Comparative Analysis of Virulence and Molecular Diversity of Puccinia striiformis f. sp. tritici Isolates Collected in 2016 and 2023 in the Western Region of China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Collection of Pst Isolates
2.2. Isolate Identification and Multiplication
2.3. Inoculation of Chinese Differentials and Yr Single Gene Lines
2.4. Characterization of Virulence
2.5. Pathotype Designation and Effectiveness of Yr Genes
2.6. Association of Yr Genes
2.7. Molecular Marker Analysis
2.8. Data Analysis
3. Results
3.1. Identification of Pathotypes and Diversities in the New and Old Isolates of Pst
3.2. Virulence Complexities and Frequencies on the Chinese Differentials
3.3. Virulence Frequencies and Complexities on Yr Single-Gene Differentials
3.4. Associations of Alleles at the Avirulence Loci
3.5. Cluster Analysis of Virulence
3.6. Molecular Diversity
3.7. Genetic Distance
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gultyaeva, E.; Shaydayuk, E.; Kosman, E. Virulence diversity of Puccinia striiformis f. sp. tritici in common wheat in Russian regions in 2019–2021. Agriculture 2022, 12, 1957. [Google Scholar] [CrossRef]
- Savary, S.; Willocquet, L.; Pethybridge, S.J.; Esker, P.; McRoberts, N.; Nelson, A. The global burden of pathogens and pests on major food crops. Nat. Ecol. Evol. 2019, 3, 430–443. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.M. Pathogens which threaten food security: Puccinia striiformis, the wheat stripe rust pathogen. Food Secur. 2020, 12, 239–251. [Google Scholar] [CrossRef]
- Beddow, J.M.; Pardey, P.G.; Chai, Y.; Hurley, T.M.; Kriticos, D.J.; Braun, H.J.; Park, R.F.; Cuddy, W.S.; Yonow, T. Research investment implications of shifts in the global geography of wheat stripe rust. Nat. Plants 2015, 1, 15132. [Google Scholar] [CrossRef] [PubMed]
- Hovmøller, M.S.; Sørensen, C.K.; Walter, S.; Justesen, A.F. Diversity of Puccinia striiformis on cereals and grasses. Annu. Rev. Phytopathol. 2011, 49, 197–217. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.M. Review article: High-temperature adult-plant resistance, key for sustainable control of stripe rust. Am. J. Plant Sci. 2013, 4, 608–627. [Google Scholar] [CrossRef]
- Wan, A.M.; Wang, X.J.; Kang, Z.S.; Chen, X.M. Variability of the stripe rust pathogen. In Stripe Rust; Chen, X.M., Kang, Z.S., Eds.; Springer: Dordrecht, The Netherlands, 2017; pp. 35–155. [Google Scholar] [CrossRef]
- Mboup, M.; Leconte, M.; Gautier, A.; Wan, A.M.; Chen, W.; de Vallavieille-Pope, C.; Enjalbert, J. Evidence of genetic recombination in wheat yellow rust populations of a Chinese oversummering area. Fungal Genet. Biol. 2009, 46, 299–307. [Google Scholar] [CrossRef] [PubMed]
- Park, R.F.; Wellings, C.R. Somatic hybridization in the uredinales. Annu. Rev. Phytopathol. 2012, 50, 219–239. [Google Scholar] [CrossRef] [PubMed]
- Schwessinger, B. Fundamental wheat stripe rust research in the 21st century. New Phytol. 2017, 213, 1625–1631. [Google Scholar] [CrossRef] [PubMed]
- Wellings, C.R.; Mclntosh, R.A. Puccinia striiformis f. sp. tritici in Australasia: Pathogenic changes during the first 10 years. Plant Pathol. 1990, 39, 316–325. [Google Scholar] [CrossRef]
- Bayles, R.A.; Flath, K.; Hovmoller, M.S.; de Vallavieille-Pope, C. Breakdown of the resistance to yellow rust of wheat in northern Europe. Agronomie 2000, 20, 805–811. [Google Scholar] [CrossRef]
- Chen, X.M.; Moore, M.; Milus, E.A.; Long, D.L.; Line, R.F.; Marshall, D.; Jackson, L. Wheat stripe rust epidemics and races of Puccinia striiformis f. sp. tritici in the United States in 2000. Plant Dis. 2002, 86, 39–46. [Google Scholar] [CrossRef] [PubMed]
- Ghanbarnia, K.; Gourlie, R.; Amundsen, E.; Aboukhaddour, R. The changing virulence of stripe rust in Canada from 1984 to 2017. Phytopathology 2021, 111, 1840–1850. [Google Scholar] [CrossRef] [PubMed]
- Wan, A.M.; Chen, X.M. Virulence characterization of Puccinia striiformis f. sp. tritici using a new set of Yr single-gene line differentials in the United States in 2010. Plant Dis. 2014, 98, 1534–1542. [Google Scholar] [CrossRef] [PubMed]
- Boshoff, W.H.P.; Pretorius, Z.A.; van Niekerk, B.D. Establishment, distribution, and pathogenicity of Puccinia striiformis f. sp. tritici in South Africa. Plant Dis. 2002, 86, 485–492. [Google Scholar] [CrossRef] [PubMed]
- Milus, E.A.; Seyran, E.; McNew, R. Aggressiveness of Puccinia striiformis f. sp. tritici isolates in the south-central United States. Plant Dis. 2006, 90, 847–852. [Google Scholar] [CrossRef]
- Wan, A.M.; Chen, X.M.; Yuen, J. Races of Puccinia striiformis f. sp. tritici in the United States in 2011 and 2012 and comparison with races in 2010. Plant Dis. 2016, 100, 966–975. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.H.; Li, Y.X.; Wang, B.T.; Hu, X.P. Genetic analysis reveals relationships among populations of Puccinia striiformis f. sp. tritici from the Longnan, Longdong, and central Shaanxi regions of China. Phytopathology 2022, 112, 278–289. [Google Scholar] [CrossRef] [PubMed]
- Cat, A.; Tekin, M.; Akan, K.; Akar, T.; Catal, M. Races of Puccinia striiformis f. sp. tritici identified from the coastal areas of Turkey. Can. J. Plant Pathol. 2021, 43, 323–332. [Google Scholar] [CrossRef]
- Wan, A.M.; Chen, X.M.; He, Z.H. Wheat stripe rust in China. Aust. J. Agric. Res. 2007, 58, 605–619. [Google Scholar] [CrossRef]
- Chen, W.Q.; Wu, L.R.; Liu, T.G.; Xu, S.C.; Jin, S.L.; Peng, Y.L.; Wang, B.T. Race dynamics, diversity, and virulence evolution in Puccinia striiformis f. sp. tritici, the causal agent of wheat stripe rust in china from 2003 to 2007. Plant Dis. 2009, 93, 1093–1101. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.Q.; Wellings, C.; Chen, X.M.; Kang, Z.S.; Liu, T.G. Wheat stripe (yellow) rust caused by Puccinia striiformis f. sp. tritici. Mol. Plant Pathol. 2014, 15, 433–446. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Zhang, Z.D.; Tian, Y.; Kang, Z.S.; Zhao, J. Race composition and genetic diversity of a Puccinia striiformis f. sp. tritici population from Yunnan and Guizhou epidemiological regions in China in 2018. J. Plant Pathol. 2023, 42, 253–267. [Google Scholar] [CrossRef]
- Hu, X.P.; Ma, L.J.; Liu, T.G.; Wang, C.H.; Peng, Y.L.; Pu, Q.; Xu, X.M. Population genetic analysis of Puccinia striiformis f. sp. tritici suggests two distinct populations in Tibet and the other regions of China. Plant Dis. 2017, 101, 288–296. [Google Scholar] [CrossRef] [PubMed]
- Yan, D.X.; Huang, L.; Xing, Y.; Li, H.F.; Xia, C.J.; Wang, A.; Gao, L.; Liu, T.G.; Chen, W.Q. Analysis of genetic diversity and population structure of Puccinia striiformis f. sp. tritici infers inoculum relationships from Yunnan to the middle and lower reaches of the Yangtze river. Plant Pathol. 2023, 72, 1517–1527. [Google Scholar] [CrossRef]
- Liang, J.M.; Wan, Q.; Luo, Y.; Ma, Z.H. Population genetic structures of Puccinia striiformis in Ningxia and Gansu provinces of China. Plant Dis. 2013, 97, 501–509. [Google Scholar] [CrossRef] [PubMed]
- Alam, M.A.; Li, H.X.; Hossain, A.; Li, M.J. Genetic diversity of wheat stripe rust fungus Puccinia striiformis f. sp. tritici in Yunnan, China. Plants 2021, 10, 1735. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.M.; Line, R.F. Ientification of stripe rust resistance genes in wheat genotypes used to differentiate North American races of Puccinia striiformis. Phytopathology 1992, 82, 1428–1434. [Google Scholar] [CrossRef]
- Chen, X.M.; Line, R.F. Inheritance of stripe rust resistance in wheat cultivars used to differentiate races of Puccinia striiformis in North America. Phytopathology 1992, 82, 633–637. [Google Scholar] [CrossRef]
- Hebblethwaite, P.D.; Burbidge, A. The effect of maleic hydrazide and chlorocholine chloride on the growth, seed yield components and seed yield of 23 ryegrass. J. Agric. Sci. 1976, 86, 343–353. [Google Scholar] [CrossRef]
- Draz, I.S. Pathotypic and molecular evolution of contemporary population of Puccinia striiformis f. sp. tritici in Egypt during 2016–2018. J. Phytopathol. 2019, 167, 26–34. [Google Scholar] [CrossRef]
- Parks, R.; Carbone, I.; Murphy, J.P.; Marshall, D.; Cowger, C. Virulence structure of the eastern U.S. wheat powdery mildew population. Plant Dis. 2008, 92, 1074–1082. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.M.; Ronald, F.L.; Leung, H. Relationship between virulence and DNA Polymorphism in Puccinia striiformis. Phytopathology 1993, 83, 1489–1497. [Google Scholar] [CrossRef]
- Enjalbert, J.; Duan, X.; Giraud, T.; Vautrin, D.; de Vallavieille-Pope, C.; Solignac, M. Isolation of twelve microsatellite loci, using an enrichment protocol, in the phytopathogenic fungus Puccinia striiformis f. sp. tritici. Mol. Ecol. Notes 2002, 2, 563–565. [Google Scholar] [CrossRef]
- Bahri, B.; Leconte, M.; de Vallavieille-Pope, C.; Enjalbert, J. Isolation of ten microsatellite loci in an EST library of the phytopathogenic fungus Puccinia striiformis f. sp. tritici. Conserv. Genet. 2009, 10, 1425–1428. [Google Scholar] [CrossRef]
- Chen, C.Q.; Zheng, W.M.; Buchenauer, H.; Huang, L.L.; Lu, N.H.; Kang, Z.S. Isolation of microsatellite loci from expressed sequence tag library of Puccinia striiformis f. sp. tritici. Mol. Ecol. Resour. 2009, 9, 236–238. [Google Scholar] [CrossRef] [PubMed]
- Cheng, P.; Chen, X.M.; Xu, L.S.; See, D.R. Development and characterization of expressed sequence tag-derived microsatellite markers for the wheat stripe rust fungus Puccinia striiformis f. sp. tritici. Mol. Ecol. Resour. 2012, 12, 779–781. [Google Scholar] [CrossRef] [PubMed]
- Horká, M.; Horký, J.; Matoušková, H.; Šlais, K. Separation of plant pathogens from different hosts and tissues by capillary electromigration techniques. Anal. Chem. 2007, 79, 9539–9546. [Google Scholar] [CrossRef] [PubMed]
- Shannon, C.E. A mathematical theory of communication. Bell Syst. Tech. J. 1948, 27, 623–656. [Google Scholar] [CrossRef]
- Schachtel, G.A.; Dinoor, A.; Herrmann, A.; Kosman, E. Comprehensive evaluation of virulence and resistance data: A new analysis tool. Plant Dis. 2012, 96, 1060–1063. [Google Scholar] [CrossRef] [PubMed]
- Kamvar, Z.N.; Brooks, J.C.; Grünwald, N.J. Novel R tools for analysis of genome-wide population genetic data with emphasis on clonality. Front. Genet. 2015, 6, 208. [Google Scholar] [CrossRef] [PubMed]
- Peakall, R.; Smouse, P.E. GenALEx 6.5: Genetic analysis in excel. Population genetic software for teaching and research an update. Bioinformatics 2012, 28, 2537–2539. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Awais, M.; Yang, H.; Shen, Y.Y.; Li, G.K.; Guo, H.F.; Ma, J.B. Races CYR34 and Suwon11-1 of Puccinia striiformis f. sp. tritici played an important role in causing the stripe rust epidemic in winter wheat in Yili, Xinjiang, China. J. Fungi 2023, 9, 436. [Google Scholar]
- Zeng, S.M.; Luo, Y. Long-distance spread and interregional epidemics of wheat stripe rust in China. Plant Dis. 2006, 90, 980–988. [Google Scholar] [CrossRef]
- Hovmøller, M.S.; Justesen, A.F. Rates of evolution of avirulence phenotypes and DNA markers in a northwest European population of Puccinia striiformis f. sp. tritici. Mol. Ecol. 2007, 16, 4637–4647. [Google Scholar] [CrossRef] [PubMed]
- Zhou, A.H.; Wang, J.; Chen, X.M.; Xia, M.H.; Feng, Y.X.; Ji, F.; Huang, L.L. Virulence characterization of Puccinia striiformis f. sp. tritici in China using the Chinese and Yr single-gene differentials. Plant Dis. 2021, 108, 671–683. [Google Scholar]
- Hubbard, A.; Lewis, C.M.; Yoshida, K.; Ramirez-Gonzalez, R.H.; de Vallavieille-Pope, C.; Thomas, J.; Kamoun, S.; Bayles, R.; Uauy, C.; Saunders, D.G. Field pathogenomics reveals the emergence of adiverse wheat yellow rust population. Genome Biol. 2015, 16, 23. [Google Scholar] [CrossRef] [PubMed]
- Zhan, G.M.; Wang, F.P.; Wan, C.P.; Han, Q.M.; Huang, L.L.; Kang, Z.S.; Chen, X.M. Virulence and molecular diversity of the Puccinia striiformis f. sp. tritici population in Xinjiang in relation to other regions of western China. Plant Dis. 2016, 100, 99–107. [Google Scholar] [CrossRef]
- van Silfhout, C.H.; Adriana, G.; Gerechter-amitai, Z.K.; Frida, K. Identification and characterization of resistance to yellow rust and powdery mildew in wild emmer wheat and their transfer to bread wheat. Neth. J. Plant Pathol. 1989, 95, 73–78. [Google Scholar]
- Tekin, M.; Cat, A.; Akan, K.; Catal, M.; Akar, T. A new virulent race of wheat stripe rust pathogen (Puccinia striiformis f. sp. tritici) on the resistance gene Yr5 in Turkey. Plant Dis. 2021, 105, 3292. [Google Scholar] [CrossRef]
- Kharouf, S.H.; Hamzeh, S.H.; Azmeh, M.F. Races identification of wheat rusts in Syria during the 2019 growing season. Arab J. Plant Prot. 2021, 39, 1–13. [Google Scholar] [CrossRef]
- Zhang, G.S.; Zhao, Y.Y.; Kang, Z.S.; Zhao, J. First report of a Puccinia striiformis f. sp. tritici race virulent to wheat stripe rust resistance gene Yr5 in China. Plant Dis. 2019, 104, 284. [Google Scholar] [CrossRef]
- Zheng, S.G.; Li, Y.F.; Lu, L.; Liu, Z.; Zhang, C.H.; Ao, D.H.; Li, L.R.; Zhang, C.Y.; Liu, R.; Luo, C.P.; et al. Evaluating the contribution of Yr genes to stripe rust resistance breeding through marker-assisted detection in wheat. Euphytica 2017, 213, 50. [Google Scholar] [CrossRef]
- Chen, X.M.; Wang, M.N.; Wan, A.M.; Bai, Q.; Li, M.J.; López, P.F.; Maccaferr, M.; Mastrangelo, A.M.; Barnes, W.C.; Cruz, D.F.C.; et al. Virulence characterization of Puccinia striiformis f. sp. tritici collections from six countries in 2013 to 2020. Can. J. Plant Pathol. 2021, 43, 308–322. [Google Scholar] [CrossRef]
- Burdon, J.J.; Silk, J. Sources and patterns of diversity in plant-pathogenic fungi. Phytopathology 1997, 87, 664–669. [Google Scholar] [CrossRef] [PubMed]
- Li, G.Q.; Li, Z.F.; Yang, W.Y.; Zhang, Y.; He, Z.H.; Xu, S.C.; Singh, R.P.; Qu, Y.Y.; Xia, X.C. Molecular mapping of stripe rust resistance gene YrCH42 in Chinese wheat cultivar Chuanmai 42 and its allelism with Yr24 and Yr26. Theor. Appl. Genet. 2006, 112, 1434–1440. [Google Scholar] [CrossRef]
- Han, D.J.; Wang, Q.L.; Chen, X.M. Emerging Yr26 virulent races of Puccinia striiformis f. sp. tritici are threatening wheat production in the Sichuan Basin, China. Plant Dis. 2015, 99, 754–760. [Google Scholar] [CrossRef]
- Wang, C.C.; Zhang, R.; Chu, B.Y.; Wu, B.M.; Ma, Z.H. Population genetic structure of Puccinia striiformis f. sp. tritici at the junction of Gansu, Sichuan and Shaanxi provinces in China. Phytopathol. Res. 2019, 1, 25. [Google Scholar] [CrossRef]
- Liu, X.F.; Huang, C.; Sun, Z.Y.; Liang, J.M.; Luo, Y.; Ma, Z.H. Analysis of population structure of Puccinia striiformis in Yunnan province of China by using AFLP. Eur. J. Plant Pathol. 2011, 129, 43–55. [Google Scholar] [CrossRef]
- Lu, N.H.; Wang, J.F.; Chen, X.M.; Zhan, G.M.; Chen, C.Q.; Huang, L.L.; Kang, Z.S. Spatial genetic diversity and interregional spread of Puccinia striiformis f. sp. tritici in northwest China. Eur. J. Plant Pathol. 2011, 131, 685–693. [Google Scholar] [CrossRef]
- Liang, J.M.; Liu, X.F.; Tsui, C.K.M.; Ma, Z.H.; Luo, Y. Genetic structure and asymmetric migration of wheat stripe rust pathogen in western epidemic areas of China. Phytopathology 2021, 111, 1252–1260. [Google Scholar] [CrossRef] [PubMed]
No. | Pathotype a | Yunnan | Guizhou | Sichuan | Gansu | No. Isolates/Mean | Frequency (%) |
---|---|---|---|---|---|---|---|
1 | V2, 4, 8, 14 | (2) | 1 (2) b | 1 (1) | 7 | 5.0 | |
2 | V2, 4, 8, 12, 14, 16 | 5 | (1) | 6 | 4.2 | ||
3 | V2, 8, 14 | 1 (1) | 1 | 1 (1) | 5 | 3.5 | |
5 | V0 | (1) | (2) | (2) | 5 | 3.5 | |
4 | V4, 14, 16 | 1 | 3 | 4 | 2.8 | ||
6 | V2, 14 | (2) | (1) | (1) | 4 | 2.8 | |
7 | V2, 8, 14, 19 | (1) | (1) | (2) | 4 | 2.8 | |
8 | V2, 4, 8, 10, 14, 19 | 2 | (1) | (1) | 4 | 2.8 | |
9 | V2, 8 | (2) | (2) | 4 | 2.8 | ||
10 | V2, 4, 14, 16 | 3 | 3 | 2.1 | |||
11 | V2, 3, 4, 6, 7, 8, 10, 11, 12, 14, 16, 19 | 1 | 1 | 2 | 1.4 | ||
12 | V2, 10 | 1 | 1 | 2 | 1.4 | ||
13 | V3, 7, 10, 19 | 1 | (1) | 2 | 1.4 | ||
14 | V2, 4, 8, 11, 14, 16 | 1 | 1 | 2 | 1.4 | ||
15 | V2, 8, 14, 16 | 2 | 2 | 1.4 | |||
16 | V2, 8, 19 | (2) | 2 | 1.4 | |||
17 | V2, 7, 8, 14, 19 | (1) | (1) | 2 | 1.4 | ||
18 | V2, 4, 7, 8, 14 | (1) | 1 | 2 | 1.4 | ||
19 | V2 | (1) | (1) | 2 | 1.4 | ||
H c | 3.6 | 2.8 | 3.5 | 3.6 | 3.4 |
Yr Genes | New Isolates | Old Isolates | p-Value | |||||||
---|---|---|---|---|---|---|---|---|---|---|
SCNI (29) | YNNI (19) | GZNI (11) | Mean | SCOI (22) | YNOI (24) | GZOI (10) | GSOI (28) | Mean | ||
Yr21 | 24.1 | 57.9 | 64.0 | 48.7 | 36.4 | 55.2 | 60.0 | 57.1 | 51.9 | 0.400 |
Yr76 | 31.0 | 47.4 | 50.0 | 42.8 | 18.2 | 20.8 | 44.4 | 22.2 | 26.4 | 0.059 |
Yr50 | 37.9 | 42.1 | 10.0 | 30.0 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.008 |
Yr40 | 72.4 | 68.4 | 30.0 | 56.9 | 36.4 | 50.0 | 40.0 | 32.2 | 39.7 | 0.107 |
Yr41 | 34.5 | 31.6 | 30.0 | 32.0 | 13.6 | 4.20 | 0.00 | 21.4 | 9.80 | 0.006 |
Yr45 | 69.0 | 63.2 | 91.0 | 74.4 | 81.8 | 91.7 | 90.0 | 82.1 | 86.4 | 0.090 |
YrSu | 72.4 | 57.9 | 82.0 | 70.8 | 63.6 | 58.3 | 70.0 | 75.9 | 67.0 | 0.314 |
Yr43 | 62.1 | 57.9 | 73.0 | 64.3 | 72.7 | 75.0 | 70.0 | 57.1 | 68.7 | 0.251 |
YrA | 58.6 | 52.6 | 46.0 | 52.4 | 31.8 | 54.2 | 50.0 | 60.7 | 49.2 | 0.351 |
Yr25 | 58.6 | 50.4 | 82.0 | 63.7 | 63.6 | 83.3 | 90.0 | 75.0 | 78.0 | 0.114 |
Yr1 | 55.2 | 47.4 | 30.0 | 44.2 | 31.8 | 30.8 | 20.0 | 46.4 | 31.8 | 0.265 |
Yr5 | 0.00 | 0.00 | 0.00 | 0.0 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |
Yr6 | 45.2 | 68.4 | 46.0 | 56.5 | 18.2 | 54.2 | 60.0 | 53.6 | 46.5 | 0.230 |
Yr3c | 44.8 | 57.9 | 60.0 | 54.2 | 31.8 | 41.7 | 60.0 | 46.4 | 45.0 | 0.150 |
Yr7 | 82.8 | 55.6 | 91.0 | 76.5 | 45.5 | 58.3 | 70.0 | 71.4 | 61.3 | 0.121 |
Yr8 | 27.6 | 47.4 | 30.0 | 35.0 | 59.1 | 62.5 | 70.0 | 64.3 | 64.0 | 0.002 |
Yr9 | 58.6 | 52.6 | 60.0 | 57.1 | 27.3 | 62.5 | 30.0 | 57.1 | 44.2 | 0.146 |
Yr24 | 20.0 | 20.0 | 10.0 | 16.7 | 13.6 | 20.0 | 20.0 | 20.0 | 20.0 | 0.195 |
Yr32 | 13.8 | 47.4 | 20.0 | 27.1 | 13.6 | 4.20 | 0.00 | 25.0 | 10.7 | 0.096 |
Yr64 | 48.3 | 31.6 | 82.0 | 54.0 | 50.0 | 41.7 | 55.0 | 36.0 | 45.7 | 0.637 |
Yr10 | 41.4 | 10.5 | 40.0 | 30.6 | 4.50 | 4.20 | 0.00 | 11.0 | 4.90 | 0.017 |
Yr15 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |
Yr17 | 44.8 | 26.3 | 50.0 | 42.0 | 13.6 | 12.5 | 20.0 | 25.0 | 17.8 | 0.036 |
Yr44 | 58.6 | 42.1 | 50.0 | 50.2 | 68.2 | 87.5 | 50.0 | 64.3 | 67.5 | 0.072 |
YrSp | 31.0 | 21.1 | 40.0 | 30.7 | 13.6 | 16.7 | 0.00 | 25.0 | 13.8 | 0.039 |
YrTr1 | 31.0 | 31.6 | 20.0 | 27.5 | 0.00 | 8.30 | 0.00 | 0.00 | 2.10 | 0.001 |
Yr26 | 17.2 | 16.8 | 20.0 | 18.0 | 4.50 | 8.30 | 0.00 | 11.1 | 6.00 | 0.005 |
Yr29 | 79.3 | 55.0 | 73.0 | 69.1 | 55.0 | 50.0 | 30.0 | 46.4 | 45.4 | 0.022 |
YrJu4 | 83.3 | 68.4 | 70.0 | 73.9 | 86.4 | 87.5 | 55.0 | 85.7 | 77.4 | 0.387 |
YrKy2 | 30.0 | 52.6 | 60.0 | 47.5 | 54.5 | 54.2 | 50.0 | 64.3 | 55.8 | 0.185 |
YrRes | 93.3 | 78.9 | 70.0 | 80.7 | 68.2 | 58.3 | 70.0 | 82.1 | 69.7 | 0.115 |
Population | Total Isolates | UVP (%) | AVC | RVC | VU |
---|---|---|---|---|---|
SCNI | 29 | 100 | 14.4 | 0.46 | 0.31 |
SCOI | 22 | 100 | 10.6 | 0.34 | 0.36 |
YNNI | 19 | 100 | 13.7 | 0.44 | 0.30 |
YNOI | 24 | 100 | 12.4 | 0.40 | 0.26 |
GZNI | 11 | 100 | 14.4 | 0.46 | 0.23 |
GZOI | 10 | 100 | 11.5 | 0.37 | 0.27 |
GSOI | 28 | 100 | 13.6 | 0.44 | 0.24 |
Yr Gene Pair | Pathogen Alleles a | Total | VV b Proportion | Association Type c | p-Value d | |||
---|---|---|---|---|---|---|---|---|
AA | AV | VA | VV | |||||
Yr76 41 | 88 | 10 | 11 | 34 | 143 | 0.24 | + | <0.001 |
Yr76 32 | 93 | 6 | 35 | 9 | 143 | 0.06 | + | 0.016 |
Yr76 10 | 92 | 7 | 34 | 10 | 143 | 0.07 | + | 0.012 |
Yr76 Sp | 86 | 14 | 30 | 13 | 143 | 0.09 | + | 0.038 |
Yr76 Tr1 | 91 | 8 | 34 | 10 | 143 | 0.07 | + | 0.026 |
Yr50 41 | 119 | 17 | 3 | 4 | 143 | 0.03 | + | 0.009 |
Yr50 5 | 130 | 2 | 7 | 4 | 143 | 0.03 | + | <0.001 |
Yr50 24 | 110 | 26 | 3 | 4 | 143 | 0.03 | + | 0.035 |
Yr50 10 | 125 | 11 | 3 | 4 | 143 | 0.03 | + | 0.002 |
Yr50 Sp | 114 | 22 | 3 | 4 | 143 | 0.03 | + | 0.021 |
Yr50 Tr1 | 125 | 11 | 3 | 4 | 143 | 0.03 | + | 0.002 |
Yr50 26 | 121 | 15 | 4 | 3 | 143 | 0.02 | + | 0.043 |
Yr50 Ju4 | 28 | 0 | 60 | 55 | 143 | 0.38 | +/− | <0.001 |
Yr50 Ky2 | 69 | 67 | 0 | 7 | 143 | 0.05 | +/− | 0.014 |
Yr41 10 | 114 | 8 | 14 | 7 | 143 | 0.05 | + | 0.002 |
Yr41 17 | 98 | 24 | 7 | 14 | 143 | 0.10 | + | <0.001 |
Yr41 Ky2 | 64 | 58 | 5 | 16 | 143 | 0.11 | +/− | 0.018 |
Yr24 32 | 101 | 27 | 3 | 12 | 143 | 0.08 | + | <0.001 |
Yr24 10 | 105 | 8 | 23 | 7 | 143 | 0.05 | + | 0.017 |
Yr24 26 | 105 | 8 | 20 | 10 | 143 | 0.07 | + | <0.001 |
Yr32 26 | 117 | 11 | 8 | 7 | 143 | 0.05 | + | <0.001 |
Yr17 Sp | 92 | 13 | 25 | 13 | 143 | 0.09 | + | 0.006 |
Yr17 26 | 98 | 7 | 27 | 11 | 143 | 0.08 | + | 0.001 |
YrSp Tr1 | 109 | 8 | 19 | 7 | 143 | 0.05 | + | 0.007 |
YrSp 26 | 107 | 10 | 18 | 8 | 143 | 0.06 | + | 0.005 |
YrTr1 26 | 117 | 11 | 8 | 7 | 143 | 0.05 | + | <0.001 |
Pst Population | N | Na | Ne | I | uh | PPL (%) |
---|---|---|---|---|---|---|
Old population | 84 | 1.94 | 1.58 | 0.51 | 0.34 | 97 |
New population | 59 | 1.97 | 1.53 | 0.48 | 0.32 | 97 |
Guizhou population | 21 | 1.81 | 1.54 | 0.46 | 0.32 | 86 |
Sichuan population | 51 | 2.00 | 1.54 | 0.49 | 0.33 | 100 |
Yunnan population | 43 | 2.00 | 1.56 | 0.51 | 0.34 | 100 |
Gansu population | 28 | 1.94 | 1.56 | 0.51 | 0.35 | 97 |
Mean | 47.67 | 1.94 | 1.55 | 0.49 | 0.33 | 96 |
Source of Variation | Degree of Freedom | Sum of Squares | Component of Variations | Percentage of Variation (%) | p-Value |
---|---|---|---|---|---|
Among provinces | 3 | 56.6 | 0.4 | 6 | 0.001 |
Within provinces | 139 | 839.6 | 6.0 | 94 | 0.001 |
Total | 142 | 896.3 | 6.4 | 100 | |
Between isolate groups | 1 | 57.1 | 0.7 | 11 | 0.001 |
Within isolate groups | 141 | 848.0 | 6.0 | 89 | 0.001 |
Total | 142 | 905.1 | 6.8 | 100 |
YN | GZ | SC | GS | |
---|---|---|---|---|
YN | ||||
GZ | 0.06 | |||
SC | 0.03 | 0.06 | ||
GS | 0.04 | 0.06 | 0.10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gebremariam, T.G.; Wang, F.; Lin, R.; Li, H. Comparative Analysis of Virulence and Molecular Diversity of Puccinia striiformis f. sp. tritici Isolates Collected in 2016 and 2023 in the Western Region of China. Genes 2024, 15, 542. https://doi.org/10.3390/genes15050542
Gebremariam TG, Wang F, Lin R, Li H. Comparative Analysis of Virulence and Molecular Diversity of Puccinia striiformis f. sp. tritici Isolates Collected in 2016 and 2023 in the Western Region of China. Genes. 2024; 15(5):542. https://doi.org/10.3390/genes15050542
Chicago/Turabian StyleGebremariam, Tesfay Gebrekirstos, Fengtao Wang, Ruiming Lin, and Hongjie Li. 2024. "Comparative Analysis of Virulence and Molecular Diversity of Puccinia striiformis f. sp. tritici Isolates Collected in 2016 and 2023 in the Western Region of China" Genes 15, no. 5: 542. https://doi.org/10.3390/genes15050542
APA StyleGebremariam, T. G., Wang, F., Lin, R., & Li, H. (2024). Comparative Analysis of Virulence and Molecular Diversity of Puccinia striiformis f. sp. tritici Isolates Collected in 2016 and 2023 in the Western Region of China. Genes, 15(5), 542. https://doi.org/10.3390/genes15050542