Genome-Wide Association Analysis of Semen Characteristics in Piétrain Boars
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethics Statement
2.2. Animals and Phenotypes
2.3. Genotypes and Genome-Wide Association Study
2.4. Detection of Candidate Genes
3. Results
3.1. Phenotypic Data of Sperm Quality Traits
Trait | Mean ± SEM | Min | Max | |
---|---|---|---|---|
4th Ejaculate | 5th Ejaculate | |||
Fresh ejaculates: | ||||
Ejaculate volume (mL) | 202.5 ± 6.1 | 214.4 ± 6.6 | 17.0 | 408.0 |
Total sperm number | 57.8 ± 1.7 | 59.4 ± 1.6 | 10.0 | 120.0 |
Sperm concentration (billion/mL) | 0.306 ± 0.010 | 0.302 ± 0.011 | 0.055 | 0.874 |
Liquid-preserved AI doses: | ||||
Motile sperm after storage at 17 °C (%) | 83.9 ± 0.7 | 83.8 ± 0.6 | 15.5 | 97.8 |
Motile sperm after storage at 6 °C (%) | 48.8 ± 1.4 | 52.1 ± 1.5 | 18.8 | 91.9 |
HRT 1: Motile sperm after 30 min 38 °C (%) | 61.8 ± 2.2 | 63.7 ± 2.0 | 9.8 | 91.9 |
HRT: Motile sperm after 300 min 38 °C (%) | 50.5 ± 2.1 | 53.0 ± 2.0 | 8.2 | 84.9 |
Morphologically normal sperm (%) | 78.5 ± 1.4 | 77.3 ± 1.4 | 15.5 | 99.0 |
Droplet rate (%) | 5.3 ± 0.6 | 6.1 ± 0.7 | 0.0 | 52.0 |
Sperm with intact plasma membrane and active mitochondria (%) | 75.7 ± 0.7 | 75.2 ± 0.6 | 45.7 | 88.2 |
Sperm with intact plasma membrane and intact acrosome (%) | 78.1 ± 0.6 | 77.1 ± 0.6 | 53.0 | 89.7 |
Trait | SNP ID | Chr | Position (bp) | p-Value | Candidate Genes within 1 MB Window 1 |
---|---|---|---|---|---|
Ejaculate volume | M1GA0007246 | 5 | 5216025 | 1.51 × 106 | MCAT, MPPED1, PARVB, PARVG, PNPLA3, SAMM50, SCUBE1, SHISAL1, SULT4A1, TSPO, TTLL12 |
ALGA0029934 | 5 | 5265052 | 1.14 × 105 | ||
M1GA0007255 | 5 | 5290427 | 1.51 × 106 | ||
ALGA0069136 | 13 | 26306761 | 4.43 × 105 | ACKR2, ANO10, CCDC13, CCK, CYP8B1, HHATL, HIGD1A, KLHL40, LYZL4, NKTR, POMGNT2, SEC22C, SNRK, SS18L2, TRAK1, VIPR1, ZBTB47, ZNF662 | |
Total sperm number | MARC0060820 | 1 | 231232620 | 2.34 × 105 | CEP78,GNAQ,PSAT1 |
ALGA0008429 | 1 | 232226731 | 5.58 × 105 | TLE4 | |
ASGA0085355 | 3 | 679027 | 3.89 × 105 | ADAP1, C7orf50, COX19, CYP2W1,DNAAF5, FAM20C, FOXL3, GPER1, INTS1, MAFK, MICALL2, PDGFA, PRKAR1B, PSMG3, SUN1, TMEM184A, UNCX, ZFAND2A | |
ASGA0019946 | 4 | 64977285 | 5.69 × 105 | LACTB2, NCOA2, PRDM14, SLCO5A1, TRAM1, XKR9 | |
ALGA0025512 | 4 | 65014643 | 5.69 × 105 | ||
ALGA0049733 | 8 | 127722766 | 5.25 × 105 | CCSER1 | |
Motile sperm after storage (17 °C) | ALGA0028043 | 4 | 109593443 | 3.18 × 105 | AHCYL1, ALX3, CD53, CEPT1, CHI3L2, DENND2D, DRAM2,KCNA2, KCNA3, KCNA10, KCNC4, LAMTOR5, LRIF1, PROK1, RBM15, SLC6A17, SLC16A4, STRIP1 |
ASGA0056281 | 13 | 14128868 | 5.67 × 105 | EOMES,NEK10, SLC4A7 | |
Motile sperm after storage (6 °C) | MARC0001735 | 7 | 82578325 | 4.68 × 105 | ARRDC4, NR2F2 |
ALGA0042987 | 7 | 82605595 | 4.68 × 105 | ||
ASGA0034705 | 7 | 82693734 | 4.68 × 105 | ||
ASGA0034709 | 7 | 82746264 | 4.68 × 105 | ||
Motile sperm after HRT (38 °C) | MARC0024708 | 7 | 20074761 | 4.69 × 105 | ARMH2, CARMIL1, CMAH, GMNN, H2AC1, H2BC1, RIPOR2, SCGN, SLC17A1, SLC17A3, SLC17A4 |
ALGA0039273 | 7 | 20105440 | 4.69 × 105 | ||
ASGA0091949 | 11 | 19893118 | 5.41 × 105 | MED4, NUDT15, SUCLA2 | |
Sperm with active mitochondria | MARC0086821 | 10 | 40750429 | 3.86 × 105 | JCAD, MAP3K8, MTPAP, SVIL |
MARC0102352 | 10 | 41003878 | 3.13 × 105 | ||
Sperm with intact acrosome | MARC0086821 | 10 | 40750429 | 1.20 × 105 | JCAD, MAP3K8, MTPAP, SVIL |
MARC0102352 | 10 | 41003878 | 7.53 × 107 |
3.2. Genomic Regions and Candidate Genes Associated with Sperm Quality Traits
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Stratz, P.; Wellmann, R.; Preuss, S.; Wimmers, K.; Bennewitz, J. Genome-wide association analysis for growth, muscularity and meat quality in Piétrain pigs. Anim. Genet. 2014, 45, 350–356. [Google Scholar] [CrossRef] [PubMed]
- Robinson, J.A.; Buhr, M.M. Impact of genetic selection on management of boar replacement. Theriogenology 2005, 63, 668–678. [Google Scholar] [CrossRef] [PubMed]
- Pelikh, V.; Ushakova, S.; Pelikh, N. Index evaluation of pigs and determination of selection limits. Agric. Sci. Pract. 2019, 6, 67–74. [Google Scholar] [CrossRef]
- Gadea, J. Sperm factors related to in vitro and in vivo porcine fertility. Theriogenology 2005, 63, 431–444. [Google Scholar] [CrossRef]
- Tsakmakidis, I.A.; Lymberopoulos, A.G.; Khalifa, T.A. Relationship between sperm quality traits and field-fertility of porcine semen. J. Vet. Sci. 2010, 11, 151–154. [Google Scholar] [CrossRef]
- Schulze, M.; Jakop, U.; Jung, M.; Cabezón, F. Influences on thermo-resistance of boar spermatozoa. Theriogenology 2019, 127, 15–20. [Google Scholar] [CrossRef] [PubMed]
- Calamera, J.C.; Doncel, G.F.; Olmedo, S.B.; Kolm, P.; Acosta, A.A. Modified sperm stress test: A simple assay that predicts sperm-related abnormal in-vitro fertilization. Hum. Reprod. 1998, 13, 2484–2488. [Google Scholar] [CrossRef]
- Schulze, M.; Buder, S.; Rüdiger, K.; Beyerbach, M.; Waberski, D. Influences on semen traits used for selection of young AI boars. Anim. Reprod. Sci. 2014, 148, 164–170. [Google Scholar] [CrossRef]
- Gebreyesus, G.; Lund, M.S.; Kupisiewicz, K.; Su, G. Genetic parameters of semen quality traits and genetic correlations with service sire nonreturn rate in Nordic Holstein bulls. J. Dairy Sci. 2021, 104, 10010–10019. [Google Scholar] [CrossRef]
- Marques, D.; Lopes, M.S.; Broekhuijse, M.; Guimarães, S.; Knol, E.; Bastiaansen, J.; Silva, F.; Lopes, P.S. Genetic parameters for semen quality and quantity traits in five pig lines. J. Anim. Sci. 2017, 95, 4251–4259. [Google Scholar] [CrossRef]
- Zhang, X.; Lin, Q.; Liao, W.; Zhang, W.; Li, T.; Li, J.; Zhang, Z.; Huang, X.; Zhang, H. Identification of new candidate genes related to semen traits in Duroc pigs through weighted single-step GWAS. Animals 2023, 13, 365. [Google Scholar] [CrossRef]
- Mei, Q.; Fu, C.; Sahana, G.; Chen, Y.; Yin, L.; Miao, Y.; Zhao, S.; Xiang, T. Identification of new semen trait-related candidate genes in Duroc boars through genome-wide association and weighted gene co-expression network analyses. J. Anim. Sci. 2021, 99, skab188. [Google Scholar] [CrossRef]
- Zhao, Y.; Gao, N.; Li, X.; El-Ashram, S.; Wang, Z.; Zhu, L.; Jiang, W.; Peng, X.; Zhang, C.; Chen, Y.; et al. Identifying candidate genes associated with sperm morphology abnormalities using weighted single-step GWAS in a Duroc boar population. Theriogenology 2020, 141, 9–15. [Google Scholar] [CrossRef]
- Gao, N.; Chen, Y.; Liu, X.; Zhao, Y.; Zhu, L.; Liu, A.; Jiang, W.; Peng, X.; Zhang, C.; Tang, Z.; et al. Weighted single-step GWAS identified candidate genes associated with semen traits in a Duroc boar population. BMC Genom. 2019, 20, 797. [Google Scholar] [CrossRef]
- Marques, D.B.D.; Bastiaansen, J.W.M.; Broekhuijse, M.L.W.J.; Lopes, M.S.; Knol, E.F.; Harlizius, B.; Guimarães, S.E.F.; Silva, F.F.; Lopes, P.S. Weighted single-step GWAS and gene network analysis reveal new candidate genes for semen traits in pigs. Genet. Sel. Evol. 2018, 50, 40. [Google Scholar] [CrossRef]
- Schulze, M.; Ruediger, K.; Mueller, K.; Jung, M.; Well, C.; Reissmann, M. Development of an in vitro index to characterize fertilizing capacity of boar ejaculates. Anim. Reprod. Sci. 2013, 140, 70–76. [Google Scholar] [CrossRef]
- Schulze, M.; Mohammadpour, F.; Schröter, F.; Jakop, U.; Hönicke, H.; Hasenfuss, T.; Henne, H.; Schön, J.; Müller, K. Suitability of semen stress tests for predicting fertilizing capacity of boar ejaculates. Theriogenology 2021, 176, 73–81. [Google Scholar] [CrossRef]
- Rönnegård, L.; McFarlane, S.E.; Husby, A.; Kawakami, T.; Ellegren, H.; Qvarnström, A. Increasing the power of genome wide association studies in natural populations using repeated measures—Evaluation and implementation. Methods Ecol. Evol. 2016, 7, 792–799. [Google Scholar] [CrossRef]
- VanRaden, P.M. Efficient methods to compute genomic predictions. J. Dairy Sci. 2008, 91, 4414–4423. [Google Scholar] [CrossRef]
- Gao, X.; Starmer, J.; Martin, E.R. A multiple testing correction method for genetic association studies using correlated single nucleotide polymorphisms. Genet. Epidemiol. 2008, 32, 361–369. [Google Scholar] [CrossRef]
- Lander, E.; Kruglyak, L. Genetic dissection of complex traits: Guidelines for interpreting and reporting linkage results. Nat. Genet. 1995, 11, 241–247. [Google Scholar] [CrossRef]
- Stelzer, G.; Rosen, N.; Plaschkes, I.; Zimmerman, S.; Twik, M.; Fishilevich, S.; Stein, T.I.; Nudel, R.; Lieder, I.; Mazor, Y.; et al. The GeneCards Suite: From gene data mining to disease genome sequence analyses. Curr. Protoc. Bioinform. 2016, 54, 1.30.1–1.30.33. [Google Scholar] [CrossRef]
- Manku, G.; Wang, Y.; Thuillier, R.; Rhodes, C.; Culty, M. Developmental expression of the translocator protein 18 kDa (TSPO) in testicular germ cells. Curr. Mol. Med. 2012, 12, 467–475. [Google Scholar] [CrossRef]
- Akingbemi, B.T.; Braden, T.D.; Kemppainen, B.W.; Hancock, K.D.; Sherrill, J.D.; Cook, S.J.; He, X.; Supko, J.G. Exposure to phytoestrogens in the perinatal period affects androgen secretion by testicular Leydig cells in the adult rat. Endocrinology 2007, 148, 4475–4488. [Google Scholar] [CrossRef]
- Khayatzadeh, N.; Mészáros, G.; Utsunomiya, Y.T.; Schmitz-Hsu, F.; Seefried, F.; Schnyder, U.; Ferenčaković, M.; Garcia, J.F.; Curik, I.; Sölkner, J. Genome-wide mapping of the dominance effects based on breed ancestry for semen traits in admixed Swiss Fleckvieh bulls. J. Dairy Sci. 2019, 102, 11217–11224. [Google Scholar] [CrossRef]
- Niki, T.; Takahashi-Niki, K.; Taira, T.; Iguchi-Ariga, S.M.; Ariga, H. DJBP: A novel DJ-1-binding protein, negatively regulates the androgen receptor by recruiting histone deacetylase complex, and DJ-1 antagonizes this inhibition by abrogation of this complex. Mol. Cancer Res. 2003, 1, 247–261. [Google Scholar]
- Jaleel, M.; McBride, A.; Lizcano, J.M.; Deak, M.; Toth, R.; Morrice, N.A.; Alessi, D.R. Identification of the sucrose non-fermenting related kinase SNRK, as a novel LKB1 substrate. FEBS Lett. 2005, 579, 1417–1423. [Google Scholar] [CrossRef]
- Denison, F.C.; Smith, L.B.; Muckett, P.J.; O’Hara, L.; Carling, D.; Woods, A. LKB1 is an essential regulator of spermatozoa release during spermiation in the mammalian testis. PLoS ONE 2011, 6, e28306. [Google Scholar] [CrossRef]
- Nowicka-Bauer, K.; Szymczak-Cendlak, M. Structure and function of ion channels regulating sperm motility-an overview. Int. J. Mol. Sci. 2021, 22, 3259. [Google Scholar] [CrossRef]
- Zhu, M.; Zhang, H.; Yang, H.; Zhao, Z.; Blair, H.T.; Zhai, M.; Yu, Q.; Wu, P.; Fang, C.; Xie, M. Polymorphisms and association of GRM1, GNAQ and HCRTR1 genes with seasonal reproduction and litter size in three sheep breeds. Reprod. Domest. Anim. 2022, 57, 532–540. [Google Scholar] [CrossRef]
- Li, Z.; Lu, J.; Sun, X.; Pang, Q.; Zhao, Y. Molecular cloning, mRNA expression, and localization of the G-protein subunit Galphaq in sheep testis and epididymis. Asian-Australas J. Anim. Sci. 2016, 29, 1702–1709. [Google Scholar] [CrossRef]
- Brunk, K.; Zhu, M.; Bärenz, F.; Kratz, A.S.; Haselmann-Weiss, U.; Antony, C.; Hoffmann, I. Cep78 is a new centriolar protein involved in Plk4-induced centriole overduplication. J. Cell Sci. 2016, 129, 2713–2718. [Google Scholar] [CrossRef]
- Azimzadeh, J.; Wong, M.L.; Downhour, D.M.; Sánchez Alvarado, A.; Marshall, W.F. Centrosome loss in the evolution of planarians. Science 2012, 335, 461–463. [Google Scholar] [CrossRef]
- Ascari, G.; Peelman, F.; Farinelli, P.; Rosseel, T.; Lambrechts, N.; Wunderlich, K.A.; Wagner, M.; Nikopoulos, K.; Martens, P.; Balikova, I.; et al. Functional characterization of the first missense variant in CEP78, a founder allele associated with cone-rod dystrophy, hearing loss, and reduced male fertility. Hum. Mutat. 2020, 41, 998–1011. [Google Scholar] [CrossRef]
- Zhang, X.; Zheng, R.; Liang, C.; Liu, H.; Zhang, X.; Ma, Y.; Liu, M.; Zhang, W.; Yang, Y.; Liu, M.; et al. Loss-of-function mutations in CEP78 cause male infertility in humans and mice. Sci. Adv. 2022, 8, eabn0968. [Google Scholar] [CrossRef]
- Cerván-Martín, M.; Bossini-Castillo, L.; Rivera-Egea, R.; Garrido, N.; Luján, S.; Romeu, G.; Santos-Ribeiro, S.; Ivirma, G.; Lisbon Clinical, G.; Castilla, J.A.; et al. Evaluation of male fertility-associated loci in a European population of patients with severe spermatogenic impairment. J. Pers. Med. 2020, 11, 22. [Google Scholar] [CrossRef]
- Liu, Y.; Bourgeois, C.F.; Pang, S.; Kudla, M.; Dreumont, N.; Kister, L.; Sun, Y.-H.; Stevenin, J.; Elliott, D.J. The germ cell nuclear proteins hnRNP G-T and RBMY activate a testis-specific exon. PLoS Genet. 2009, 5, e1000707. [Google Scholar] [CrossRef]
- Ramirez-Diaz, J.; Cenadelli, S.; Bornaghi, V.; Bongioni, G.; Montedoro, S.M.; Achilli, A.; Capelli, C.; Rincon, J.C.; Milanesi, M.; Passamonti, M.M.; et al. Identification of genomic regions associated with total and progressive sperm motility in Italian Holstein bulls. J. Dairy Sci. 2023, 106, 407–420. [Google Scholar] [CrossRef]
- Øyen, O.; Myklebust, F.; Scotf, J.D.; Cadd, G.G.; Stanley Mcknight, G.; Hansson, V.; Jahnsen, T. Subunits of cyclic adenosine 3′,5′-monophosphate-dependent protein kinase show differential and distinct expression patterns during germ cell differentiation: Alternative polyadenylation in germ cells gives rise to unique smaller-sized mRNA species. Biol. Reprod. 1990, 43, 46–54. [Google Scholar] [CrossRef]
- Barut, O.; Seyithanoglu, M.; Kucukdurmaz, F.; Demir, B.T.; Olmez, C.; Dogan, N.T.; Resim, S. Relationship between the G protein–coupled oestrogen receptor and spermatogenesis, and its correlation with male infertility. Andrologia 2020, 52, e13779. [Google Scholar] [CrossRef]
- Rago, V.; Giordano, F.; Brunelli, E.; Zito, D.; Aquila, S.; Carpino, A. Identification of G protein-coupled estrogen receptor in human and pig spermatozoa. J. Anat. 2014, 224, 732–736. [Google Scholar] [CrossRef]
- Lefebvre, R.; Larroque, H.; Barbey, S.; Gallard, Y.; Colleau, J.J.; Lainé, A.L.; Boichard, D.; Martin, P. Genome-wide association study for age at puberty and resumption of cyclicity in a crossbred dairy cattle population. J. Dairy Sci. 2021, 104, 5794–5804. [Google Scholar] [CrossRef]
- de Camargo, G.M.; Costa, R.B.; de Albuquerque, L.G.; Regitano, L.C.; Baldi, F.; Tonhati, H. Polymorphisms in TOX and NCOA2 genes and their associations with reproductive traits in cattle. Reprod. Fertil. Dev. 2015, 27, 523–528. [Google Scholar] [CrossRef]
- Konno, T.; Graham, A.R.; Rempel, L.A.; Ho-Chen, J.K.; Alam, S.M.; Bu, P.; Rumi, M.A.; Soares, M.J. Subfertility linked to combined luteal insufficiency and uterine progesterone resistance. Endocrinology 2010, 151, 4537–4550. [Google Scholar] [CrossRef]
- Yurchenko, A.A.; Deniskova, T.E.; Yudin, N.S.; Dotsev, A.V.; Khamiruev, T.N.; Selionova, M.I.; Egorov, S.V.; Reyer, H.; Wimmers, K.; Brem, G.; et al. High-density genotyping reveals signatures of selection related to acclimation and economically important traits in 15 local sheep breeds from Russia. BMC Genom. 2019, 20, 294. [Google Scholar] [CrossRef]
- Serrano, M.; Ramón, M.; Calvo, J.H.; Jiménez, M.; Freire, F.; Vázquez, J.M.; Arranz, J.J. Genome-wide association studies for sperm traits in Assaf sheep breed. Animal 2021, 15, 100065. [Google Scholar] [CrossRef]
- Borowska, A.; Szwaczkowski, T.; Kamiński, S.; Hering, D.M.; Kordan, W.; Lecewicz, M. Identification of genome regions determining semen quality in Holstein-Friesian bulls using information theory. Anim. Reprod. Sci. 2018, 192, 206–215. [Google Scholar] [CrossRef]
- Gao, T.; Li, K.; Liang, F.; Yu, J.; Liu, A.; Ni, Y.; Sun, P. KCNQ1 potassium channel expressed in human sperm is involved in sperm motility, acrosome reaction, protein tyrosine phosphorylation, and ion homeostasis during capacitation. Front. Physiol. 2021, 12, 761910. [Google Scholar] [CrossRef]
- Al Mutairi, F.; Alkhalaf, R.; Alkhorayyef, A.; Alroqi, F.; Yusra, A.; Umair, M.; Nouf, F.; Khan, A.; Meshael, A.; Hamad, A.; et al. Homozygous truncating NEK10 mutation, associated with primary ciliary dyskinesia: A case report. BMC Pulm. Med. 2020, 20, 141. [Google Scholar] [CrossRef]
- Foot, N.J.; Gonzalez, M.B.; Gembus, K.; Fonseka, P.; Sandow, J.J.; Nguyen, T.T.; Tran, D.; Webb, A.I.; Mathivanan, S.; Robker, R.L.; et al. Arrdc4-dependent extracellular vesicle biogenesis is required for sperm maturation. J. Extracell. Vesicles 2021, 10, e12113. [Google Scholar] [CrossRef]
- Mendoza-Villarroel, R.E.; Robert, N.M.; Martin, L.J.; Brousseau, C.; Tremblay, J.J. The nuclear receptor NR2F2 activates star expression and steroidogenesis in mouse MA-10 and MLTC-1 Leydig cells1. Biol. Reprod. 2014, 91, 1–12. [Google Scholar] [CrossRef]
- Qin, J.; Tsai, M.-J.; Tsai, S.Y. Essential roles of COUP-TFII in Leydig cell differentiation and male fertility. PLoS ONE 2008, 3, e3285. [Google Scholar] [CrossRef]
- Kwon, W.-S.; Rahman, M.S.; Lee, J.-S.; Kim, J.; Yoon, S.-J.; Park, Y.-J.; You, Y.-A.; Hwang, S.; Pang, M.-G. A comprehensive proteomic approach to identifying capacitation related proteins in boar spermatozoa. BMC Genom. 2014, 15, 897. [Google Scholar] [CrossRef]
- Peris-Frau, P.; Martín-Maestro, A.; Iniesta-Cuerda, M.; Sánchez-Ajofrín, I.; Mateos-Hernández, L.; Garde, J.J.; Villar, M.; Soler, A.J. Freezing-thawing procedures remodel the proteome of ram sperm before and after in vitro capacitation. Int. J. Mol. Sci. 2019, 20, 4596. [Google Scholar] [CrossRef]
- Ma, X.; Pan, Q.; Feng, Y.; Choudhury, B.P.; Ma, Q.; Gagneux, P.; Ma, F. Sialylation facilitates the maturation of mammalian sperm and affects its survival in female uterus. Biol. Reprod. 2016, 94, 123. [Google Scholar] [CrossRef]
- Zhang, G.; Yang, W.; Zou, P.; Jiang, F.; Zeng, Y.; Chen, Q.; Sun, L.; Yang, H.; Zhou, N.; Wang, X. Mitochondrial functionality modifies human sperm acrosin activity, acrosome reaction capability and chromatin integrity. Hum. Reprod. 2019, 34, 3–11. [Google Scholar] [CrossRef]
- Gòdia, M.; Estill, M.; Castelló, A.; Balasch, S.; Rodríguez-Gil, J.E.; Krawetz, S.A.; Sánchez, A.; Clop, A. A RNA-seq analysis to describe the boar sperm transcriptome and its seasonal changes. Front. Genet. 2019, 10, 299. [Google Scholar] [CrossRef]
- Wimmers, K.; Lin, C.L.; Tholen, E.; Jennen, D.G.J.; Schellander, K.; Ponsuksili, S. Polymorphisms in candidate genes as markers for sperm quality and boar fertility. Anim. Genet. 2005, 36, 152–155. [Google Scholar] [CrossRef]
- Lin, C.L.; Ponsuksili, S.; Tholen, E.; Jennen, D.G.J.; Schellander, K.; Wimmers, K. Candidate gene markers for sperm quality and fertility of boar. Anim. Reprod. Sci. 2006, 92, 349–363. [Google Scholar] [CrossRef]
- Gòdia, M.; Reverter, A.; González-Prendes, R.; Ramayo-Caldas, Y.; Castelló, A.; Rodríguez-Gil, J.-E.; Sánchez, A.; Clop, A. A systems biology framework integrating GWAS and RNA-seq to shed light on the molecular basis of sperm quality in swine. Genet. Sel. Evol. 2020, 52, 72. [Google Scholar] [CrossRef]
Trait | Observation Time Point |
---|---|
Fresh ejaculates: | |
Ejaculate volume (mL) | Directly after semen collection |
Total sperm number (bn) | Directly after semen collection |
Sperm concentration (bn/mL) | Directly after semen collection |
Liquid-preserved AI doses: | |
Motile sperm after storage at 17 °C (%) | Storage days 1, 2, 3 |
Motile sperm after storage at 6 °C (%) | Storage day 3 |
Motile sperm after HRT 1 (%) | Storage day 3 (17 °C); 30 and 300 min at 38 °C |
Morphologically normal sperm (%) | Storage day 2 (17 °C) |
Droplet rate (%) | Storage day 2 (17 °C) |
Viable sperm with active mitochondria (%) | Storage day 2 (17 °C) |
Viable sperm with intact acrosome (%) | Storage day 2 (17 °C) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reyer, H.; Abou-Soliman, I.; Schulze, M.; Henne, H.; Reinsch, N.; Schoen, J.; Wimmers, K. Genome-Wide Association Analysis of Semen Characteristics in Piétrain Boars. Genes 2024, 15, 382. https://doi.org/10.3390/genes15030382
Reyer H, Abou-Soliman I, Schulze M, Henne H, Reinsch N, Schoen J, Wimmers K. Genome-Wide Association Analysis of Semen Characteristics in Piétrain Boars. Genes. 2024; 15(3):382. https://doi.org/10.3390/genes15030382
Chicago/Turabian StyleReyer, Henry, Ibrahim Abou-Soliman, Martin Schulze, Hubert Henne, Norbert Reinsch, Jennifer Schoen, and Klaus Wimmers. 2024. "Genome-Wide Association Analysis of Semen Characteristics in Piétrain Boars" Genes 15, no. 3: 382. https://doi.org/10.3390/genes15030382
APA StyleReyer, H., Abou-Soliman, I., Schulze, M., Henne, H., Reinsch, N., Schoen, J., & Wimmers, K. (2024). Genome-Wide Association Analysis of Semen Characteristics in Piétrain Boars. Genes, 15(3), 382. https://doi.org/10.3390/genes15030382