Investigating the Influence of ANTXR2 Gene Mutations on Protective Antigen Binding for Heightened Anthrax Resistance
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Retrieval
2.2. Characterization of Deleterious and Tolerated Non-Synonymous Variants
2.3. Predictions of Functional, Structural and Amino Acid Variations
2.4. Exploring the Evolutionary Perspective in Protein Function
2.5. Assessing Impact of Protein Stability and Sequence Information
2.6. Assessment of the Mutation Impact on Native Protein Characteristics
2.7. Predicting Phenotypic Outcomes of nsSNPs Using Integrated Sequence and Structural Information
2.8. Utilizing ConSurf for the Assessment of Proteins in Evolutionary Conservation
2.9. Structural and Phenotypic Analysis of Protein Mutations: Insights from HOPE and MutPred2 Tools
2.10. Molecular Docking
3. Results
3.1. Data Retrieval and Sequence Analysis
3.2. Identification and Prediction of Both Tolerated and Deleterious SNPs
3.3. Mutational Effect on the Structural and Phenotypic Characteristics of Protein
3.4. Conservation and Evolutionary Preservation Patterns of nsSNPs
3.5. Impact of (nsSNPs) on ANTXR2 Gene Binding Affinity with Protective Antigen
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Oncü, S.; Oncü, S.; Sakarya, S. Anthrax-an overview. Med. Sci. Monit. 2003, 9, 276–283. [Google Scholar]
- Swartz, M.N. Recognition and Management of Anthrax—An Update. N. Engl. J. Med. 2001, 345, 1621–1626. [Google Scholar] [CrossRef] [PubMed]
- Jayaprakasam, M.; Chatterjee, N.; Chanda, M.M.; Shahabuddin, S.M.; Singhai, M.; Tiwari, S.; Panda, S. Human anthrax in India in recent times: A systematic review & risk mapping. One Health 2023, 16, 100564. [Google Scholar] [CrossRef]
- Parai, D.; Pattnaik, M.; Choudhary, H.R.; Padhi, A.K.; Pattnaik, S.; Jena, S.; Sahoo, S.K.; Rout, U.K.; Padhi, A.; Sahoo, N.; et al. Investigation of human anthrax outbreak in Koraput district of Odisha, India. Travel Med. Infect. Dis. 2023, 56, 102659. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Moayeri, M.; Leppla, S.H. Anthrax lethal and edema toxins in anthrax pathogenesis. Trends Microbiol. 2014, 22, 317–325. [Google Scholar] [CrossRef] [PubMed]
- Collier, R.J.; Young, J.A. Anthrax Toxin. Annu. Rev. Cell Dev. Biol. 2003, 19, 45–70. [Google Scholar] [CrossRef] [PubMed]
- Fujikura, D.; Toyomane, K.; Kamiya, K.; Mutoh, M.; Mifune, E.; Ohnuma, M.; Higashi, H. ANTXR-1 and -2 independent modulation of a cytotoxicity mediated by anthrax toxin in human cells. J. Vet. Med. Sci. 2016, 78, 1311–1317. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Jacquez, P. Roles of anthrax toxin receptor 2 in anthrax toxin membrane insertion and pore formation. Toxins 2016, 8, 34. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Leppla, S.H.; Leys, D.; Mowat, C.G.; McLean, K.J.; Richmond, A.; Chapman, S.K.; Walkinshaw, M.D.; Munro, A.W. Cell surface tumor endothelium marker 8 cytoplasmic tail-independent anthrax toxin binding, proteolytic processing, oligomer formation, and internalization. J. Biol. Chem. 2003, 278, 5227–5234. [Google Scholar] [CrossRef] [PubMed]
- Wigelsworth, D.J.; Krantz, B.A.; Christensen, K.A.; Lacy, D.B.; Juris, S.J.; Collier, R.J. Binding stoichiometry and kinetics of the interaction of a human anthrax toxin receptor, CMG2, with protective antigen. J. Biol. Chem. 2004, 279, 23349–23356. [Google Scholar] [CrossRef]
- Al-Mayouf, S.M.; AlMehaidib, A.; Bahabri, S.; Shabib, S.; Sakati, N.; Teebi, A.S. Infantile systemic hyalinosis: A fatal disorder commonly diagnosed among arabs. Clin. Exp. Rheumatol. 2005, 23, 717–720. [Google Scholar] [PubMed]
- Hanks, S.; Adams, S.; Douglas, J.; Arbour, L.; Atherton, D.J.; Balci, S.; Bode, H.; Campbell, M.E.; Feingold, M.; Keser, G.; et al. Mutations in the Gene Encoding Capillary Morphogenesis Protein 2 Cause Juvenile Hyaline Fibromatosis and Infantile Systemic Hyalinosis. Am. J. Hum. Genet. 2003, 73, 791–800. [Google Scholar] [CrossRef] [PubMed]
- Bell, S.E.; Mavila, A.; Salazar, R.; Bayless, K.J.; Kanagala, S.; Maxwell, S.A.; Davis, G.E. Differential gene expression during capillary morphogenesis in 3D collagen matrices: Regulated expression of genes involved in basement membrane matrix assembly, cell cycle progression, cellular differentiation and G-protein signaling. J. Cell Sci. 2001, 114, 2755–2773. [Google Scholar] [CrossRef] [PubMed]
- Reeves, C.V.; Dufraine, J.; Young, J.A.T.; Kitajewski, J. Anthrax toxin receptor 2 is expressed in murine and tumor vasculature and functions in endothelial proliferation and morphogenesis. Oncogene 2010, 29, 789–801. [Google Scholar] [CrossRef] [PubMed]
- Abrami, L.; Leppla, S.H.; van der Goot, F.G. Receptor palmitoylation and ubiquitination regulate anthrax toxin endocytosis. J. Cell Biol. 2006, 172, 309–320. [Google Scholar] [CrossRef]
- Deuquet, J.; Lausch, E.; Superti-Furga, A.; van der Goot, F.G. The dark sides of capillary morphogenesis gene 2. EMBO J. 2012, 31, 3–13. [Google Scholar] [CrossRef] [PubMed]
- Al Kaissi, A.; Hilmi, M.; Betadolova, Z.; Bouchoucha, S.; Trofimova, S.; Shboul, M.; Rustamov, G.; Dwera, W.; Sigl, K.; Kenis, V.; et al. Infantile systemic hyalinosis: Variable grades of severity. Afr. J. Paediatr. Surg. 2021, 18, 224–230. [Google Scholar] [PubMed]
- Bauer, D.E.; Kamran, S.C.; Lessard, S.; Xu, J.; Fujiwara, Y.; Lin, C.; Shao, Z.; Canver, M.C.; Smith, E.C.; Pinello, L.; et al. An erythroid enhancer of BCL11A subject to genetic variation determines fetal hemoglobin level. Science 2013, 342, 253–257. [Google Scholar] [CrossRef]
- Smemo, S.; Tena, J.J.; Kim, K.-H.; Gamazon, E.R.; Sakabe, N.J.; Gómez-Marín, C.; Aneas, I.; Credidio, F.L.; Sobreira, D.R.; Wasserman, N.F.; et al. Obesity-associated variants within FTO form long-range functional connections with IRX3. Nature 2014, 507, 371–375. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Zhang, Y.; Shi, M.; Ye, B.; Shen, W.; Li, P.; Xing, L.; Zhang, X.; Hou, L.; Xu, J.; et al. Anthrax susceptibility: Human genetic polymorphisms modulating ANTXR2 expression. Toxins 2015, 8, 1. [Google Scholar] [CrossRef] [PubMed]
- Rajasekaran, R.; Sudandiradoss, C.; Doss, C.G.P.; Sethumadhavan, R. Identification and in silico analysis of functional SNPs of the BRCA1 gene. Genomics 2007, 90, 447–452. [Google Scholar] [CrossRef] [PubMed]
- Ding, C.; Jin, S. High-Throughput Methods for SNP Genotyping. In Single Nucleotide Polymorphisms; Humana Press: Totowa, NJ, USA, 2009; pp. 245–254. [Google Scholar]
- Emadi, E.; Akhoundi, F.; Kalantar, S.M.; Emadi-Baygi, M. Predicting the most deleterious missense nsSNPs of the protein isoforms of the human HLA-G gene and in silico evaluation of their structural and functional consequences. BMC Genet. 2020, 21, 94. [Google Scholar] [CrossRef] [PubMed]
- Serizawa, M.; Sekizuka, T.; Okutani, A.; Banno, S.; Sata, T.; Inoue, S.; Kuroda, M. Genomewide screening for novel genetic variations associated with ciprofloxacin resistance in Bacillus anthracis. Antimicrob. Agents Chemother. 2010, 54, 2787–2792. [Google Scholar] [CrossRef]
- Dakal, T.C.; Kala, D.; Dhiman, G.; Yadav, V.; Krokhotin, A.; Dokholyan, N.V. Predicting the functional consequences of non-synonymous single nucleotide polymorphisms in IL8 gene. Sci. Rep. 2017, 7, 6525. [Google Scholar] [CrossRef]
- Bouafi, H.; Bencheikh, S.; Krami, A.M.; Morjane, I.; Charoute, H.; Rouba, H.; Saile, R.; Benhnini, F.; Barakat, A. Prediction and Structural Comparison of Deleterious Coding Nonsynonymous Single Nucleotide Polymorphisms (nsSNPs) in Human LEP Gene Associated with Obesity. BioMed Res. Int. 2019, 2019, 1832084. [Google Scholar] [CrossRef] [PubMed]
- Kumar, P.; Henikoff, S.; Ng, P.C. Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. Nat. Protoc. 2009, 4, 1073–1081. [Google Scholar] [CrossRef] [PubMed]
- Ng, P.C.; Henikoff, S. SIFT: Predicting amino acid changes that affect protein function. Nucleic Acids Res. 2003, 31, 3812–3814. [Google Scholar] [CrossRef] [PubMed]
- AbdulAzeez, S.; Borgio, J.F. In-silico computing of the most deleterious nsSNPs in HBA1 gene. PLoS ONE 2016, 11, e0147702. [Google Scholar] [CrossRef] [PubMed]
- Brunham, L.R.; Singaraja, R.R.; Pape, T.D.; Kejariwal, A.; Thomas, P.D.; Hayden, M.R. Accurate prediction of the functional significance of single nucleotide polymorphisms and mutations in the ABCA1 gene. PLoS Genet. 2005, 1, e83. [Google Scholar] [CrossRef] [PubMed]
- Thomas, P.D.; Kejariwal, A.; Guo, N.; Mi, H.; Campbell, M.J.; Muruganujan, A.; Lazareva-Ulitsky, B. Applications for protein sequence-function evolution data: mRNA/protein expression analysis and coding SNP scoring tools. Nucleic Acids Res. 2006, 34, W645–W650. [Google Scholar] [CrossRef]
- Akter, M.; Khan, S.F.; Sajib, A.A.; Rima, F.S. A comprehensive in silico analysis of the deleterious nonsynonymous SNPs of human FOXP2 protein. PLoS ONE 2022, 17, e0272625. [Google Scholar] [CrossRef] [PubMed]
- Cheng, J.; Randall, A.; Baldi, P. Prediction of protein stability changes for single-site mutations using support vector machines. Proteins Struct. Funct. Genet. 2006, 62, 1125–1132. [Google Scholar] [CrossRef] [PubMed]
- Petrey, D.; Honig, B. GRASP2: Visualization, Surface Properties, and Electrostatics of Macromolecular Structures and Sequences. Methods Enzymol. 2003, 374, 492–509. [Google Scholar] [CrossRef] [PubMed]
- Bromberg, Y.; Yachdav, G.; Rost, B. SNAP predicts effect of mutations on protein function. Bioinformatics 2008, 24, 2397–2398. [Google Scholar] [CrossRef] [PubMed]
- Capriotti, E.; Calabrese, R.; Fariselli, P.; Martelli, P.L.; Altman, R.B.; Casadio, R. WS-SNPs&GO: A web server for predicting the deleterious effect of human protein variants using functional annotation. BMC Genom. 2013, 14 (Suppl. S3), S6. [Google Scholar] [CrossRef]
- Tsai, K.-L.; Huang, C.-Y.; Chang, C.-H.; Sun, Y.-J.; Chuang, W.-J.; Hsiao, C.-D. Crystal structure of the human FOXK1a-DNA complex and its implications on the diverse binding specificity of winged helix/forkhead proteins. J. Biol. Chem. 2006, 281, 17400–17409. [Google Scholar] [CrossRef] [PubMed]
- Niroula, A.; Urolagin, S.; Vihinen, M. PON-P2: Prediction method for fast and reliable identification of harmful variants. PLoS ONE 2015, 10, e0117380. [Google Scholar] [CrossRef]
- Coulocheri, S.A.; Pigis, D.G.; Papavassiliou, K.A.; Papavassiliou, A.G. Hydrogen bonds in protein–DNA complexes: Where geometry meets plasticity. Biochimie 2007, 89, 1291–1303. [Google Scholar] [CrossRef] [PubMed]
- Palka, C.; Alfonsi, M.; Mohn, A.; Cerbo, R.; Franchi, P.G.; Fantasia, D.; Morizio, E.; Stuppia, L.; Calabrese, G.; Zori, R.; et al. Mosaic 7q31 deletion involving FOXP2 gene associated with language impairment. Pediatrics 2012, 129, e183–e188. [Google Scholar] [CrossRef] [PubMed]
- Thulo, M.; Rabie, M.A.; Pahad, N.; Donald, H.L.; Blane, A.A.; Perumal, C.M.; Penedo, J.C.; Fanucchi, S. The influence of various regions of the FOXP2 sequence on its structure and DNA-binding function. Biosci. Rep. 2021, 41, BSR20202128. [Google Scholar] [CrossRef]
- Jia, M.; Yang, B.; Li, Z.; Shen, H.; Song, X.; Gu, W. Computational analysis of functional single nucleotide polymorphisms associated with the CYP11B2 gene. PLoS ONE 2014, 9, e104311. [Google Scholar] [CrossRef] [PubMed]
- Adzhubei, I.A.; Schmidt, S.; Peshkin, L.; Ramensky, V.E.; Gerasimova, A.; Bork, P.; Kondrashov, A.S.; Sunyaev, S.R. A method and server for predicting damaging missense mutations. Nat. Methods 2010, 7, 248–249. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Guo, H.; Yu, H.; Chen, Y.; Xu, H.; Zhao, G. The Role of the Transcription Factor EGR1 in Cancer. Front. Oncol. 2021, 11, 642547. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Krishnan, V.G.; Mort, M.E.; Xin, F.; Kamati, K.K.; Cooper, D.N.; Mooney, S.D.; Radivojac, P. Automated inference of molecular mechanisms of disease from amino acid substitutions. Bioinformatics 2009, 25, 2744–2750. [Google Scholar] [CrossRef] [PubMed]
- Santelli, E.; Bankston, L.A.; Leppla, S.H.; Liddington, R.C. Crystal structure of a complex between anthrax toxin and its host cell receptor. Nature 2004, 430, 905–908. [Google Scholar] [CrossRef] [PubMed]
- Lacy, D.B.; Wigelsworth, D.J.; Scobie, H.M.; Young, J.A.T.; Collier, R.J. Crystal structure of the von Willebrand factor A domain of human capillary morphogenesis protein 2: An anthrax toxin receptor. Proc. Natl. Acad. Sci. USA 2004, 101, 6367–6372. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Du, X.; Sun, L.; Wang, H.; Wang, D.; Wu, B. Hyaline fibromatosis syndrome with a novel 4.41-kb deletion in ANTXR2 gene: A case report and literature review. Mol. Genet. Genom. Med. 2022, 10, e1993. [Google Scholar] [CrossRef]
- Dowling, O.; Difeo, A.; Ramirez, M.C.; Tukel, T.; Narla, G.; Bonafe, L.; Kayserili, H.; Yuksel-Apak, M.; Paller, A.S.; Norton, K.; et al. Mutations in capillary morphogenesis gene-2 result in the allelic disorders juvenile hyaline fibromatosis and infantile systemic hyalinosis. Am. J. Hum. Genet. 2003, 73, 957–966. [Google Scholar] [CrossRef] [PubMed]
- Guo, C.; Xia, Y.; Yang, Q.; Qiu, R.; Zhao, H.; Liu, Q. Association of the ANTXR2 gene polymorphism and ankylosing spondylitis in Chinese Han. Scand. J. Rheumatol. 2012, 41, 29–32. [Google Scholar] [CrossRef] [PubMed]
- Choochuen, P.; Laochareonsuk, W.; Tanaanantarak, P.; Kanjanapradit, K.; Sangkhathat, S. Juvenile Hyaline Fibromatosis: Report of a Case with a Novel ANTXR2 Gene Mutation. Am. J. Case Rep. 2022, 23, e935921. [Google Scholar] [CrossRef] [PubMed]
- Fong, K.; Devi, A.R.R.; Lai-Cheong, J.E.; Chirla, D.; Panda, S.K.; Liu, L.; Tosi, I.; McGrath, J.A. Infantile systemic hyalinosis associated with a putative splice-site mutation in the ANTXR2 gene. Clin. Exp. Dermatol. 2012, 37, 635–638. [Google Scholar] [CrossRef] [PubMed]
- Park, S.Y.; Lee, H.-J.; Ji, S.-M.; Kim, M.E.; Jigden, B.; Lim, J.E.; Oh, B. ANTXR2 is a potential causative gene in the genome-wide association study of the blood pressure locus 4q21. Hypertens. Res. 2014, 37, 811–817. [Google Scholar] [CrossRef]
- Harrison, G.F.; Sanz, J.; Boulais, J.; Mina, M.J.; Grenier, J.-C.; Leng, Y.; Dumaine, A.; Yotova, V.; Bergey, C.M.; Nsobya, S.L.; et al. Natural selection contributed to immunological differences between hunter-gatherers and agriculturalists. Nat. Ecol. Evol. 2019, 3, 1253–1264. [Google Scholar] [CrossRef] [PubMed]
- Choate, L.A.; Barshad, G.; McMahon, P.W.; Said, I.; Rice, E.J.; Munn, P.R.; Lewis, J.J.; Danko, C.G. Multiple stages of evolutionary change in anthrax toxin receptor expression in humans. Nat. Commun. 2021, 12, 6590. [Google Scholar] [CrossRef] [PubMed]
Sl.No | SNP ID | Amino Acid Variant | Single Nucleotide Variation | SIFT | PolyPhen 2 | Panther | |
---|---|---|---|---|---|---|---|
Score | Prediction | ||||||
1 | rs372562244 | Ala454Val | G/A | 0 | Deleterious | Probably damaging | Probably damaging |
2 | rs137852902 | Gly105Asp | C/T | 0.003 | Deleterious | Probably damaging | Probably damaging |
3 | rs190198202 | Gly300Arg | C/T | 0.003 | Deleterious | Probably damaging | Probably damaging |
4 | rs369528902 | Gly450Asp | C/T | 0 | Deleterious | Probably damaging | Probably damaging |
5 | rs137852905 | Ile189Thr | A/G | 0.001 | Deleterious | Probably damaging | Probably damaging |
6 | rs137852903 | Leu329Arg | A/C | 0.002 | Deleterious | Probably damaging | Probably damaging |
7 | rs368288611 | Arg465Trp | G/A | 0.001 | Deleterious | Probably damaging | Probably damaging |
8 | rs77105256 | Trp341Leu | C/A | 0 | Deleterious | Probably damaging | Probably damaging |
9 | rs137852901 | Tyr381Cys | T/C | 0.001 | Deleterious | Probably damaging | Probably damaging |
Tolerated | |||||||
1 | rs200536829 | Ala33Ser | C/A | 0.665 | Tolerated | Probably damaging | Probably benign |
2 | rs370619047 | Ala70Val | G/A | 0.368 | Tolerated | Probably damaging | Possibly damaging |
3 | rs12647691 | Ala280Pro | C/G | 1 | Tolerated | Probably damaging | Possibly damaging |
4 | rs376076187 | Glu194Lys | C/T | 0.174 | Tolerated | Probably damaging | Probably benign |
5 | rs374723881 | Leu169Phe | G/A | 0.186 | Tolerated | Probably damaging | Possibly damaging |
6 | rs368740456 | Thr258Ala | T/C | 0.538 | Tolerated | Probably damaging | Probably benign |
7 | rs113707133 | Val270Ile | C/T | 0.862 | Tolerated | Probably damaging | Probably benign |
Sl.No | SNP ID | Amino Acid Variant | PhD SNP | Mu Pro Prediction | SNAP2 | Suspect | |||
---|---|---|---|---|---|---|---|---|---|
Prediction | Score | Score | Score | Prediction | |||||
1 | rs372562244 | Ala454Val | Diseases | 0.639 | Decrease stability | −0.62145 | 59 | Effect | 64 |
2 | rs137852902 | Gly105Asp | Diseases | 0.645 | Decrease stability | −0.8272 | 47 | Effect | 55 |
3 | rs190198202 | Gly300Arg | Diseases | 0.781 | Decrease stability | −1.3046 | 83 | Effect | 87 |
4 | rs369528902 | Gly450Asp | Diseases | 0.828 | Decrease stability | −0.999 | 80 | Effect | 53 |
5 | rs137852905 | Ile189Thr | Diseases | 0.654 | Decrease stability | −2.3902 | 61 | Effect | 86 |
6 | rs137852903 | Leu329Arg | Diseases | 0.842 | Decrease stability | −2.3037 | 49 | Effect | 65 |
7 | rs368288611 | Arg465Trp | Diseases | 0.708 | Decrease stability | −0.8297 | 87 | Effect | 72 |
8 | rs77105256 | Trp341Leu | NA | NA | Decrease stability | −0.17876 | 81 | Effect | 80 |
9 | rs137852901 | Tyr381Cys | Diseases | 0.842 | Decrease stability | −0.76939 | 57 | Effect | 33 |
Tolerated | |||||||||
1 | rs200536829 | Ala33Ser | Neutral | 0.074 | Decrease stability | −0.8690 | 94 | Neutral | NA |
2 | rs370619047 | Ala70Val | Neutral | 0.149 | Decrease stability | −0.2488 | 98 | Neutral | 21 |
3 | rs12647691 | Ala280Pro | NA | NA | NA | NA | 28 | Neutral | 75 |
4 | rs376076187 | Glu194Lys | Neutral | 0.277 | Decrease stability | −1.0843 | 6 | Neutral | 21 |
5 | rs374723881 | Leu169Phe | Neutral | 0.441 | Decrease stability | −1.2402 | 63 | Neutral | 13 |
6 | rs368740456 | Thr258Ala | Neutral | 0.295 | Decrease stability | −0.9580 | 53 | Neutral | 46 |
7 | rs113707133 | Val270Ile | Neutral | 0.032 | Increase Stability | 0.0840 | 81 | Neutral | 39 |
Sl.No | Residue | Change of Size | Change of Charge | Change of Hydrophobicity | Properties |
---|---|---|---|---|---|
1 | Ala454Val | W < M | NA | NA | Although the wild-type residue is significantly conserved, there have been instances of different residue types at this position. No occurrences of the mutant residue or a similar type were identified in other homologous sequences, indicating potential protein damage according to conservation scores. The increased size of the mutant residue could lead to structural irregularities. |
2 | Gly450Asp | W < M | Neutral to Negative | Wild type residue more hydrophobicity than mutant | Amino acids exhibit unique size, with mutants often being larger and experiencing shifts in charge. The wild-type residue tends to be more hydrophobic. |
3 | Gly300Arg | W < M | Neutral to Positive | Wild type residue more hydrophobicity than mutant | A charge difference exists between wild-type and mutant amino acids. The mutation introduces a charge, potentially causing repulsion of ligands or residue with the same charge. Wild-type and mutant amino acids differ in size. The mutant residue’s increased size may lead to bumps. |
4 | Gly105Asp | W < M | Neutral to Negative | Wild type residue more hydrophobicity than mutant | The wild-type residue is neutral; the mutant residue is negative. The mutant residue, along with similar types, is not found at this position in other homologous sequences. Conservation scores suggest probable damage to the protein due to this mutation. |
5 | Ile189Thr | W > M | NA | Wild type residue more hydrophobicity than mutant | NA |
6 | Leu329Arg | W < M | Neutral to Positive | Wild type residue more hydrophobicity than mutant | The wild-type residue is neutral; the mutant residue is positive. |
7 | Arg465Trp | W < M | Wild Positive and mutant neutral | Mutant type residue more hydrophobicity than wild | The wild-type residue is positive; the mutant residue is neutral. |
8 | Trp341Leu | W > M | Positive to Neutral | NA | NA |
9 | Tyr381Cys | W > M | NA | Mutant type residue more hydrophobicity than wild | NA |
Tolerated | |||||
1 | Ala33Ser | W > M | NA | Wild type more hydrophobic than mutant | NA |
2 | Ala70Val | W > M | NA | NA | NA |
3 | Ala280Pro | NA | NA | NA | The mutated residue is situated in a vital protein domain, interacting with another crucial domain essential for the protein’s activity. |
4 | Glu194Lys | W > M | Wild negative to mutant positive | NA | The mutation has the potential to disrupt their interaction, potentially affecting the overall function of the protein. |
5 | Leu169Phe | W > M | NA | NA | The mutant residue is one of the types of homologous sequences that have been observed at this position, suggesting that this mutation is likely non-damaging to the protein at this location. |
6 | Thr258Ala | W < M | NA | Mutant type has more hydrophobicity than wild | The mutant residue is found among observed types in homologous sequences, typically indicating non-damage to the protein. However, in this instance, it has been established that the mutation is deleterious. |
7 | Val270Ile | W < M | NA | NA | The mutant residue is commonly observed in homologous sequences, implying potential harmlessness. It has been confirmed in this case to be deleterious to the protein’s structure and function. |
Sl.No | Mutation | Probability of Deleterious Mutation | Structural and Functional Properties |
---|---|---|---|
1 | Ala454Val | 0.701 | Altered Disordered interface (p = 0.30) Gain of proteolytic cleavage at D453 (p = 0.12) |
2 | Gly450Asp | 0.896 | Altered Disordered interface (p = 0.32) Gain of Intrinsic Disordered (p = 0.30) Gain of proteolytic cleavage at D453 (p = 0.14) |
3 | Gly300Arg | 0.802 | Altered Transmembrane protein (p = 0.27) Gain of ADP-ribosylation at G300 (p = 0.21) Loss of GPI-anchor amidation at N298 (p = 0.02) |
4 | Gly105Asp | 0.573 | Gain of Helix (p = 0.27) Altered Transmembrane protein (p = 0.17) Gain of Ubiquitylation at K104 (p = 0.16) |
5 | Ile189Thr | 0.831 | Gain of Relative solvent accessibility (p = 0.27) Altered Stability (p = 0.22) Altered Metal binding (p = 0.21) Altered Transmembrane protein (p = 0.13) |
6 | Leu329Arg | 0.913 | Altered Transmembrane protein (p = 0.27) Altered Signal peptide (p = 0.12) |
7 | Arg465Trp | 0.808 | Altered Ordered interface (p = 0.35) Altered Transmembrane protein (p = 0.32) Gain of Helix (p = 0.27) Altered DNA binding (p = 0.22) Gain of Allosteric site at R465 (p = 0.21) Altered Disordered interface (p = 0.18) Altered Metal binding (p = 0.17) Gain of Pyrrolidone carboxylic acid at Q462 (p = 0.08) |
8 | Trp341Leu | 0.846 | Altered Ordered interface (p = 0.28) |
9 | Tyr381Cys | 0.914 | Loss of Phosphorylation at Y381 (p = 0.39) Altered Disordered interface (p = 0.27) Gain of Methylation at R384 (p = 0.13) Gain of Proteolytic cleavage at D377 (p = 0.11) |
Tolerated | |||
1 | Ala33Ser | 0.137 | NA |
2 | Ala70Val | 0.543 | Altered Transmembrane protein (p = 0.30) |
3 | Ala280Pro | NA | NA |
4 | Glu194Lys | 0.657 | Altered Transmembrane protein (p = 0.34) Gain of Relative Solvent accessibility (p = 0.29) Loss of Loop (p = 0.28) Altered Metal binding (p = 0.21) |
5 | Leu169Phe | 0.193 | NA |
6 | Thr258Ala | 0.242 | NA |
7 | Val270Ile | 0.076 | NA |
SL.NO | Substitution | Scores | ConSurf |
---|---|---|---|
1 | Ala454Val | 9 | Conserved |
2 | Gly450Asp | 5 | Average |
3 | Gly300Arg | 8 | Conserved |
4 | Gly105Asp | 9 | Conserved |
5 | Ile189Thr | 8 | Conserved |
6 | Leu329Arg | 4 | Average |
7 | Arg465Trp | 9 | Conserved |
8 | Trp341Leu | 9 | Conserved |
9 | Tyr381Cys | 9 | Conserved |
Tolerated | |||
1 | Ala33Ser | 1 | Variables |
2 | Ala70Val | 7 | Conserved |
3 | Ala280Pro | 7 | Conserved |
4 | Glu194Lys | 5 | Average |
5 | Leu169Phe | 4 | Average |
6 | Thr258Ala | 4 | Average |
7 | Val270Ile | 4 | Average |
Sl.No | Substitution | Binding Affinity |
---|---|---|
Wild Type Deleterious | −1593.2 | |
1 | Ala454Val | −882.5 |
2 | Gly450Asp | −882.5 |
3 | Gly300Arg | −882.5 |
4 | Gly105Asp | −883.4 |
5 | Ile189Thr | −883.1 |
6 | Leu329Arg | −882.5 |
7 | Arg465Trp | −882.5 |
8 | Trp341Leu | −882.5 |
9 | Tyr381Cys | −882.5 |
Tolerated | ||
1 | Ala33Ser | −882.5 |
2 | Ala70Val | −882.5 |
3 | Ala280Pro | −882.5 |
4 | Glu194Lys | −806.8 |
5 | Leu169Phe | −881.5 |
6 | Thr258Ala | −882.5 |
7 | Val270Ile | −882.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Archana, C.A.; Sekar, Y.S.; Suresh, K.P.; Subramaniam, S.; Sagar, N.; Rani, S.; Anandakumar, J.; Pandey, R.K.; Barman, N.N.; Patil, S.S. Investigating the Influence of ANTXR2 Gene Mutations on Protective Antigen Binding for Heightened Anthrax Resistance. Genes 2024, 15, 426. https://doi.org/10.3390/genes15040426
Archana CA, Sekar YS, Suresh KP, Subramaniam S, Sagar N, Rani S, Anandakumar J, Pandey RK, Barman NN, Patil SS. Investigating the Influence of ANTXR2 Gene Mutations on Protective Antigen Binding for Heightened Anthrax Resistance. Genes. 2024; 15(4):426. https://doi.org/10.3390/genes15040426
Chicago/Turabian StyleArchana, Chamalapura Ashwathama, Yamini Sri Sekar, Kuralayanapalya Puttahonnappa Suresh, Saravanan Subramaniam, Ningegowda Sagar, Swati Rani, Jayashree Anandakumar, Rajan Kumar Pandey, Nagendra Nath Barman, and Sharanagouda S. Patil. 2024. "Investigating the Influence of ANTXR2 Gene Mutations on Protective Antigen Binding for Heightened Anthrax Resistance" Genes 15, no. 4: 426. https://doi.org/10.3390/genes15040426
APA StyleArchana, C. A., Sekar, Y. S., Suresh, K. P., Subramaniam, S., Sagar, N., Rani, S., Anandakumar, J., Pandey, R. K., Barman, N. N., & Patil, S. S. (2024). Investigating the Influence of ANTXR2 Gene Mutations on Protective Antigen Binding for Heightened Anthrax Resistance. Genes, 15(4), 426. https://doi.org/10.3390/genes15040426