Fitting of Growth Curves and Estimation of Genetic Relationship between Growth Parameters of Qianhua Mutton Merino
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Growth Curve
3.2. Genetic Relationship between the Parameters
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Lupi, T.; Nogales, S.; León, J.; Barba, C.; Delgado, J. Characterization of commercial and biological growth curves in the Segureña sheep breed. Animal 2015, 9, 1341–1348. [Google Scholar] [CrossRef]
- López, S.; France, J.; Gerrits, W.J.J.; Dhanoa, M.S.; Humphries, D.J.; Dijkstra, J. A generalized Michaelis-Menten equation for the analysis of growth. J. Anim. Sci. 2000, 78, 1816–1828. [Google Scholar] [CrossRef]
- Hadjipavlou, G.; Bishop, S.C. Age-dependent quantitative trait loci affecting growth traits in Scottish Blackface sheep. Anim. Genet. 2009, 40, 165–175. [Google Scholar] [CrossRef]
- Kachman, S.; Gianola, D. A Bayesian estimator of variance and covariance components in nonlinear growth models. J. Anim. Sci. 1984, 59, 176. [Google Scholar]
- Lambe, N.R.; Navajas, E.A.; Simm, G.; Bünger, L. A genetic investigation of various growth models to describe growth of lambs of two contrasting breeds. J. Anim. Sci. 2006, 84, 2642–2654. [Google Scholar] [CrossRef]
- Bathaei, S.; Leroy, P.L. Genetic and phenotypic aspects of the growth curve characteristics in Mehraban Iranian fat-tailed sheep. Small Rumin. Res. 1998, 29, 261–269. [Google Scholar] [CrossRef]
- Akbaş, Y.; Alçiçek, A.; Önenç, A.; Güngör, M. Growth curve analysis for body weight and dry matter intake in Friesian, Limousin x Friesian and Piemontese x Friesian cattle. Arch. Anim. Breed. 2006, 49, 329–339. [Google Scholar] [CrossRef]
- Pala, A.; Savaş, T.; Uğur, F.; Daş, G. Growth Curves of Turkish Saanen Goats’ Kids Grouped for Weight and Body Mass Index. Arch. Anim. Breed. 2005, 48, 185–193. [Google Scholar] [CrossRef]
- Gelfand, A.E.; Smith, A.F. Sampling-based approaches to calculating marginal densities. J. Am. Stat. Assoc. 1990, 85, 398–409. [Google Scholar] [CrossRef]
- Geman, S.; Geman, D. Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Trans. Pattern Anal. Mach. Intell. 1984, 6, 721–741. [Google Scholar] [CrossRef]
- Tanner, M.A.; Wong, W.H. The calculation of posterior distributions by data augmentation. J. Am. Stat. Assoc. 1987, 82, 528–540. [Google Scholar] [CrossRef]
- Hossein-Zadeh, N.G.; Ardalan, M. Estimation of genetic parameters for body weight traits and litter size of Moghani sheep, using a Bayesian approach via Gibbs sampling. J. Agric. Sci. 2010, 148, 363–370. [Google Scholar] [CrossRef]
- Magnabosco, C.D.U.; Lôbo, R.; Famula, T.R. Bayesian inference for genetic parameter estimation on growth traits for Nelore cattle in Brazil, using the Gibbs sampler. J. Anim. Breed. Genet. 2000, 117, 169–188. [Google Scholar] [CrossRef]
- Hossein-Zadeh, N.G. Estimates of genetic parameters and genetic trends for production and reproduction traits in Iranian buffaloes (Bubalus bubalis). Anim. Prod. Sci. 2016, 57, 216–222. [Google Scholar] [CrossRef]
- Malhado, C.H.M.; Malhado, A.C.M.; Ramos, A.A.; Carneiro, P.L.S.; Siewerdt, F.; Pala, A. Genetic parameters by Bayesian inference for dual purpose Jaffarabadi buffaloes. Arch. Anim. Breed. 2012, 55, 567–576. [Google Scholar] [CrossRef]
- Carneiro Júnior, J.M.; Assis GMLd Euclydes, R.F.; Torres, R.d.A.; Lopes, P.S. Estimation of variance components using Bayesian and frequentist inferences considering simulated data under heterogeneity of variance. Rev. Bras. Zootec. 2007, 36, 1539–1548. [Google Scholar] [CrossRef]
- Kesbi, F.G.; Eskandarinasab, M.; Shahir, M.H. Estimation of direct and maternal effects on body weight in Mehraban sheep using random regression models. Arch. Anim. Breed. 2008, 51, 235–246. [Google Scholar] [CrossRef]
- Jiang, H.; Ma, Z.; Fu, D. Study on germplasm characteristics of a new breed of Merino sheep for Dried Chinese meat. Chin. J. Anim. Husb. 2018, 54, 47–50. [Google Scholar]
- Hossein-Zadeh, N.G. Estimation of genetic relationships between growth curve parameters in Guilan sheep. J. Anim. Sci. Technol. 2015, 57, 19. [Google Scholar] [CrossRef]
- Topal, M.; Ozdemir, M.; Aksakal, V.; Yildiz, N.; Dogru, U. Determination of the best nonlinear function in order to estimate growth in Morkaraman and Awassi lambs. Small Rumin. Res. 2004, 55, 229–232. [Google Scholar] [CrossRef]
- Ullah, M.A.; Amin, M.; Abbas, M.A. Non-Linear Regression Models to Predict the Lamb and Sheep Weight Growth. Pak. J. Nutr. 2013, 12, 865–869. [Google Scholar] [CrossRef]
- Nian, Z.; Ming-Xin, C. Analysis and fitting of growth curve for hubei black-head goats. Chin. J. Anim. Sci. J. 2014, 50, 18–21. [Google Scholar]
- Zhang, Y.; Guo, W.; Li, X.; Zhang, C.; Cheng, S.; Tian, P.; Zhang, L.J. Growth Curve Model Selection and Growth Curve Analysis of Gansu Alpine Merino Lambs. J. Henan Agric. Sci. 2016, 45, 125–129. [Google Scholar]
- Chen, L.; Lv, X.; Wang, Q.; Wang, X.; Su, R.; Yin, J.; Sun, W.; Zhou, H.; Sun, W.J. Growth curve model prediction and trend analysis of hu sheep. China Animal Husbandry & Veterinary Medicine. J. China Anim. Husb. Vet. Med. 2014, 41, 239–243. [Google Scholar]
- Ma, C.; Zhao, S.; Zhou, Y.; Ji, H.; Yangshi, B.; Qu, J. The growth pattern and simulation of growth curve of Qinghai Tibetan sheep. J. Heilongjiang Anim. Sci. Vet. Med. 2019, 12, 41–44. [Google Scholar]
- Abegaz, S.; Van Wyk, J.B.; Olivier, J.J. Estimation of genetic and phenotypic parameters of growth curve and their relationship with early growth and productivity in Horro sheep. Arch. Anim. Breed. 2010, 53, 85–94. [Google Scholar] [CrossRef]
- Malhado, C.; Carneiro, P.; Affonso, P.; Souza, A., Jr.; Sarmento, J. Growth curves in Dorper sheep crossed with the local Brazilian breeds, Morada Nova, Rabo Largo, and Santa Inês. Small Rumin. Res. 2009, 84, 16–21. [Google Scholar] [CrossRef]
- Stobart, R.H.; Bassett, J.W.; Cartwright, T.C.; Blackwell, R.L. An Analysis of Body Weights and Maturing Patterns in Western Range Ewes. J. Anim. Sci. 1986, 63, 729–740. [Google Scholar] [CrossRef]
- Iqbal, F.; Eyduran, E.; Raziq, A.; Ali, M.; Huma, Z.E.; Tirink, C.; Sevgenler, H. Modeling and predicting the growth of indigenous Harnai sheep in Pakistan: Non-linear functions and MARS algorithm. Trop. Anim. Health Prod. 2021, 53, 248. [Google Scholar] [CrossRef]
Model | Expression | Inflection Point Weight/kg | Inflection Point Months | Maximum Daily Gain/g∙d−1 |
---|---|---|---|---|
Logistic | Wt = A/(1 + Be−Kt) | A/2 | (LnB)/K | wk/2 |
Gompertz | Wt = Ae−Bexp(−Kt) | A/e | (LnB)/K | Wk |
von Bertalanffy | Wt = A(1 − Be−kt)3 | 8A/27 | (Ln3B)/K | 3kw/2 |
Phenotypic Traits | Model | Gender | A | B | K | R2 | Inflection Point Months | Inflection Point Weight/kg | Maximum Daily Gain/g∙d−1 |
---|---|---|---|---|---|---|---|---|---|
Weight | Logistic | Ram | 127.156 | 6.39 | 0.207 | 0.973 | 8.96 | 63.58 | 219.35 |
Ewe | 61.477 | 6.096 | 0.499 | 0.957 | 3.62 | 30.74 | 255.65 | ||
Gompertz | Ram | 135.048 | 2.317 | 0.132 | 0.984 | 6.37 | 49.68 | 218.59 | |
Ewe | 62.58 | 2.209 | 0.325 | 0.973 | 2.44 | 23.02 | 249.38 | ||
Von Bertalanffy | Ram | 140.617 | 0.567 | 0.106 | 0.989 | 5.02 | 41.66 | 220.80 | |
Ewe | 63.284 | 0.542 | 0.27 | 0.979 | 1.80 | 18.75 | 253.13 | ||
chest circumference | Logistic | Ram | 130.655 | 2.219 | 0.278 | 0.979 | 2.87 | 65.33 | 3.027 |
Ewe | 120.825 | 2.102 | 0.287 | 0.970 | 2.59 | 60.41 | 2.890 | ||
Gompertz | Ram | 131.806 | 1.296 | 0.22 | 0.982 | 1.18 | 48.49 | 3.556 | |
Ewe | 122.09 | 1.195 | 0.218 | 0.975 | 0.82 | 44.91 | 3.263 | ||
Von Bertalanffy | Ram | 133.387 | 0.344 | 0.185 | 0.986 | 0.17 | 39.52 | 3.656 | |
Ewe | 122.753 | 0.334 | 0.196 | 0.977 | 0.01 | 36.37 | 3.564 |
Parameter | Item | Mean | Median | Mode | HPD |
---|---|---|---|---|---|
A | 5.54 (15.61) | 5.00 | 10.14 | 0.41–12.51 | |
3.34 (4.16) | 3.31 | 3.90 | 0.30–6.77 | ||
8.88 (7.74) | 8.46 | 7.40 | 5.19–13.92 | ||
0.56 (0.09) | 0.60 | 0.18 | 0.07–0.97 | ||
B | 0.00036 (0) | 0.00035 | 0.00041 | 0.000098–0.00067 | |
0.00016 (0) | 0.00016 | 0.0002 | 0.000038–0.00033 | ||
0.00053 (0) | 0.0005 | 0.00047 | 0.00033–0.0008 | ||
0.66 (0.04) | 0.69 | 0.67 | 0.26–0.94 | ||
K | 0.00066 (0) | 0.00062 | 0.0011 | 0.00022–0.0012 | |
0.00037 (0) | 0.00035 | 0.0003 | 0.00014–0.00068 | ||
0.001 (0) | 0.001 | 0.0008 | 0.00065–0.0016 | ||
0.62 (0.03) | 0.64 | 0.91 | 0.29–0.88 |
Parameter | Item | Mean | Median | Mode | HPD |
---|---|---|---|---|---|
A | 19.40 (161.94 | 17.99 | 18.09 | 1.98–41.86 | |
11.41 (42.76) | 11.19 | 14.46 | 1.73–22.53 | ||
30.81 (91.27) | 29.48 | 25.39 | 17.82–48.35 | ||
0.58 (0.07) | 0.61 | 0.5 | 0.09–0.95 | ||
B | 0.00012 (0) | 0.00011 | 0.00012 | 0.00003–0.00023 | |
0.00006 (0) | 0.000058 | 0.0001 | 0.000016–0.00012 | ||
0.00018 (0) | 0.00017 | 0.00017 | 0.00011–0.00027 | ||
0.63 (0.04) | 0.66 | 0.79 | 0.24–0.92 | ||
K | 0.00032 (0) | 0.0003 | 0.0002 | 0.00011–0.0006 | |
0.00018 (0) | 0.00017 | 0.00013 | 0.00007–0.00032 | ||
0.0005 (0) | 0.00048 | 0.00038 | 0.00031–0.00075 | ||
0.62 (0.03) | 0.63 | 0.50 | 0.30–0.88 |
Correlation | Item | Traits | ||
---|---|---|---|---|
A-B | A-K | B-K | ||
ra1a2 | Mean | −0.24 (0.35) | −0.53 (0.23) | 0.40 (0.13) |
Median | −0.34 | −0.71 | 0.47 | |
Mode | −1.00 | −1.00 | 0.83 | |
HPD | −0.99–0.87 | −0.99–0.56 | −0.31–0.87 | |
re1e2 | Mean | −0.23 (0.39) | −0.53 (0.20) | 0.47 (0.11) |
Median | −0.34 | −0.66 | 0.53 | |
Mode | 0.97 | −1.00 | −0.90 | |
HPD | −0.99–0.95 | −0.98–0.58 | −0.17–0.90 | |
rp1p2 | Mean | −0.26 (0.04) | −0.60 (0.02) | 0.45 (0.02) |
Median | −0.28 | −0.62 | 0.46 | |
Mode | 0 | −0.46 | 0.45 | |
HPD | −0.57–0.09 | −0.80–−0.34 | 0.17–0.68 |
Correlation | Item | Traits | ||
---|---|---|---|---|
A-B | A-K | B-K | ||
ra1a2 | Mean | 0.27 (0.25) | −0.83 (0.05) | 0.03 (0.18) |
Median | 0.36 | −0.90 | 0.038 | |
Mode | 0.39 | −0.95 | 0.17 | |
HPD | −0.75–0.94 | −1.00–−0.42 | −0.70–0.73 | |
re1e2 | Mean | 0.28 (0.24) | −0.83 (0.04) | 0.046 (0.18) |
Median | 0.37 | −0.88 | 0.043 | |
Mode | −1.00 | −1.00 | −0.99 | |
HPD | −0.78–0.93 | −0.99–−0.46 | −0.65–0.75 | |
rp1p2 | Mean | 0.31 (0.03) | −0.84 (0.004) | 0.033 (0.038) |
Median | 0.32 | −0.85 | 0.032 | |
Mode | 0.31 | −0.93 | 0.00 | |
HPD | −0.01–0.59 | −0.92–−0.72 | −0.29–0.35 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Shan, X.; Chen, Y.; Xu, C.; Tang, L.; Jiang, H. Fitting of Growth Curves and Estimation of Genetic Relationship between Growth Parameters of Qianhua Mutton Merino. Genes 2024, 15, 390. https://doi.org/10.3390/genes15030390
Li J, Shan X, Chen Y, Xu C, Tang L, Jiang H. Fitting of Growth Curves and Estimation of Genetic Relationship between Growth Parameters of Qianhua Mutton Merino. Genes. 2024; 15(3):390. https://doi.org/10.3390/genes15030390
Chicago/Turabian StyleLi, Jiarong, Xuesong Shan, Yang Chen, Chongshun Xu, Lin Tang, and Huaizhi Jiang. 2024. "Fitting of Growth Curves and Estimation of Genetic Relationship between Growth Parameters of Qianhua Mutton Merino" Genes 15, no. 3: 390. https://doi.org/10.3390/genes15030390
APA StyleLi, J., Shan, X., Chen, Y., Xu, C., Tang, L., & Jiang, H. (2024). Fitting of Growth Curves and Estimation of Genetic Relationship between Growth Parameters of Qianhua Mutton Merino. Genes, 15(3), 390. https://doi.org/10.3390/genes15030390