Normalized Clinical Severity Scores Reveal a Correlation between X Chromosome Inactivation and Disease Severity in Rett Syndrome
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Data Used for This Manuscript
2.3. XCI Data Generation
2.4. CSS Model Development
2.4.1. Model Development
tij = Mean_lnage_centerj + Mean_lnage_centerj : Durationij + Durationij
Level 2 β0j = γ00 + γ01MECP2_genotypej + U0j
β1j = γ10 + γ11MECP2_genotypej + U1j
2.4.2. Model Validation
2.4.3. CSS Trajectory Prediction
2.4.4. CSS Percentile Estimation and Normative CSS Calculation
2.5. Analysis of XCI Effect
2.6. Data and Code Availability
3. Results
3.1. pXCI Does Not Correlate with Raw CSS Scores
3.2. Modeling Accurately Predicts Rett Syndrome Severity over Time
3.3. Age- and Genotype-Normalized CSS Scores Reveal a Genotype-Dependent Correlation between pXCI and Severity
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Neul, J.L.; Kaufmann, W.E.; Glaze, D.G.; Christodoulou, J.; Clarke, A.J.; Bahi-Buisson, N.; Leonard, H.; Bailey, M.E.S.; Schanen, N.C.; Zappella, M.; et al. Rett Syndrome: Revised Diagnostic Criteria and Nomenclature. Ann. Neurol. 2010, 68, 944–950. [Google Scholar] [CrossRef] [PubMed]
- Rett, A. On a Remarkable Syndrome of Cerebral Atrophy Associated with Hyperammonaemia in Childhood. Wien. Med. Wochenschr. 2016, 166, 322–324. [Google Scholar] [CrossRef] [PubMed]
- May, D.; Kponee-Shovein, K.; Mahendran, M.; Downes, N.; Sheng, K.; Lefebvre, P.; Cheng, W.Y. Epidemiology and Patient Journey of Rett Syndrome in the United States: A Real-World Evidence Study. BMC Neurol. 2023, 23, 141. [Google Scholar] [CrossRef] [PubMed]
- Petriti, U.; Dudman, D.C.; Scosyrev, E.; Lopez-Leon, S. Global Prevalence of Rett Syndrome: Systematic Review and Meta-Analysis. Syst. Rev. 2023, 12, 5. [Google Scholar] [CrossRef] [PubMed]
- Abbas, A.; Fayoud, A.M.; El Din Moawad, M.H.; Hamad, A.A.; Hamouda, H.; Fouad, E.A. Safety and Efficacy of Trofinetide in Rett Syndrome: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. BMC Pediatr. 2024, 24, 206. [Google Scholar] [CrossRef]
- Neul, J.L.; Percy, A.K.; Benke, T.A.; Berry-Kravis, E.M.; Glaze, D.G.; Marsh, E.D.; Lin, T.; Stankovic, S.; Bishop, K.M.; Youakim, J.M. Trofinetide for the Treatment of Rett Syndrome: A Randomized Phase 3 Study. Nat. Med. 2023, 29, 1468–1475. [Google Scholar] [CrossRef] [PubMed]
- Vignoli, A.; Savini, M.N.; Nowbut, M.S.; Peron, A.; Turner, K.; Briola, F.L.; Canevini, M.P. Effectiveness and Tolerability of Antiepileptic Drugs in 104 Girls with Rett Syndrome. Epilepsy Behav. 2017, 66, 27–33. [Google Scholar] [CrossRef]
- Menachem, S.; Hershkovich, O.; Ackshota, N.; Friedlander, A.; Givon, U.; Ben-Zeev, B.; Caspi, I. Scoliosis in RETT Syndrome: A National Referral Centre Experience. Clin. Spine Surg. 2023, 36, E75. [Google Scholar] [CrossRef] [PubMed]
- Downs, J.; Wong, K.; Ravikumara, M.; Ellaway, C.; Elliott, E.J.; Christodoulou, J.; Jacoby, P.; Leonard, H. Experience of Gastrostomy Using a Quality Care Framework: The Example of Rett Syndrome. Medicine 2014, 93, e328. [Google Scholar] [CrossRef]
- Amir, R.E.; Van den Veyver, I.B.; Wan, M.; Tran, C.Q.; Francke, U.; Zoghbi, H.Y. Rett Syndrome Is Caused by Mutations in X-Linked MECP2, Encoding Methyl-CpG-Binding Protein 2. Nat. Genet. 1999, 23, 185–188. [Google Scholar] [CrossRef]
- Wan, M.; Lee, S.S.J.; Zhang, X.; Houwink-Manville, I.; Song, H.-R.; Amir, R.E.; Budden, S.; Naidu, S.; Pereira, J.L.P.; Lo, I.F.M.; et al. Rett Syndrome and Beyond: Recurrent Spontaneous and Familial MECP2 Mutations at CpG Hotspots. Am. J. Hum. Genet. 1999, 65, 1520–1529. [Google Scholar] [CrossRef] [PubMed]
- Bienvenu, T.; Carrié, A.; de Roux, N.; Vinet, M.-C.; Jonveaux, P.; Couvert, P.; Villard, L.; Arzimanoglou, A.; Beldjord, C.; Fontes, M.; et al. MECP2 Mutations Account for Most Cases of Typical Forms of Rett Syndrome. Hum. Mol. Genet. 2000, 9, 1377–1384. [Google Scholar] [CrossRef] [PubMed]
- Neul, J.L.; Fang, P.; Barrish, J.; Lane, J.; Caeg, E.B.; Smith, E.O.; Zoghbi, H.; Percy, A.; Glaze, D.G. Specific Mutations in Methyl-CpG-Binding Protein 2 Confer Different Severity in Rett Syndrome. Neurology 2008, 70, 1313–1321. [Google Scholar] [CrossRef] [PubMed]
- Naidu, S.; Bibat, G.; Kratz, L.; Kelley, R.I.; Pevsner, J.; Hoffman, E.; Cuffari, C.; Rohde, C.; Blue, M.E.; Johnston, M.V. Clinical Variability in Rett Syndrome. J. Child Neurol. 2003, 18, 662–668. [Google Scholar] [CrossRef] [PubMed]
- Cuddapah, V.A.; Pillai, R.B.; Shekar, K.V.; Lane, J.B.; Motil, K.J.; Skinner, S.A.; Tarquinio, D.C.; Glaze, D.G.; McGwin, G.; Kaufmann, W.E.; et al. Methyl-CpG-Binding Protein 2 (MECP2) Mutation Type Is Associated with Disease Severity in Rett Syndrome. J. Med. Genet. 2014, 51, 152–158. [Google Scholar] [CrossRef] [PubMed]
- Frullanti, E.; Papa, F.T.; Grillo, E.; Clarke, A.; Ben-Zeev, B.; Pineda, M.; Bahi-Buisson, N.; Bienvenu, T.; Armstrong, J.; Roche Martinez, A.; et al. Analysis of the Phenotypes in the Rett Networked Database. Int. J. Genom. 2019, 2019, 6956934. [Google Scholar] [CrossRef] [PubMed]
- Romano, A.; Lotan, M.; Fabio, R.A. A Severity Comparison between Italian and Israeli Rett Syndrome Cohorts. Diagnostics 2023, 13, 3390. [Google Scholar] [CrossRef] [PubMed]
- Disteche, C.M.; Berletch, J.B. X-Chromosome Inactivation and Escape. J. Genet. 2015, 94, 591–599. [Google Scholar] [CrossRef] [PubMed]
- Van den Veyver, I.B.; Zoghbi, H.Y. Mutations in the Gene Encoding Methyl-CpG-Binding Protein 2 Cause Rett Syndrome. Brain Dev. 2001, 23 (Suppl. S1), S147–S151. [Google Scholar] [CrossRef]
- Trappe, R.; Laccone, F.; Cobilanschi, J.; Meins, M.; Huppke, P.; Hanefeld, F.; Engel, W. MECP2 Mutations in Sporadic Cases of Rett Syndrome Are Almost Exclusively of Paternal Origin. Am. J. Hum. Genet. 2001, 68, 1093–1101. [Google Scholar] [CrossRef]
- Chae, J.H.; Hwang, H.; Hwang, Y.S.; Cheong, H.J.; Kim, K.J. Influence of MECP2 Gene Mutation and X-Chromosome Inactivation on the Rett Syndrome Phenotype. J. Child Neurol. 2004, 19, 503–508. [Google Scholar] [CrossRef] [PubMed]
- Miltenberger-Miltenyi, G.; Laccone, F. Mutations and Polymorphisms in the Human Methyl CpG-Binding Protein MECP2. Hum. Mutat. 2003, 22, 107–115. [Google Scholar] [CrossRef] [PubMed]
- Ravn, K.; Roende, G.; Duno, M.; Fuglsang, K.; Eiklid, K.L.; Tümer, Z.; Nielsen, J.B.; Skjeldal, O.H. Two New Rett Syndrome Families and Review of the Literature: Expanding the Knowledge of MECP2 Frameshift Mutations. Orphanet J. Rare Dis. 2011, 6, 58. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhao, Y.; Bao, X.; Luo, J.; Zhang, X.; Li, J.; Wei, L.; Wu, X. Familial Cases and Male Cases with MECP2 Mutations. Am. J. Med. Genet. B Neuropsychiatr. Genet. 2017, 174, 451–457. [Google Scholar] [CrossRef]
- Archer, H.; Evans, J.; Leonard, H.; Colvin, L.; Ravine, D.; Christodoulou, J.; Williamson, S.; Charman, T.; Bailey, M.E.S.; Sampson, J.; et al. Correlation between Clinical Severity in Patients with Rett Syndrome with a p.R168X or p.T158M MECP2 Mutation, and the Direction and Degree of Skewing of X-Chromosome Inactivation. J. Med. Genet. 2007, 44, 148–152. [Google Scholar] [CrossRef] [PubMed]
- Fang, X.; Butler, K.M.; Abidi, F.; Gass, J.; Beisang, A.; Feyma, T.; Ryther, R.C.; Standridge, S.; Heydemann, P.; Jones, M.; et al. Analysis of X-inactivation Status in a Rett Syndrome Natural History Study Cohort. Mol. Genet. Genom. Med. 2022, 10, e1917. [Google Scholar] [CrossRef]
- Xiol, C.; Vidal, S.; Pascual-Alonso, A.; Blasco, L.; Brandi, N.; Pacheco, P.; Gerotina, E.; O’Callaghan, M.; Pineda, M.; Armstrong, J.; et al. X Chromosome Inactivation Does Not Necessarily Determine the Severity of the Phenotype in Rett Syndrome Patients. Sci. Rep. 2019, 9, 11983. [Google Scholar] [CrossRef]
- Amir, R.E.; Van Den Veyver, I.B.; Schultz, R.; Malicki, D.M.; Tran, C.Q.; Dahle, E.J.; Philippi, A.; Timar, L.; Percy, A.K.; Motil, K.J.; et al. Influence of Mutation Type and X Chromosome Inactivation on Rett Syndrome Phenotypes. Ann. Neurol. 2000, 47, 670–679. [Google Scholar] [CrossRef]
- Ehrhart, F.; Jacobsen, A.; Rigau, M.; Bosio, M.; Kaliyaperumal, R.; Laros, J.F.J.; Willighagen, E.L.; Valencia, A.; Roos, M.; Capella-Gutierrez, S.; et al. A Catalogue of 863 Rett-Syndrome-Causing MECP2 Mutations and Lessons Learned from Data Integration. Sci. Data 2021, 8, 10. [Google Scholar] [CrossRef]
- Pegoraro, E.; Schimke, R.N.; Arahata, K.; Hayashi, Y.; Stern, H.; Marks, H.; Glasberg, M.R.; Carroll, J.E.; Taber, J.W.; Wessel, H.B. Detection of New Paternal Dystrophin Gene Mutations in Isolated Cases of Dystrophinopathy in Females. Am. J. Hum. Genet. 1994, 54, 989–1003. [Google Scholar]
- Murphy, J.I.; Weaver, N.E.; Hendricks, A.E. Accessible Analysis of Longitudinal Data with Linear Mixed Effects Models. Dis. Model. Mech. 2022, 15, dmm048025. [Google Scholar] [CrossRef] [PubMed]
- Kraemer, H.C.; Yesavage, J.A.; Taylor, J.L.; Kupfer, D. How Can We Learn About Developmental Processes From Cross-Sectional Studies, or Can We? Am. J. Psychiatry 2000, 157, 163–171. [Google Scholar] [CrossRef]
- Curran, P.J.; Bauer, D.J. The Disaggregation of Within-Person and Between-Person Effects in Longitudinal Models of Change. Annu. Rev. Psychol. 2011, 62, 583–619. [Google Scholar] [CrossRef]
- Hopwood, C.J.; Bleidorn, W.; Wright, A.G.C. Connecting Theory to Methods in Longitudinal Research. Perspect. Psychol. Sci. 2022, 17, 884–894. [Google Scholar] [CrossRef]
- Rizopoulos, D. The R Package JMbayes for Fitting Joint Models for Longitudinal and Time-to-Event Data Using MCMC. J. Stat. Softw. 2016, 72, 1–46. [Google Scholar] [CrossRef]
- Shahbazian, M.D.; Sun, Y.; Zoghbi, H.Y. Balanced X Chromosome Inactivation Patterns in the Rett Syndrome Brain. Am. J. Med. Genet. 2002, 111, 164–168. [Google Scholar] [CrossRef]
- Zhu, X.; Li, M.; Pan, H.; Bao, X.; Zhang, J.; Wu, X. Analysis of the Parental Origin of De Novo MECP2 Mutations and X Chromosome Inactivation in 24 Sporadic Patients With Rett Syndrome in China. J. Child Neurol. 2010, 25, 842–848. [Google Scholar] [CrossRef] [PubMed]
- Tukiainen, T.; Villani, A.-C.; Yen, A.; Rivas, M.A.; Marshall, J.L.; Satija, R.; Aguirre, M.; Gauthier, L.; Fleharty, M.; Kirby, A.; et al. Landscape of X Chromosome Inactivation across Human Tissues. Nature 2017, 550, 244–248. [Google Scholar] [CrossRef] [PubMed]
- Sadhu, C.; Lyons, C.; Oh, J.; Jagadeeswaran, I.; Gray, S.J.; Sinnett, S.E. The Efficacy of a Human-Ready miniMECP2 Gene Therapy in a Pre-Clinical Model of Rett Syndrome. Genes 2023, 15, 31. [Google Scholar] [CrossRef]
- Powers, S.; Likhite, S.; Gadalla, K.K.; Miranda, C.J.; Huffenberger, A.J.; Dennys, C.; Foust, K.D.; Morales, P.; Pierson, C.R.; Rinaldi, F.; et al. Novel MECP2 Gene Therapy Is Effective in a Multicenter Study Using Two Mouse Models of Rett Syndrome and Is Safe in Non-Human Primates. Mol. Ther. 2023, 31, 2767–2782. [Google Scholar] [CrossRef]
- Carrette, L.L.G.; Blum, R.; Ma, W.; Kelleher, R.J.; Lee, J.T. Tsix-Mecp2 Female Mouse Model for Rett Syndrome Reveals That Low-Level MECP2 Expression Extends Life and Improves Neuromotor Function. Proc. Natl. Acad. Sci. USA 2018, 115, 8185–8190. [Google Scholar] [CrossRef]
- Carrette, L.L.G.; Wang, C.-Y.; Wei, C.; Press, W.; Ma, W.; Kelleher, R.J.; Lee, J.T. A Mixed Modality Approach towards Xi Reactivation for Rett Syndrome and Other X-Linked Disorders. Proc. Natl. Acad. Sci. USA 2018, 115, E668–E675. [Google Scholar] [CrossRef]
- Przanowski, P.; Wasko, U.; Zheng, Z.; Yu, J.; Sherman, R.; Zhu, L.J.; McConnell, M.J.; Tushir-Singh, J.; Green, M.R.; Bhatnagar, S. Pharmacological Reactivation of Inactive X-Linked Mecp2 in Cerebral Cortical Neurons of Living Mice. Proc. Natl. Acad. Sci. USA 2018, 115, 7991–7996. [Google Scholar] [CrossRef]
- Raspa, M.; Bann, C.M.; Gwaltney, A.; Benke, T.A.; Fu, C.; Glaze, D.G.; Haas, R.; Heydemann, P.; Jones, M.; Kaufmann, W.E.; et al. A Psychometric Evaluation of the Motor-Behavioral Assessment Scale for Use as an Outcome Measure in Rett Syndrome Clinical Trials. Am. J. Intellect. Dev. Disabil. 2020, 125, 493–509. [Google Scholar] [CrossRef] [PubMed]
- Percy, A.K.; Neul, J.L.; Benke, T.A.; Marsh, E.D.; Glaze, D.G. A Review of the Rett Syndrome Behaviour Questionnaire and Its Utilization in the Assessment of Symptoms Associated with Rett Syndrome. Front. Pediatr. 2023, 11, 1229553. [Google Scholar] [CrossRef]
- Raspa, M.; Gwaltney, A.; Bann, C.; von Hehn, J.; Benke, T.A.; Marsh, E.D.; Peters, S.U.; Ananth, A.; Percy, A.K.; Neul, J.L. Psychometric Assessment of the Rett Syndrome Caregiver Assessment of Symptom Severity (RCASS). J. Autism Dev. Disord. 2024. [Google Scholar] [CrossRef]
Participants | Classic RTT | Atypical RTT | Age of First Visit (Years, Mean ± SD) | |
---|---|---|---|---|
Early Truncation | 17 | 16 | 1 | 5.7 ± 6.2 |
R106W | 8 | 7 | 1 | 6.7 ± 4.5 |
R133C | 10 | 9 | 1 | 6.1 ± 5.6 |
T158M | 26 | 26 | 0 | 7.8 ± 6.5 |
R168X | 25 | 25 | 0 | 5.9 ± 4.3 |
R255X | 24 | 23 | 1 | 5.7 ± 5.3 |
R270X | 14 | 13 | 1 | 6.0 ± 4.3 |
R294X | 16 | 14 | 2 | 8.2 ± 4.2 |
R306C | 19 | 17 | 2 | 7.2 ± 4.8 |
Large Deletion | 18 | 17 | 1 | 6.9 ± 6.4 |
CTT | 21 | 16 | 5 | 6.6 ± 5.4 |
Total | 198 | 183 | 15 | 6.6 ± 5.3 |
Participants | Classic RTT | Atypical RTT | Age of First Visit (Years, Mean ± SD) | Study Duration (Years, Mean ± SD) | |
---|---|---|---|---|---|
Early Truncation | 111 | 100 | 11 | 7.6 ± 6.1 | 5.2 ± 3.9 |
R106W | 40 | 35 | 5 | 5.5 ± 4.2 | 5.8 ± 4.4 |
R133C | 94 | 70 | 24 | 8.2 ± 6.1 | 4.3 ± 4.2 |
T158M | 124 | 119 | 5 | 8.8 ± 6.4 | 5.1 ± 3.9 |
R168X | 133 | 122 | 11 | 7.3 ± 6.2 | 4.7 ± 4.3 |
R255X | 123 | 111 | 12 | 6.9 ± 5.3 | 5.1 ± 4.1 |
R270X | 77 | 67 | 10 | 7.3 ± 5.4 | 4.4 ± 3.8 |
R294X | 77 | 65 | 12 | 10.4 ± 6.0 | 4.9 ± 4.4 |
R306C | 106 | 92 | 14 | 8.0 ± 5.7 | 5.1 ± 4.6 |
Large Deletion | 117 | 102 | 15 | 8.0 ± 6.0 | 4.8 ± 3.9 |
CTT | 176 | 120 | 56 | 8.9 ± 5.9 | 4.2 ± 3.8 |
Total | 1178 | 1003 | 175 | 8.0 ± 5.9 | 4.8 ± 4.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Merritt, J.K.; Fang, X.; Caylor, R.C.; Skinner, S.A.; Friez, M.J.; Percy, A.K.; Neul, J.L. Normalized Clinical Severity Scores Reveal a Correlation between X Chromosome Inactivation and Disease Severity in Rett Syndrome. Genes 2024, 15, 594. https://doi.org/10.3390/genes15050594
Merritt JK, Fang X, Caylor RC, Skinner SA, Friez MJ, Percy AK, Neul JL. Normalized Clinical Severity Scores Reveal a Correlation between X Chromosome Inactivation and Disease Severity in Rett Syndrome. Genes. 2024; 15(5):594. https://doi.org/10.3390/genes15050594
Chicago/Turabian StyleMerritt, Jonathan K., Xiaolan Fang, Raymond C. Caylor, Steven A. Skinner, Michael J. Friez, Alan K. Percy, and Jeffrey L. Neul. 2024. "Normalized Clinical Severity Scores Reveal a Correlation between X Chromosome Inactivation and Disease Severity in Rett Syndrome" Genes 15, no. 5: 594. https://doi.org/10.3390/genes15050594
APA StyleMerritt, J. K., Fang, X., Caylor, R. C., Skinner, S. A., Friez, M. J., Percy, A. K., & Neul, J. L. (2024). Normalized Clinical Severity Scores Reveal a Correlation between X Chromosome Inactivation and Disease Severity in Rett Syndrome. Genes, 15(5), 594. https://doi.org/10.3390/genes15050594