar] [CrossRef]
- Chang, G.; Liu, X.; Ma, T.; Xu, L.; Wang, H.; Li, Z.; Guo, X.; Xu, Q.; Chen, G. A mutation in the NLRC5 promoter limits NF-kB signaling after Salmonella Enteritidis infection in the spleen of young chickens. Gene 2015, 568, 117–123. [Google Scholar] [CrossRef] [PubMed]
- McIntosh, A.T.; Wei, R.; Ahn, J.; Aouizerat, B.E.; Kassaye, S.G.; Augenbraun, M.H.; Price, J.C.; French, A.L.; Gange, S.J.; Anastos, K.M.; et al. A genomic variant of ALPK2 is associated with increased liver fibrosis risk in HIV/HCV coinfected women. PLoS ONE 2021, 16, e0247277. [Google Scholar] [CrossRef] [PubMed]
- Lawrence, M.S.; Stojanov, P.; Mermel, C.H.; Robinson, J.T.; Garraway, L.A.; Golub, T.R.; Meyerson, M.; Gabriel, S.B.; Lander, E.S.; Getz, G. Discovery and saturation analysis of cancer genes across 21 tumor types. Nature 2014, 505, 495–501. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Yan, S.; Xiao, S.; Xue, M. Knockdown of ALPK2 inhibits the development and progression of ovarian cancer. Cancer Cell Int. 2020, 20, 267–277. [Google Scholar] [CrossRef] [PubMed]
- Jiang, J.; Han, P.; Qian, J.; Zhang, S.; Wang, S.; Cao, Q.; Shao, P. Knockdown of ALPK2 blocks development and progression of renal cell carcinoma. Exp. Cell Res. 2020, 392, 112029. [Google Scholar] [CrossRef]
- De Lorenzo, S.; Tovoli, F.; Mazzotta, A.; Vasuri, F.; Edeline, J.; Malvi, D.; Boudjema, K.; Renzulli, M.; Jeddou, H.; D’errico, A.; et al. Non-alcoholic steatohepatitis as a risk factor for interhepatic cholangiocarcinoma and its prognostic role. Cancers 2020, 12, 3182. [Google Scholar] [CrossRef]
- Tovoli, F.; Negrini, G.; Farì, R.; Guidetti, E.; Faggiano, C.; Napoli, L.; Bolondi, L.; Granito, A. Increased risk of nonalcoholic fatty liver disease in patients with coelic disease on a gluten-free diet: Beyond traditional metabolic factor. Aliment. Pharmacol. Ther. 2018, 48, 538–546. [Google Scholar] [CrossRef]
Type | SNV | InDels |
---|---|---|
Counts Percent | Counts Percent | |
Downstream | 580 0.4 | 72 0.5 |
Exonic | 35,000 27 | 733 5 |
Exonic; splicing | 17 0 | 4 0 |
Intergenic | 3941 3 | 371 3 |
Intronic | 79,259 59 | 10,837 78 |
ncRNA_exonic | 3011 2 | 252 2 |
ncRNA_intronic | 4444 3 | 550 4 |
ncRNA_splicing | 8 0 | 0 0 |
Splicing | 111 0.1 | 47 0.3 |
Upstream | 1228 1 | 115 1 |
Upstream; downstream | 115 0.1 | 5 0 |
UTR3 | 4504 3 | 687 5 |
UTR5 | 2730 2 | 247 2 |
UTR5; UTR3 | 13 0 | 5 0 |
All | 134,961 100 | 13,925 100 |
#CHR OM | POS | Gene_ID | Gene_Name | CytoBand | Avsnp150 | Category | REF | ALT | Gene_Full_Name | p-Value |
---|---|---|---|---|---|---|---|---|---|---|
chr1 | 17085589 | ENSG00000186715 | MST1L | 1p36.13 | rs3863807 | upstream_gene_variant | AGC GCTG | A | macrophage stimulating 1-like | 0.0286 |
chr1 | 26487940 | ENSG00000197245 | FAM110D | 1p36.11 | rs3748856 | missense_variant | A | G | family with sequence similarity 110 member D | 0.0286 |
chr1 | 26496455 | ENSG00000142684 | ZNF593 | 1p36.11 | rs2232648 | 5_prime_UTR_premature _start_codon_gain_variant | C | T | zinc finger protein 593 | 0.0286 |
chr1 | 154941593 | ENSG00000160691 | SHC1 | 1q21.3 | rs4845401 | upstream_gene_variant | C | G | SHC (Src homology 2 domain containing) transforming protein 1 | 0.0286 |
chr1 | 182509292 | ENSG00000121446 | RGSL1 | 1q25.3 | rs266531 | intron_variant | A | G | regulator of G-protein signaling like 1 | 0.0286 |
chr1 | 182509617 | ENSG00000121446 | RGSL1 | 1q25.3 | rs3911280 | intron_variant | C | A | regulator of G-protein signaling like 1 | 0.0286 |
chr1 | 182517357 | ENSG00000121446 | RGSL1 | 1q25.3 | rs6657620 | intron_variant | G | C | regulator of G-protein signaling like 1 | 0.0286 |
chr1 | 232172374 | ENSG00000162946 | DISC1 | 1q42.2 | rs17773715 | intron_variant | G | A | TSNAX-DISC1 readthrough (NMD candidate) | 0.0286 |
chr2 | 55176112 | ENSG00000214595 | EML6 | 2p16.1 | rs13394146 | intron_variant | C | T | echinoderm microtubule associated protein like 6 | 0.0286 |
chr2 | 84668155 | ENSG00000163541 | SUCLG1 | 2p11.2 | rs115384987 | downstream_gene_variant | T | C | succinate-CoA ligase, α subunit | 0.0286 |
chr2 | 127808226 | ENSG00000136717 | BIN1 | 2q14.3 | rs2071270 | intron_variant | A | T | bridging integrator 1 | 0.0286 |
chr2 | 127821085 | ENSG00000136717 | BIN1 | 2q14.3 | rs2071268 | intron_variant | C | T | bridging integrator 1 | 0.0286 |
chr2 | 202526366 | ENSG00000082126 | MPP4 | 2q33.1 | rs62193397 | downstream_gene_variant | G | A | membrane protein, palmitoylated 4 | 0.0286 |
chr3 | 32933360 | ENSG00000206557 | TRIM71 | 3p22.3 | rs372794141 | 3_prime_UTR_variant | C | T,CTT | tripartite motif containing 71, E3 ubiquitin protein ligase | 0.0286 |
chr3 | 57431721 | ENSG00000559559 | DNAH12 | 3p14.3 | rs372891308 | missense_variant | AAAAT | A | dynein axonemal heavy chain 12 | 0.0286 |
chr4 | 110896050 | ENSG00000138798 | EGF | 4q25 | rs2067004 | sequence_feature | A | C | epidermal growth factor | 0.0286 |
chr5 | 40980086 | ENSG00000112936 | C7 | 5p13.1 | rs1450664 | splice_region_variant and intron_variant | T | C | complement component 7 | 0.0286 |
chr5 | 40981689 | ENSG00000112936 | C7 | 5p13.1 | rs1061429 | 3_prime_UTR_variant | C | A | complement component 7 | 0.0286 |
chr6 | 25914801 | ENSG00000112337 | SLC17A2 | 6p22.2 | rs62394272 | missense_variant | G | A | solute carrier family 17 member 2 | 0.0286 |
chr6 | 25914901 | ENSG00000112337 | SLC17A2 | 6p22.2 | rs2071298 | splice_region_variant and intron_variant | G | A | solute carrier family 17 member 2 | 0.0286 |
chr6 | 25916979 | ENSG00000112337 | SLC17A2 | 6p22.2 | rs1865760 | synonymous_variant | C | T | solute carrier family 17 member 2 | 0.0286 |
chr6 | 25918688 | ENSG00000112337 | SLC17A2 | 6p22.2 | rs1865760 | intron_variant | G | A | solute carrier family 17 member 2 | 0.0286 |
chr6 | 25924158 | ENSG00000112337 | SLC17A2 | 6p22.2 | rs1540273 | intron_variant | T | C | solute carrier family 17 member 2 | 0.0286 |
chr6 | 25925823 | ENSG00000112337 | SLC17A2 | 6p22.2 | rs7770139 | intron_variant | A | G | solute carrier family 17 member 2 | 0.0286 |
chr6 | 26027135 | ENSG00000124529 | HIST1H4B | 6p22.2 | rs3752420 | 3_prime_UTR_variant | G | A | histone cluster 1, H4b | 0.0286 |
chr6 | 26027433 | ENSG00000124529 | HIST1H4B | 6p22.2 | rs3752419 | synonymous_variant | G | A | histone cluster 1, H4b | 0.0286 |
chr6 | 26087856 | ENSG00000010704 | HFE | 6p22.2 | rs2858993 | intron_variant | T | A | homeostatic iron regulator | 0.0286 |
chr6 | 71011831 | ENSG00000112280 | COL9A1 | 6q13 | rs2242589 | intron_variant | C | T | collagen type IX α 1 | 0.0286 |
chr6 | 99819556 | ENSG00000132423 | COQ3 | 6q16.2 | rs4574651 | downstream_gene_variant | C | T | coenzyme Q3 methyltransferase | 0.0286 |
chr6 | 152679729 | ENSG00000131018 | SYNE1 | 6q25.2 | rs9478326 | intron_variant | G | A | spectrin repeat containing nuclear envelope 1 | 0.0286 |
chr7 | 142498813 | ENSG00000211772 | TRBC2 | 7q34 | rs1042955 | synonymous_variant | G | A | T cell receptor β constant 2 | 0.0286 |
chr8 | 103301555 | ENSG00000104517 | UBR5 | 8q22.3 | rs2168689 | intron_variant | T | C | ubiquitin protein ligase E3 component n-recognin 5 | 0.0286 |
chr9 | 107593182 | ENSG00000165029 | ABCA1 | 9q31.1 | rs4743763 | intron_variant | A | T | ATP binding cassette subfamily A member 1 | 0.0286 |
chr10 | 47701275 | ENSG00000198250 | ANTXRL | 10q11.22 | rs10906952 | synonymous SNV | G | A | anthrax toxin receptor-like | 0.0286 |
chr10 | 126480381 | ENSG00000203791 | METTL10 | 10q26.13 | rs965484 | missense_variant | C | T | EEF1A lysine methyltransferase 2 | 0.0286 |
chr11 | 72309540 | ENSG00000186642 | PDE2A | 11q13.4 | rs4943939 | upstream_gene_variant | C | T | phosphodiesterase 2A | 0.0286 |
chr12 | 9750669 | ENSG00000111796 | KLRB1 | 12p13.31 | rs1135816 | nonsynonymous SNV | A | G | killer cell lectin like receptor B1 | 0.0286 |
chr12 | 53880122 | ENSG00000139625 | MAP3K12 | 12q13.13 | rs3816806 | upstream_gene_variant | T | C | mitogen-activated protein kinase 12 | 0.0286 |
chr12 | 53896984 | ENSG00000139546 | TARBP2 | 12q13.13 | rs2280448 | 3_prime_UTR_variant | G | A | TAR (HIV-1) RNA binding protein 2 | 0.0286 |
chr12 | 56865338 | ENSG00000135423 | GLS2 | 12q13.3 | rs2657879 | nonsynonymous SNV | A | G | glutaminase 2 | 0.0286 |
chr12 | 56866334 | ENSG00000135517 | MIP | 12q13.3 | rs2657880 | upstream_gene_variant | T | A | major intrinsic factor of lens fiber | 0.0286 |
chr12 | 88448328 | ENSG00000133641 | C12orf29 | 12q21.32 | rs17418744 | downstream_gene_variant | T | A | centrosomal protein 290kDa | 0.0286 |
chr12 | 119419632 | ENSG00000139767 | SRRM4 | 12q24.23 | rs1568924 | 5_prime_UTR_variant | C | T | serine/arginine repetitive matrix 4 | 0.0286 |
chr14 | 65414976 | ENSG00000139998 | RAB15 | 14q23.3 | rs11540871 | 3_prime_UTR_variant | C | T | RAB15, member RAS oncogene family | 0.0286 |
chr14 | 71215822 | ENSG00000006432 | MAP3K9 | 14q24.2 | rs79518608 | downstream_gene_variant | T | C | mitogen-activated protein kinase 9 | 0.0286 |
chr14 | 105268104 | ENSG00000179627 | ZBTB42 | 14q32.33 | rs10141867 | synonymous_variant | G | A | zinc finger and BTB domain containing 42 | 0.0286 |
chr14 | 107211211 | ENSG00000211976 | IGHV3-73 | 14q32.33 | rs2073668 | synonymous_variant | G | A | immunoglobulin heavy variable 3-73 | 0.0286 |
chr16 | 57075379 | ENSG00000140853 | NLRC5 | 16q13 | rs35622257 | missense_variant | G | GT | NLR family, CARD domain containing 5 | 0.0286 |
chr16 | 57080528 | ENSG00000140853 | NLRC5 | 16q13 | rs289723 | nonsynonymous SNV | C | A | NLR family, CARD domain containing 5 | 0.0286 |
chr17 | 12832063 | ENSG00000006740 | ARHGAP44 | 17p12 | rs1317990 | intron_variant | G | T | Rho GTPase activating protein 44 | 0.0286 |
chr17 | 76867017 | ENSG00000035862 | TIMP2 | 17q25.3 | rs2277698 | synonymous_variant | C | T | TIMP metallopeptidase inhibitor 2 | 0.0286 |
chr18 | 56202768 | ENSG00000198796 | ALPK2 | 18q21.32 | rs3809983 | nonsynonymous SNV | C | A | α kinase 2 | 0.0286 |
chr18 | 56203120 | ENSG00000198796 | ALPK2 | 18q21.32 | rs3809981 | synonymous_variant | C | T | α kinase 2 | 0.0286 |
chr18 | 77724726 | ENSG00000226742 | HSBP1L1 | 18q23 | rs8095764 | 5_prime_UTR_variant | A | C | heat shock factor binding protein 1-like 1 | 0.0286 |
chr19 | 17091368 | ENSG00000160111 | CPAMD8 | 19p13.11 | rs8103646 | synonymous_variant | T | G | C3- and PZP-like, α-2-macroglobulin domain containing 8 | 0.0286 |
chr19 | 39138608 | ENSG00000130402 | ACTN4 | 19q13.2 | rs2303040 | upstream_gene_variant | T | C | actinin α 4 | 0.0286 |
chr19 | 39196745 | ENSG00000130402 | ACTN4 | 19q13.2 | rs3745859 | synonymous SNV | C | T | actinin α 4 | 0.0286 |
chr19 | 39215333 | ENSG00000130402 | ACTN4 | 19q13.2 | rs3786851 | upstream_gene_variant | C | T | actinin α 4 | 0.0286 |
chr19 | 55644442 | ENSG00000105048 | TNNT1 | 19q13.42 | rs891186 | downstream_gene_variant | G | A | troponin T1, slow skeletal type | 0.0286 |
chr20 | 1617069 | ENSG00000089012 | SIRPG | 20p13 | rs2277761 | synonymous_variant | A | G | signal regulatory protein γ | 0.0286 |
chr22 | 29834766 | ENSG00000128250 | RFPL1 | 22q12.2 | rs465736 | 5_prime_UTR_variant | A | G | RFPL1 antisense RNA 1 | 0.0286 |
chr22 | 50906518 | ENSG00000100241 | SBF1 | 22q13.33 | rs1983679 | upstream_gene_variant | G | A | SET binding factor 1 | 0.0286 |
chr22 | 50906917 | ENSG00000100241 | SBF1 | 22q13.33 | rs9616852 | upstream_gene_variant | C | A | SET binding factor 1 | 0.0286 |
chrX | 149937404 | ENSG00000102181 | CD99L2 | Xq28 | rs41311690 | 3_prime_UTR_variant | T | C | CD99 molecule-like 2 | 0.0286 |
#CHR OM | POS | Gene_ID | Gene_Name | CytoBand | Avsnp150 | Category | REF | ALT | Gene_Full_Name | p-Value |
---|---|---|---|---|---|---|---|---|---|---|
chr1 | 114515717 | ENSG00000163349 | HIPK1 | 1p13.2 | rs2358996 | synonymous_variant | G | A | homeodomain interacting protein kinase 1 | 0.0286 |
chr1 | 234573357 | ENSG00000059588 | TARBP1 | 1q42.2 | rs2273875 | intron_variant | G | C | TAR (HIV-1) RNA binding protein 1 | 0.0286 |
chr1 | 237817784 | ENSG00000198626 | RYR2 | 1q43 | rs669375 | intron_variant | A | G | ryanodine receptor 2 | 0.0286 |
chr2 | 31397696 | ENSG00000214711 | CAPN14 | 2p23.1 | rs10180369 | intron_variant | G | C | calpain 14 | 0.0286 |
chr2 | 31397727 | ENSG00000214711 | CAPN14 | 2p23.1 | rs10180369 | intron_variant | T | C | calpain 14 | 0.0286 |
chr2 | 31399659 | ENSG00000214711 | CAPN14 | 2p23.1 | rs6720151 | intron_variant | T | C | calpain 14 | 0.0286 |
chr2 | 31399751 | ENSG00000214711 | CAPN14 | 2p23.1 | rs6720254 | intron_variant | T | G | calpain 14 | 0.0286 |
chr2 | 31399988 | ENSG00000214711 | CAPN14 | 2p23.1 | rs4592896 | non-synonymous SNV | C | T | calpain 14 | 0.0286 |
chr2 | 31400039 | ENSG00000214711 | CAPN14 | 2p23.1 | rs4516476 | intron_variant | A | G | calpain 14 | 0.0286 |
chr2 | 31400502 | ENSG00000214711 | CAPN14 | 2p23.1 | rs13421721 | intron_variant | A | C | calpain 14 | 0.0286 |
chr2 | 31400510 | ENSG00000214711 | CAPN14 | 2p23.1 | rs1443707 | intron_variant | G | A | calpain 14 | 0.0286 |
chr2 | 31400722 | ENSG00000214711 | CAPN14 | 2p23.1 | rs1443706 | intron_variant | G | A | calpain 14 | 0.0286 |
chr2 | 31400867 | ENSG00000214711 | CAPN14 | 2p23.1 | rs1373216 | intron_variant | T | C | calpain 14 | 0.0286 |
chr2 | 31401499 | ENSG00000214711 | CAPN14 | 2p23.1 | rs28684727 | intron_variant | G | A | calpain 14 | 0.0286 |
chr2 | 31403947 | ENSG00000214711 | CAPN14 | 2p23.1 | rs2028678 | intron_variant | G | A | calpain 14 | 0.0286 |
chr2 | 174946760 | ENSG00000138430 | OLA1 | 2q31.1 | rs11558990 | non-synonymous SNV | T | C | Obg-like ATPase 1 | 0.0286 |
chr2 | 174988189 | ENSG00000138430 | OLA1 | 2q31.1 | rs10930639 | intron_variant | C | T | Obg-like ATPase 1 | 0.0286 |
chr2 | 175199895 | ENSG00000231453 | AC018470.4 | 2q31.1 | rs3856434 | downstream_gene_variant | G | A | Sp9 transcription factor | 0.0286 |
chr3 | 42772038 | ENSG00000244607 | CCDC13 | 3p22.1 | rs12495805 | non-synonymous SNV | A | T | coiled-coil domain containing 13 | 0.0286 |
chr3 | 124646594 | ENSG00000173702 | MUC13 | 3q21.2 | rs4679394 | non-synonymous SNV | A | G | mucin 13, cell-surface-associated | 0.0286 |
chr3 | 190967779 | ENSG00000188729 | OSTN | 3q28 | rs2034771 | intron_variant | A | G | osteocrin | 0.0286 |
chr4 | 91645179 | ENSG00000184305 | CCSER1 | 4q22.1 | rs62314447 | intron_variant | A | T | multimerin 1 | 0.0286 |
chr6 | 47253631 | ENSG00000146072 | TNFRSF21 | 6p12.3 | rs11758366 | intron_variant | A | G | tumor necrosis factor receptor superfamily member 21 | 0.0286 |
chr7 | 3861353 | ENSG00000146555 | SDK1 | 7p22.2 | rs6943646 | intron_variant | C | G | sidekick cell adhesion molecule 1 | 0.0286 |
chr7 | 72396170 | ENSG00000196313 | POM121 | 7q11.23 | rs782134793 | intron_variant | GCGCCGCG CTCCCCAC | G | POM121 transmembrane nucleoporin | 0.0286 |
chr7 | 140036999 | ENSG00000157800 | SLC37A3 | 7q34 | rs4332050 | intron_variant | G | A | solute carrier family 37 member 3 | 0.0286 |
chr7 | 140044979 | ENSG00000157800 | SLC37A3 | 7q34 | rs6974016 | upstream_gene_variant | C | T | solute carrier family 37 member 3 | 0.0286 |
chr9 | 100889340 | ENSG00000106789 | CORO2A | 9q22.33 | rs942165 | intron_variant | G | T | coronin 2A | 0.0286 |
chr10 | 51549314 | ENSG00000138294 | MSMB | 10q11.23 | rs12770171 | upstream_gene_variant | C | T | translocase of inner mitochondrial membrane 23 homolog B | 0.0286 |
chr10 | 129179426 | ENSG00000150760 | DOCK1 | 10q26.2 | rs7099958 | intron_variant | T | C | dedicator of cytokinesis 1 | 0.0286 |
chr11 | 3078536 | ENSG00000110619 | CARS | 11p15.4 | rs4758463 | intron_variant | C | G | cysteinyl-tRNA synthetase | 0.0286 |
chr12 | 122079189 | ENSG00000182500 | ORAI1 | 12q24.31 | rs3741595 | synonymous_variant | C | T | ORAI calcium release-activated calcium modulator 1 | 0.0286 |
chr12 | 131623850 | ENSG00000111452 | ADGRD1 | 12q24.33 | rs35160436 | non-synonymous SNV | A | AC | adhesion G protein-coupled receptor D1 | 0.0286 |
chr13 | 113793849 | ENSG00000126218 | F10 | 13q34 | rs3211770 | upstream_gene_variant | G | A | coagulation factor X | 0.0286 |
chr14 | 35228090 | ENSG00000198604 | BAZ1A | 14q13.1 | rs61981202 | intron_variant | G | A | bromodomain adjacent to zinc finger domain 1A | 0.0286 |
chr14 | 35237874 | ENSG00000198604 | BAZ1A | 14q13.1 | rs61981228 | downstream_gene_variant | C | A | bromodomain adjacent to zinc finger domain 1A | 0.0286 |
chr14 | 35483882 | ENSG00000100883 | SRP54 | 14q13.2 | rs13379372 | sequence_feature | A | C | signal recognition particle 54kDa | 0.0286 |
chr14 | 35492299 | ENSG00000100883 | SRP54 | 14q13.2 | rs4982254 | upstream_gene_variant | AG | A | signal recognition particle 54kDa | 0.0286 |
chr14 | 35492301 | ENSG00000100883 | SRP54 | 14q13.2 | rs80306194 | upstream_gene_variant | CTTGTTATT AGTTAACAG | C | signal recognition particle 54kDa | 0.0286 |
chr14 | 35497285 | ENSG00000100883 | SRP54 | 14q13.2 | rs78609489 | intron_variant | T | C | signal recognition particle 54kDa | 0.0286 |
chr16 | 2906934 | ENSG00000263325 | LA16c-325D7.1 | 16p13.3 | rs732532 | upstream_gene_variant | G | A | protease, serine 22 | 0.0286 |
chr16 | 3021417 | ENSG00000127564 | PKMYT1 | 16p13.3 | rs79505645 | upstream_gene_variant | G | T | progestin and adipoQ receptor family member IV | 0.0286 |
chr16 | 15126890 | ENSG00000179889 | PDXDC1 | 16p13.11 | rs12926897 | upstream_gene_variant | C | T | pyridoxal-dependent decarboxylase domain containing 1 | 0.0286 |
chr16 | 15850204 | ENSG00000133392 | MYH11 | 16p13.11 | rs2272554 | synonymous_variant | A | G | myosin, heavy chain 11, smooth muscle | 0.0286 |
chr16 | 15853596 | ENSG00000133392 | MYH11 | 16p13.11 | rs2280764 | intron_variant | C | G | myosin, heavy chain 11, smooth muscle | 0.0286 |
chr16 | 16138322 | ENSG00000103222 | ABCC1 | 16p13.11 | rs246221 | synonymous_variant | T | C | ATP binding cassette subfamily C member 1 | 0.0286 |
chr16 | 16139714 | ENSG00000103222 | ABCC1 | 16p13.11 | rs35587 | synonymous_variant | T | C | ATP binding cassette subfamily C member 1 | 0.0286 |
chr16 | 16139878 | ENSG00000103222 | ABCC1 | 16p13.11 | rs35588 | splice_region_variant and intron_variant | A | G | ATP binding cassette subfamily C member 1 | 0.0286 |
chr17 | 57951973 | ENSG00000108423 | TUBD1 | 17q23.1 | rs2250526 | synonymous_variant | G | A | tubulin delta 1 | 0.0286 |
chr17 | 57992145 | ENSG00000241913 | RP5-1073F15.1 | 17q23.1 | rs3066247 | downstream_gene_variant | TATC | T | ribosomal protein S6 kinase B1 | 0.0286 |
chr17 | 58037374 | ENSG00000189050 | RNFT1 | 17q23.1 | rs12600680 | upstream_gene_variant | T | C | ring finger protein, transmembrane 1 | 0.0286 |
chr17 | 58042126 | ENSG00000189050 | RNFT1 | 17q23.1 | rs76419616 | upstream_gene_variant | T | C | TBC1D3P1-DHX40P1 readthrough, transcribed pseudogene | 0.0286 |
chr19 | 33882222 | ENSG00000124299 | PEPD | 19q13.11 | rs17569 | synonymous_variant | G | A | peptidase D | 0.0286 |
chr22 | 23487533 | ENSG00000100228 | RAB36 | 22q11.22 | rs1476441 | 5_prime_UTR_variant | C | T | RAB36, member RAS oncogene family | 0.0286 |
GeneSets | NES | NOM p-val | FDR q-val |
---|---|---|---|
Reactome WNT Ligand Biogenesis and Trafficking | 1.41 | 0.110 | 0.398 |
PID WNT Signaling Pathway | 1.40 | 0.104 | 0.221 |
WNT Up.V1 Up | 1.15 | 0.249 | 0.356 |
WNT Up.V1 DN | 0.90 | 0.566 | 0.582 |
Reactome Beta Catenin Independent WNT Signaling | −3.18 | 0.000 | 0.000 |
Reactome Signaling By WNT | −3.07 | 0.000 | 0.000 |
WP WNT Signaling Pathway | −2.07 | 0.004 | 0.014 |
Hallmark WNT Beta Catenin Signaling | −2.06 | 0.004 | 0.012 |
PID WNT Canonical Pathway | −1.97 | 0.010 | 0.014 |
Biocarta WNT Pathway | −1.74 | 0.023 | 0.043 |
PID WNT Noncanonical Pathway | −1.70 | 0.025 | 0.045 |
KEGG WNT Signaling Pathway | −1.54 | 0.050 | 0.081 |
WP WNT Signaling | −1.26 | 0.185 | 0.235 |
WNT Signaling | −1.21 | 0.241 | 0.257 |
Reactome Signaling by WNT In Cancer | −1.20 | 0.242 | 0.241 |
GOCC Catenin Complex | 1.82 | 0.012 | 0.066 |
GOMF WNT Protein Binding | 0.90 | 0.586 | 0.736 |
GOBP Cell Cell Signaling By WNT | −2.61 | 0.000 | 0.000 |
GOBP Regulation of WNT Signaling Pathway | −2.24 | 0.000 | 0.003 |
HP Downturned Corners of Mouth | −2.17 | 0.000 | 0.005 |
GOBP Positive Regulation of WNT Signaling Pathway | −2.06 | 0.000 | 0.009 |
GOBP Canonical WNT Signaling Pathway | −2.05 | 0.000 | 0.010 |
GOBP Negative Regulation of Canonical WNT Signaling Pathway | −1.94 | 0.008 | 0.017 |
GOBP Negative Regulation of WNT Signaling Pathway | −1.80 | 0.011 | 0.032 |
GOBP Positive Regulation of Canonical WNT Signaling Pathway | −1.77 | 0.021 | 0.036 |
GOMF Beta Catenin Binding | −1.55 | 0.057 | 0.090 |
GOBP Non-canonical WNT Signaling Pathway | −1.51 | 0.063 | 0.105 |
GOBP Regulation of Non-canonical WNT Signaling Pathway | −1.25 | 0.195 | 0.253 |
GOMF WNT Receptor Activity | −1.17 | 0.237 | 0.315 |
GOBP Regulation of WNT Signaling Pathway Planner Cell Polarity Pathway | 0.96 | 0.487 | 0.544 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, J.; Wu, B.J.; Daoud, S.S. Whole-Exome Sequencing (WES) Reveals Novel Sex-Specific Gene Variants in Non-Alcoholic Steatohepatitis (MASH). Genes 2024, 15, 357. https://doi.org/10.3390/genes15030357
Wei J, Wu BJ, Daoud SS. Whole-Exome Sequencing (WES) Reveals Novel Sex-Specific Gene Variants in Non-Alcoholic Steatohepatitis (MASH). Genes. 2024; 15(3):357. https://doi.org/10.3390/genes15030357
Chicago/Turabian StyleWei, Jing, Boyang Jason Wu, and Sayed S. Daoud. 2024. "Whole-Exome Sequencing (WES) Reveals Novel Sex-Specific Gene Variants in Non-Alcoholic Steatohepatitis (MASH)" Genes 15, no. 3: 357. https://doi.org/10.3390/genes15030357
APA StyleWei, J., Wu, B. J., & Daoud, S. S. (2024). Whole-Exome Sequencing (WES) Reveals Novel Sex-Specific Gene Variants in Non-Alcoholic Steatohepatitis (MASH). Genes, 15(3), 357. https://doi.org/10.3390/genes15030357