Assessing DNA Degradation through Differential Amplification Efficiency of Total Human and Human Male DNA in a Forensic qPCR Assay
Abstract
:1. Introduction
2. Materials and Methods
2.1. FFPE Samples
2.2. DNA Extraction
2.3. DNA Quantitation
2.4. STR Amplification, Genotyping, and Determination of Quality Score of STR Profiles
2.5. Statistical Analysis
3. Results
3.1. Total Human and Human Male DNA Concentration in FFPE Samples
3.2. [Auto]/[Y] and [Auto]/[D] Values in FFPE Samples
3.3. STR Profile QS Values
3.4. Inferring STR Profiling Success in FFPE Samples by [Auto]/[Y] and [Auto]/[D] Values
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Alaeddini, R.; Walsh, S.J.; Abbas, A. Forensic Implications of Genetic Analyses from Degraded DNA—A Review. Forensic Sci. Int. Genet. 2010, 4, 148–157. [Google Scholar] [CrossRef] [PubMed]
- Gill, P.; Whitaker, J.; Flaxman, C.; Brown, N.; Buckleton, J. An Investigation of the Rigor of Interpretation Rules for STRs Derived from Less than 100 Pg of DNA. Forensic Sci. Int. 2000, 112, 17–40. [Google Scholar] [CrossRef] [PubMed]
- Butler, J.M. Forensic DNA Typing—2nd Edition. Available online: https://www.elsevier.com/books/forensic-dna-typing/butler/978-0-08-047061-0 (accessed on 19 March 2021).
- Lee, S.B.; McCord, B.; Buel, E. Advances in Forensic DNA Quantification: A Review. Electrophoresis 2014, 35, 3044–3052. [Google Scholar] [CrossRef] [PubMed]
- Walsh, P.S.; Varlaro, J.; Reynolds, R. A Rapid Chemiluminescent Method for Quantitation of Human DNA. Nucleic Acids Res. 1992, 20, 5061–5065. [Google Scholar] [CrossRef] [PubMed]
- Hayn, S.; Wallace, M.M.; Prinz, M.; Shaler, R.C. Evaluation of an Automated Liquid Hybridization Method for DNA Quantitation. J. Forensic Sci. 2004, 49, 87–91. [Google Scholar] [CrossRef] [PubMed]
- Heid, C.A.; Stevens, J.; Livak, K.J.; Williams, P.M. Real Time Quantitative PCR. Genome Res. 1996, 6, 986–994. [Google Scholar] [CrossRef] [PubMed]
- Nicklas, J.A.; Buel, E. Development of an Alu-Based, Real-Time PCR Method for Quantitation of Human DNA in Forensic Samples. J. Forensic Sci. 2003, 48, 936–944. [Google Scholar] [CrossRef] [PubMed]
- Barbisin, M.; Fang, R.; O’Shea, C.E.; Calandro, L.M.; Furtado, M.R.; Shewale, J.G. Developmental Validation of the Quantifiler Duo DNA Quantification Kit for Simultaneous Quantification of Total Human and Human Male DNA and Detection of PCR Inhibitors in Biological Samples. J. Forensic Sci. 2009, 54, 305–319. [Google Scholar] [CrossRef]
- Krenke, B.E.; Nassif, N.; Sprecher, C.J.; Knox, C.; Schwandt, M.; Storts, D.R. Developmental Validation of a Real-Time PCR Assay for the Simultaneous Quantification of Total Human and Male DNA. Forensic Sci. Int. Genet. 2008, 3, 14–21. [Google Scholar] [CrossRef] [PubMed]
- Purps, J.; Geppert, M.; Nagy, M.; Roewer, L. Validation of a Combined Autosomal/Y-Chromosomal STR Approach for Analyzing Typical Biological Stains in Sexual-Assault Cases. Forensic Sci. Int. Genet. 2015, 19, 238–242. [Google Scholar] [CrossRef] [PubMed]
- Green, R.L.; Roinestad, I.C.; Boland, C.; Hennessy, L.K. Developmental Validation of the Quantifiler Real-Time PCR Kits for the Quantification of Human Nuclear DNA Samples. J. Forensic Sci. 2005, 50, 809–825. [Google Scholar] [CrossRef] [PubMed]
- Alaeddini, R. Forensic Implications of PCR Inhibition—A Review. Forensic Sci. Int. Genet. 2012, 6, 297–305. [Google Scholar] [CrossRef] [PubMed]
- Holt, A.; Wootton, S.C.; Mulero, J.J.; Brzoska, P.M.; Langit, E.; Green, R.L. Developmental Validation of the Quantifiler(®) HP and Trio Kits for Human DNA Quantification in Forensic Samples. Forensic Sci. Int. Genet. 2016, 21, 145–157. [Google Scholar] [CrossRef] [PubMed]
- Ewing, M.M.; Thompson, J.M.; McLaren, R.S.; Purpero, V.M.; Thomas, K.J.; Dobrowski, P.A.; DeGroot, G.A.; Romsos, E.L.; Storts, D.R. Human DNA Quantification and Sample Quality Assessment: Developmental Validation of the PowerQuant(®) System. Forensic Sci. Int. Genet. 2016, 23, 166–177. [Google Scholar] [CrossRef]
- Swango, K.L.; Timken, M.D.; Chong, M.D.; Buoncristiani, M.R. A Quantitative PCR Assay for the Assessment of DNA Degradation in Forensic Samples. Forensic Sci. Int. 2006, 158, 14–26. [Google Scholar] [CrossRef] [PubMed]
- Gill, P.; Buckleton, J. A Universal Strategy to Interpret DNA Profiles That Does Not Require a Definition of Low-Copy-Number. Forensic Sci. Int. Genet. 2010, 4, 221–227. [Google Scholar] [CrossRef] [PubMed]
- Westen, A.A.; Nagel, J.H.A.; Benschop, C.C.G.; Weiler, N.E.C.; de Jong, B.J.; Sijen, T. Higher Capillary Electrophoresis Injection Settings as an Efficient Approach to Increase the Sensitivity of STR Typing. J. Forensic Sci. 2009, 54, 591–598. [Google Scholar] [CrossRef] [PubMed]
- Benschop, C.C.G.; Yoo, S.Y.; Sijen, T. Split DNA over Replicates or Perform One Amplification? Forensic Sci. Int. Genet. Suppl. Ser. 2015, 5, e532–e533. [Google Scholar] [CrossRef]
- Bleka, Ø.; Prieto, L.; Gill, P. EFMrep: An Extension of EuroForMix for Improved Combination of STR DNA Mixture Profiles. Forensic Sci. Int. Genet. 2022, 61, 102771. [Google Scholar] [CrossRef] [PubMed]
- Vraneš, M.; Scherer, M.; Elliott, K. Development and Validation of the Investigator® Quantiplex Pro Kit for qPCR-Based Examination of the Quantity and Quality of Human DNA in Forensic Samples. Forensic Sci. Int. Genet. Suppl. Ser. 2017, 6, e518–e519. [Google Scholar] [CrossRef]
- Loftus, A.; Murphy, G.; Brown, H.; Montgomery, A.; Tabak, J.; Baus, J.; Carroll, M.; Green, A.; Sikka, S.; Sinha, S. Development and Validation of InnoQuant® HY, a System for Quantitation and Quality Assessment of Total Human and Male DNA Using High Copy Targets. Forensic Sci. Int. Genet. 2017, 29, 205–217. [Google Scholar] [CrossRef] [PubMed]
- Romero, R.L.; Juston, A.C.; Ballantyne, J.; Henry, B.E. The Applicability of Formalin-Fixed and Formalin Fixed Paraffin Embedded Tissues in Forensic DNA Analysis. J. Forensic Sci. 1997, 42, 708–714. [Google Scholar] [CrossRef] [PubMed]
- Gill, P.; Gusmão, L.; Haned, H.; Mayr, W.R.; Morling, N.; Parson, W.; Prieto, L.; Prinz, M.; Schneider, H.; Schneider, P.M.; et al. DNA Commission of the International Society of Forensic Genetics: Recommendations on the Evaluation of STR Typing Results That May Include Drop-out and/or Drop-in Using Probabilistic Methods. Forensic Sci. Int. Genet. 2012, 6, 679–688. [Google Scholar] [CrossRef] [PubMed]
- Gill, P.; Puch-Solis, R.; Curran, J. The Low-Template-DNA (Stochastic) Threshold—Its Determination Relative to Risk Analysis for National DNA Databases. Forensic Sci. Int. Genet. 2009, 3, 104–111. [Google Scholar] [CrossRef] [PubMed]
- Mulero, J.J.; Chang, C.W.; Lagacé, R.E.; Wang, D.Y.; Bas, J.L.; McMahon, T.P.; Hennessy, L.K. Development and Validation of the AmpFlSTR MiniFiler PCR Amplification Kit: A MiniSTR Multiplex for the Analysis of Degraded and/or PCR Inhibited DNA. J. Forensic Sci. 2008, 53, 838–852. [Google Scholar] [CrossRef] [PubMed]
- R: The R Project for Statistical Computing. Available online: https://www.r-project.org/ (accessed on 20 October 2022).
- Liao, D.; Pavelitz, T.; Weiner, A.M. Characterization of a Novel Class of Interspersed LTR Elements in Primate Genomes: Structure, Genomic Distribution, and Evolution. J. Mol. Evol. 1998, 46, 649–660. [Google Scholar] [CrossRef] [PubMed]
- Xue, Y.; Tyler-Smith, C. An Exceptional Gene: Evolution of the TSPY Gene Family in Humans and Other Great Apes. Genes 2011, 2, 36–47. [Google Scholar] [CrossRef] [PubMed]
- Ewing, M.M.; Thompson, J.M.; McLaren, R.S.; Storts, D.R. The PowerQuantTM System: A New Quantification Assay for Determining DNA Concentration and Quality. Promega Corporation Web Site. Updated 2014. Available online: https://ita.promega.com/resources/profiles-in-dna/2014/the-powerquant-system-a-new-quantification-assay-for-determining-dna-concentration-and-quality/ (accessed on 10 April 2024).
- Goecker, Z.C.; Swiontek, S.E.; Lakhtakia, A.; Roy, R. Comparison of Quantifiler(®) Trio and InnoQuantTM Human DNA Quantification Kits for Detection of DNA Degradation in Developed and Aged Fingerprints. Forensic Sci. Int. 2016, 263, 132–138. [Google Scholar] [CrossRef] [PubMed]
- Holmes, A.S.; Houston, R.; Elwick, K.; Gangitano, D.; Hughes-Stamm, S. Evaluation of Four Commercial Quantitative Real-Time PCR Kits with Inhibited and Degraded Samples. Int. J. Legal Med. 2018, 132, 691–701. [Google Scholar] [CrossRef] [PubMed]
- Haarkötter, C.; Saiz, M.; Gálvez, X.; Vinueza-Espinosa, D.C.; Medina-Lozano, M.I.; Lorente, J.A.; Álvarez, J.C. Performance Comparison of Four qPCR and Three Autosomal STR Commercial Kits from Degraded Skeletal Remains. Forensic Sci. Int. 2023, 353, 111856. [Google Scholar] [CrossRef] [PubMed]
- Holland, P.M.; Abramson, R.D.; Watson, R.; Gelfand, D.H. Detection of Specific Polymerase Chain Reaction Product by Utilizing the 5’—3’ Exonuclease Activity of Thermus Aquaticus DNA Polymerase. Proc. Natl. Acad. Sci. USA 1991, 88, 7276–7280. [Google Scholar] [CrossRef] [PubMed]
- Sherrill, C.B.; Marshall, D.J.; Moser, M.J.; Larsen, C.A.; Daudé-Snow, L.; Jurczyk, S.; Shapiro, G.; Prudent, J.R. Nucleic Acid Analysis Using an Expanded Genetic Alphabet to Quench Fluorescence. J. Am. Chem. Soc. 2004, 126, 4550–4556. [Google Scholar] [CrossRef] [PubMed]
- LaSalle, H.E.; Duncan, G.; McCord, B. An Analysis of Single and Multi-Copy Methods for DNA Quantitation by Real-Time Polymerase Chain Reaction. Forensic Sci. Int. Genet. 2011, 5, 185–193. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.B.; Clabaugh, K.C.; Silva, B.; Odigie, K.O.; Coble, M.D.; Loreille, O.; Scheible, M.; Fourney, R.M.; Stevens, J.; Carmody, G.R.; et al. Assessing a Novel Room Temperature DNA Storage Medium for Forensic Biological Samples. Forensic Sci. Int. Genet. 2012, 6, 31–40. [Google Scholar] [CrossRef] [PubMed]
- Douglas, M.P.; Rogers, S.O. DNA Damage Caused by Common Cytological Fixatives. Mutat. Res. 1998, 401, 77–88. [Google Scholar] [CrossRef] [PubMed]
- Wiegand, P.; Domhöver, J.; Brinkmann, B. DNA degradation in formalin fixed tissues. Pathologe 1996, 17, 451–454. [Google Scholar] [CrossRef] [PubMed]
- Bonin, S.; Petrera, F.; Niccolini, B.; Stanta, G. PCR Analysis in Archival Postmortem Tissues. Mol. Pathol. 2003, 56, 184–186. [Google Scholar] [CrossRef] [PubMed]
- Moore, H.M.; Compton, C.C.; Lim, M.D.; Vaught, J.; Christiansen, K.N.; Alper, J. 2009 Biospecimen Research Network Symposium: Advancing Cancer Research through Biospecimen Science. Cancer Res. 2009, 69, 6770–6772. [Google Scholar] [CrossRef]
- van Beers, E.H.; Joosse, S.A.; Ligtenberg, M.J.; Fles, R.; Hogervorst, F.B.L.; Verhoef, S.; Nederlof, P.M. A Multiplex PCR Predictor for ACGH Success of FFPE Samples. Br. J. Cancer 2006, 94, 333–337. [Google Scholar] [CrossRef] [PubMed]
- Hiramatsu, K.; Matsuda, C.; Masago, K.; Toriyama, K.; Sasaki, E.; Fujita, Y.; Haneda, M.; Ebi, H.; Shibata, N.; Hosoda, W. Diagnostic Utility of DNA Integrity Number as an Indicator of Sufficient DNA Quality in Next-Generation Sequencing–Based Genomic Profiling. Am. J. Clin. Pathol. 2023, 160, 261–267. [Google Scholar] [CrossRef] [PubMed]
- Nagahashi, M.; Shimada, Y.; Ichikawa, H.; Nakagawa, S.; Sato, N.; Kaneko, K.; Homma, K.; Kawasaki, T.; Kodama, K.; Lyle, S.; et al. Formalin-Fixed Paraffin-Embedded Sample Conditions for Deep next Generation Sequencing. J. Surg. Res. 2017, 220, 125–132. [Google Scholar] [CrossRef] [PubMed]
- Carithers, L.J.; Agarwal, R.; Guan, P.; Odeh, H.; Sachs, M.C.; Engel, K.B.; Greytak, S.R.; Barcus, M.; Soria, C.; Lih, C.-J.J.; et al. The Biospecimen Preanalytical Variables Program: A Multiassay Comparison of Effects of Delay to Fixation and Fixation Duration on Nucleic Acid Quality. Arch. Pathol. Lab. Med. 2019, 143, 1106–1118. [Google Scholar] [CrossRef]
- Astolfi, A.; Urbini, M.; Indio, V.; Nannini, M.; Genovese, C.G.; Santini, D.; Saponara, M.; Mandrioli, A.; Ercolani, G.; Brandi, G.; et al. Whole Exome Sequencing (WES) on Formalin-Fixed, Paraffin-Embedded (FFPE) Tumor Tissue in Gastrointestinal Stromal Tumors (GIST). BMC Genom. 2015, 16, 892. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, M.; Hashida, S.; Yamamoto, H.; Matsubara, T.; Ohtsuka, T.; Suzawa, K.; Maki, Y.; Soh, J.; Asano, H.; Tsukuda, K.; et al. Estimation of Age-Related DNA Degradation from Formalin-Fixed and Paraffin-Embedded Tissue According to the Extraction Methods. Exp. Ther. Med. 2017, 14, 2683–2688. [Google Scholar] [CrossRef] [PubMed]
- Calacal, G.C.; Apaga, D.L.T.; Salvador, J.M.; Jimenez, J.A.D.; Lagat, L.J.; Villacorta, R.P.F.; Lim, M.C.F.; Fortun, R.D.R.; Datar, F.A.; De Ungria, M.C.A. Comparing Different Post-Mortem Human Samples as DNA Sources for Downstream Genotyping and Identification. Forensic Sci. Int. Genet. 2015, 19, 212–220. [Google Scholar] [CrossRef] [PubMed]
- Poetsch, M.; Preusse-Prange, A.; Schwark, T.; von Wurmb-Schwark, N. The New Guidelines for Paternity Analysis in Germany-How Many STR Loci Are Necessary When Investigating Duo Cases? Int. J. Legal Med. 2013, 127, 731–734. [Google Scholar] [CrossRef] [PubMed]
- Gao, H.; Wang, C.; Zhang, R.; Wu, H.; Sun, S.; Xiao, D.; Wang, Y.; Zhang, M. Application of CPI Cutoff Value Based on Parentage Testing of Duos and Trios Typed by Four Autosomal Kits. PLoS ONE 2019, 14, e0225174. [Google Scholar] [CrossRef] [PubMed]
- Steiert, T.A.; Parra, G.; Gut, M.; Arnold, N.; Trotta, J.-R.; Tonda, R.; Moussy, A.; Gerber, Z.; Abuja, P.M.; Zatloukal, K.; et al. A Critical Spotlight on the Paradigms of FFPE-DNA Sequencing. Nucleic Acids Res. 2023, 51, 7143–7162. [Google Scholar] [CrossRef] [PubMed]
- American Association of Neurological Surgeons (AANS); American Society of Neuroradiology (ASNR); Cardiovascular and Interventional Radiology Society of Europe (CIRSE); Canadian Interventional Radiology Association (CIRA); Congress of Neurological Surgeons (CNS); European Society of Minimally Invasive Neurological Therapy (ESMINT); European Society of Neuroradiology (ESNR); European Stroke Organization (ESO); Society for Cardiovascular Angiography and Interventions (SCAI); Society of Interventional Radiology (SIR); et al. Multisociety Consensus Quality Improvement Revised Consensus Statement for Endovascular Therapy of Acute Ischemic Stroke. Int. J. Stroke Off. J. Int. Stroke Soc. 2018, 13, 612–632. [Google Scholar] [CrossRef] [PubMed]
- Alderson, G.; Gurevitch, H.; Casimiro, T.; Reid, B.; Millman, J. Inferring the Presence of Spermatozoa in Forensic Samples Based on Male DNA Fractionation Following Differential Extraction. Forensic Sci. Int. Genet. 2018, 36, 225–232. [Google Scholar] [CrossRef]
- Thompson, R.E.; Duncan, G.; McCord, B.R. An Investigation of PCR Inhibition Using Plexor(®)-Based Quantitative PCR and Short Tandem Repeat Amplification. J. Forensic Sci. 2014, 59, 1517–1529. [Google Scholar] [CrossRef] [PubMed]
- Valentini, V.; Silvestri, V.; Bucalo, A.; Conti, G.; Karimi, M.; Di Francesco, L.; Pomati, G.; Mezi, S.; Cerbelli, B.; Pignataro, M.G.; et al. Molecular Profiling of Male Breast Cancer by Multigene Panel Testing: Implications for Precision Oncology. Front. Oncol. 2022, 12, 1092201. [Google Scholar] [CrossRef] [PubMed]
- Cheng, H.H.; Klemfuss, N.; Montgomery, B.; Higano, C.S.; Schweizer, M.T.; Mostaghel, E.A.; McFerrin, L.G.; Yu, E.Y.; Nelson, P.S.; Pritchard, C.C. A Pilot Study of Clinical Targeted Next Generation Sequencing for Prostate Cancer: Consequences for Treatment and Genetic Counseling. Prostate 2016, 76, 1303–1311. [Google Scholar] [CrossRef] [PubMed]
Case | n | Plexor HY QS (bp) | PowerQuant QS (bp) | Concordance | ||||
---|---|---|---|---|---|---|---|---|
[Auto]/[Y] | Best/ Next Best | Δ | [Auto]/[D] | Best/ Next Best | Δ | |||
1 | 4 | 196 | 184 | 12 | 184 | 196 | −12 | N |
6 | 2 | 113 | 117 | −4 | 117 | 113 | 3 | N |
8 | 3 | 319 | 351 | −32 | 351 | 319 | 32 | N |
9 | 2 | 326 | 150 | 176 | 326 | 150 | 176 | Y |
10 | 2 | 185 | 159 | 26 | 185 | 159 | 26 | Y |
11 | 2 | 165 | 165 | 0 | 165 | 165 | 0 | N |
12 | 5 | 227 | 413 | −186 | 254 | 413 | −159 | N |
13 | 2 | 326 | 326 | 0 | 326 | 326 | 0 | Y |
14 | 8 | 195 | 195 | 0 | 195 | 195 | 0 | N |
15 | 2 | 195 | 174 | 21 | 174 | 195 | −21 | N |
16 | 15 | 322 | 322 | 0 | 322 | 322 | 0 | N |
17 | 4 | 139 | 99 | 40 | // | // | // | // |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chierto, E.; Aneli, S.; Nocco, N.; Riem, A.; Onofri, M.; Carnevali, E.; Robino, C. Assessing DNA Degradation through Differential Amplification Efficiency of Total Human and Human Male DNA in a Forensic qPCR Assay. Genes 2024, 15, 622. https://doi.org/10.3390/genes15050622
Chierto E, Aneli S, Nocco N, Riem A, Onofri M, Carnevali E, Robino C. Assessing DNA Degradation through Differential Amplification Efficiency of Total Human and Human Male DNA in a Forensic qPCR Assay. Genes. 2024; 15(5):622. https://doi.org/10.3390/genes15050622
Chicago/Turabian StyleChierto, Elena, Serena Aneli, Nicola Nocco, Alessia Riem, Martina Onofri, Eugenia Carnevali, and Carlo Robino. 2024. "Assessing DNA Degradation through Differential Amplification Efficiency of Total Human and Human Male DNA in a Forensic qPCR Assay" Genes 15, no. 5: 622. https://doi.org/10.3390/genes15050622
APA StyleChierto, E., Aneli, S., Nocco, N., Riem, A., Onofri, M., Carnevali, E., & Robino, C. (2024). Assessing DNA Degradation through Differential Amplification Efficiency of Total Human and Human Male DNA in a Forensic qPCR Assay. Genes, 15(5), 622. https://doi.org/10.3390/genes15050622