The Landscape of Presence/Absence Variations during the Improvement of Rice
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Phenotype
2.2. Sequence Data
2.3. PAV Calling
2.4. Distribution of PAVs Relative to Gene Position
2.5. Identification of PAV Hotspot Regions
2.6. GWAS and Genetic Correlation Analysis of PAVs
3. Results
3.1. PAV Identification
3.2. Distribution of PAVs
3.3. The Impact of PAVs on Phenotypes
3.4. Important Genes Associated with PAVs
4. Discussion
4.1. The Distribution Pattern of PAVs on the Genome
4.2. PAVs Influenced Multiple Agronomic Traits
4.3. PAVs Play an Important Role in Rice Improvement
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ahmadi, N.; Audebert, A.; Bennett, M.J.; Bishopp, A.; de Oliveira, A.C.; Courtois, B.; Diedhiou, A.; Diévart, A.; Gantet, P.; Ghesquière, A.; et al. The roots of future rice harvests. Rice 2014, 7, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Meyer, R.S.; Purugganan, M.D. Evolution of crop species: Genetics of domestication and diversification. Nat. Rev. Genet. 2013, 14, 840–852. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.Q.; Wang, W.S.; Tai, S.S.; Li, M.; Gao, Q.; Hu, Z.Q.; Hu, W.S.; Wu, Z.C.; Zhu, X.Y.; Xie, J.Y.; et al. Selective and comparative genome architecture of Asian cultivated rice (Oryza sativa L.) attributed to domestication and modern breeding. J. Adv. Res. 2022, 42, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Wei, S.B.; Li, X.; Lu, Z.F.; Zhang, H.; Ye, X.Y.; Zhou, Y.J.; Li, J.; Yan, Y.Y.; Pei, H.G.; Duan, F.Y.; et al. A transcriptional regulator that boosts grain yields and shortens the growth duration of rice. Science 2022, 377, eabi8455. [Google Scholar] [CrossRef]
- Xue, W.Y.; Xing, Y.Z.; Weng, X.Y.; Zhao, Y.; Tang, W.J.; Wang, L.; Zhou, H.J.; Yu, S.B.; Xu, C.G.; Li, X.H.; et al. Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice. Nat. Genet. 2008, 40, 761–767. [Google Scholar] [CrossRef] [PubMed]
- Doi, K.; Izawa, T.; Fuse, T.; Yamanouchi, U.; Kubo, T.; Shimatani, Z.; Yano, M.; Yoshimura, A. Ehd1, a B-type response regulator in rice, confers short-day promotion of flowering and controls FT-like gene expression independently of Hd1. Gene Dev. 2004, 18, 926–936. [Google Scholar] [CrossRef]
- Yano, M.; Katayose, Y.; Ashikari, M.; Yamanouchi, U.; Monna, L.; Fuse, T.; Baba, T.; Yamamoto, K.; Umehara, Y.; Nagamura, Y.; et al. Hd1, a major photoperiod sensitivity quantitative trait locus in rice, is closely related to the Arabidopsis flowering time gene CONSTANS. Plant Cell 2000, 12, 2473–2483. [Google Scholar] [CrossRef] [PubMed]
- Itoh, J.I.; Hasegawa, A.; Kitano, H.; Nagato, Y. A recessive heterochronic mutation, plastochron1, shortens the plastochron and elongates the vegetative phase in rice. Plant Cell 1998, 10, 1511–1521. [Google Scholar] [CrossRef]
- Makino, Y.; Hirooka, Y.; Homma, K.; Kondoa, R.; Liu, T.S.; Tang, L.; Nakazakia, T.; Xu, Z.J.; Shiraiwa, T. Effect of flag leaf length of erect panicle rice on the canopy structure and biomass production after heading. Plant Prod. Sci. 2022, 25, 1–10. [Google Scholar] [CrossRef]
- Saitoh, K.; Yonetani, K.; Murota, T.; Kuroda, T. Effects of flag leaves and panicles on light interception and canopy photosynthesis in high-yielding rice cultivars. Plant Prod. Sci. 2002, 5, 275–280. [Google Scholar] [CrossRef]
- Rong, C.Y.; Liu, Y.X.; Chang, Z.Y.; Liu, Z.Y.; Ding, Y.F.; Ding, C.Q. Cytokinin oxidase/dehydrogenase family genes exhibit functional divergence and overlap in rice growth and development, especially in control of tillering. J. Exp. Bot. 2022, 73, 3552–3568. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.Z.; Deng, Y.W.; Ding, Y.L.; Guo, J.X.; Qiu, J.; Wang, B.; Wang, C.S.; Xie, Y.Y.; Zhang, Z.H.; Chen, J.X.; et al. Rice functional genomics: Decades’ efforts and roads ahead. Sci. China Life Sci. 2022, 65, 33–92. [Google Scholar] [CrossRef] [PubMed]
- Sasaki, T.; Ashikari, M. Rice Genomics, Genetics and Breeding; Springer: Berlin/Heidelberg, Germany, 2018. [Google Scholar]
- Wang, W.S.; Mauleon, R.; Hu, Z.Q.; Chebotarov, D.; Tai, S.S.; Wu, Z.C.; Li, M.; Zheng, T.Q.; Fuentes, R.R.; Zhang, F.; et al. Genomic variation in 3010 diverse accessions of Asian cultivated rice. Nature 2018, 557, 43–49. [Google Scholar] [CrossRef] [PubMed]
- Hour, A.L.; Hsieh, W.H.; Chang, S.H.; Wu, Y.P.; Chin, H.S.; Lin, Y.R. Genetic diversity of landraces and improved varieties of rice (Oryza sativa L.) in Taiwan. Rice 2020, 13, 82. [Google Scholar] [CrossRef] [PubMed]
- Ren, M.M.; Huang, M.H.; Qiu, H.Y.; Chun, Y.; Li, L.; Kumar, A.; Fang, J.J.; Zhao, J.F.; He, H.; Li, X.Y. Genome-wide association study of the genetic basis of effective tiller number in rice. Rice 2021, 14, 56. [Google Scholar] [PubMed]
- Wang, Y.; Zhai, L.Y.; Chen, K.; Shen, C.C.; Liang, Y.T.; Wang, C.C.; Zhao, X.Q.; Wang, S.; Xu, J.L. Natural sequence variations and combinations of GNP1 and NAL1 determine the grain number per panicle in rice. Rice 2020, 13, 14. [Google Scholar] [CrossRef] [PubMed]
- Lv, Q.M.; Li, W.G.; Sun, Z.Z.; Ouyang, N.; Jing, X.; He, Q.; Wu, J.; Zheng, J.K.; Zheng, J.T.; Tang, S.Q.; et al. Resequencing of 1143 indica rice accessions reveals important genetic variations and different heterosis patterns. Nat. Commun. 2020, 11, 4778. [Google Scholar] [CrossRef] [PubMed]
- Chiang, C.; Scott, A.J.; Davis, J.R.; Tsang, E.K.; Li, X.; Kim, Y.; Hadzic, T.; Damani, F.N.; Ganel, L.; Consortium, G.; et al. The impact of structural variation on human gene expression. Nat. Genet. 2017, 49, 692–699. [Google Scholar] [CrossRef]
- Yuan, Y.X.; Bayer, P.E.; Batley, J.; Edwards, D. Current status of structural variation studies in plants. Plant Biotechnol. J. 2021, 19, 2153–2163. [Google Scholar] [CrossRef]
- Fuentes, R.R.; Chebotarov, D.; Duitama, J.; Smith, S.; De la Hoz, J.F.; Mohiyuddin, M.; Wing, R.A.; McNally, K.L.; Tatarinova, T.; Grigoriev, A.; et al. Structural variants in 3000 rice genomes. Genome Res. 2019, 29, 870–880. [Google Scholar] [CrossRef]
- Kou, Y.X.; Liao, Y.; Toivainen, T.; Lv, Y.D.; Tian, X.M.; Emerson, J.J.; Gaut, B.S.; Zhou, Y.F. Evolutionary genomics of structural variation in Asian rice (Oryza sativa) domestication. Mol. Biol. Evol. 2020, 37, 3507–3524. [Google Scholar] [CrossRef] [PubMed]
- Qin, P.; Lu, H.W.; Du, H.L.; Wang, H.; Chen, W.L.; Chen, Z.; He, Q.; Ou, S.J.; Zhang, H.Y.; Li, X.Z.; et al. Pan-genome analysis of 33 genetically diverse rice accessions reveals hidden genomic variations. Cell 2021, 184, 3542–3558. [Google Scholar] [CrossRef] [PubMed]
- Shang, L.G.; Li, X.X.; He, H.Y.; Yuan, Q.L.; Song, Y.N.; Wei, Z.R.; Lin, H.; Hu, M.; Zhao, F.L.; Zhang, C.; et al. A super pan-genomic landscape of rice. Cell Res. 2022, 32, 878–896. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.Y.; He, W.C.; Li, X.X.; Zhang, C.; He, H.Y.; Yuan, Q.L.; Zhang, B.; Zhang, H.; Leng, Y.; Wei, H.; et al. A rice variation map derived from 10,548 rice accessions reveals the importance of rare variants. Nucleic Acids Res. 2023, 51, 10924–10933. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Li, F.C.; Zhang, F.; Wu, L.; Xu, N.; Sun, Q.; Chen, H.; Yu, Z.W.; Lu, J.H.; Jiang, K.; et al. Time-ordering japonica/geng genomes analysis indicates the importance of large structural variants in rice breeding. Plant Biotechnol. J. 2023, 21, 202–218. [Google Scholar] [CrossRef]
- Zheng, X.M.; Zhong, L.M.; Pang, H.B.; Wen, S.Y.; Li, F.; Lou, D.J.; Ge, J.Y.; Fan, W.Y.; Wang, T.Y.; Han, Z.Y.; et al. Lost genome segments associate with trait diversity during rice domestication. BMC Biol. 2023, 21, 20. [Google Scholar] [CrossRef] [PubMed]
- Li, D.Y.; Huang, Z.Y.; Song, S.H.; Xin, Y.Y.; Mao, D.H.; Lv, Q.M.; Zhou, M.; Tian, D.M.; Tang, M.F.; Wu, Q.; et al. Integrated analysis of phenome, genome, and transcriptome of hybrid rice uncovered multiple heterosis-related loci for yield increase. Proc. Natl. Acad. Sci. USA 2016, 113, E6026–E6035. [Google Scholar] [PubMed]
- Zhang, S.Y.; Zhu, L.M.; Shen, C.B.; Ji, Z.; Zhang, H.P.; Zhang, T.; Li, Y.; Yu, J.P.; Yang, N.; He, Y.B.; et al. Natural allelic variation in a modulator of auxin homeostasis improves grain yield and nitrogen use efficiency in rice. Plant Cell 2021, 33, 566–580. [Google Scholar] [CrossRef]
- Wang, C.C.; Yu, H.; Huang, J.; Wang, W.S.; Faruquee, M.; Zhang, F.; Zhao, X.Q.; Fu, B.Y.; Chen, K.; Zhang, H.L.; et al. Towards a deeper haplotype mining of complex traits in rice with RFGB v2.0. Plant Biotechnol. J. 2020, 18, 14–16. [Google Scholar] [CrossRef]
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef]
- Li, H.; Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 2009, 25, 1754–1760. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Handsaker, B.; Wysoker, A.; Fennell, T.; Ruan, J.; Homer, N.; Marth, G.; Abecasis, G.; Durbin, R.; 1000 Genomic Project Data Processing Subgroup. The sequence alignment/map format and SAMtools. Bioinformatics 2009, 25, 2078–2079. [Google Scholar] [CrossRef] [PubMed]
- Rausch, T.; Zichner, T.; Schlattl, A.; Stütz, A.M.; Benes, V.; Jan, O.; Korbel, J.O. DELLY: Structural variant discovery by integrated paired-end and split-read analysis. Bioinformatics 2012, 28, i333–i339. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.Y.; Schulz-Trieglaff, O.; Shaw, R.; Barnes, B.; Schlesinger, F.; Källberg, M.; Cox, A.J.; Kruglyak, S.; Saunders, C.T. Manta: Rapid detection of structural variants and indels for germline and cancer sequencing applications. Bioinformatics 2016, 32, 1220–1222. [Google Scholar] [CrossRef] [PubMed]
- Danecek, P.; McCarthy, S.A. BCFtools/csq: Haplotype-aware variant consequences. Bioinformatics 2017, 33, 2037–2039. [Google Scholar] [CrossRef] [PubMed]
- Jeffares, D.C.; Jolly, C.; Hoti, M.; Speed, D.; Shaw, L.; Rallis, C.; Balloux, F.; Dessimoz, C.; Bähler, J.; Sedlazeck, F.J. Transient structural variations have strong effects on quantitative traits and reproductive isolation in fission yeast. Nat. Commun. 2017, 8, 14061. [Google Scholar] [CrossRef] [PubMed]
- Danecek, P.; Auton, A.; Abecasis, G.; Albers, C.A.; Banks, E.; DePristo, M.A.; Handsaker, R.E.; Lunter, G.; Marth, G.T.; Sherry, S.T.; et al. The variant call format and VCFtools. Bioinformatics 2011, 27, 2156–2158. [Google Scholar] [CrossRef] [PubMed]
- Zhao, G.W.; Lian, Q.; Zhang, Z.H.; Fu, Q.S.; He, Y.H.; Ma, S.W.; Ruggieri, V.; Monforte, A.J.; Zhao, G.W.; Lian, Q.; et al. A comprehensive genome variation map of melon identifies multiple domestication events and loci influencing agronomic traits. Nat. Genet. 2019, 51, 1607–1615. [Google Scholar] [CrossRef] [PubMed]
- Lipka, A.E.; Tian, F.; Wang, Q.S.; Peiffer, J.; Li, M.; Bradbury, P.J.; Gore, M.A.; Buckler, E.S.; Zhang, Z.W. GAPIT: Genome association and prediction integrated tool. Bioinformatics 2012, 28, 2397–2399. [Google Scholar] [CrossRef]
- Huang, M.; Liu, X.L.; Zhou, Y.; Summers, R.M.; Zhang, Z.W. BLINK: A package for the next level of genome-wide association studies with both individuals and markers in the millions. Gigascience 2019, 8, giy154. [Google Scholar] [CrossRef]
- Zhao, Q.; Feng, Q.; Lu, H.Y.; Li, Y.; Wang, A.H.; Tian, Q.L.; Zhan, Q.L.; Lu, Y.Q.; Zhang, L.; Huang, T.; et al. Pan-genome analysis highlights the extent of genomic variation in cultivated and wild rice. Nat. Genet. 2018, 50, 278–284. [Google Scholar] [CrossRef] [PubMed]
- The R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020. [Google Scholar]
- Chen, Y.; Moore, K.L.; Miller, A.J.; McGrath, S.P.; Ma, J.F.; Zhao, F.J. The role of nodes in arsenic storage and distribution in rice. J. Exp. Bot. 2015, 66, 3717–3724. [Google Scholar] [CrossRef] [PubMed]
- Geng, Y.K.; Zhang, P.X.; Liu, Q.; Wei, Z.W.; Riaz, A.; Wei, Z.; Riaz, A.; Chachar, S.; Gu, X.F. Rice homolog of Sin3-associated polypeptide 30, OsSFL1, mediates histone deacetylation to regulate flowering time during short days. Plant Biotechnol. J. 2020, 18, 325–327. [Google Scholar] [CrossRef] [PubMed]
- Sakurai, J.; Ishikawa, F.; Yamaguchi, T.; Uemura, M.; Maeshima, M. Identification of 33 rice aquaporin genes and analysis of their expression and function. Plant Cell Physiol. 2005, 46, 1568–1577. [Google Scholar] [CrossRef] [PubMed]
- Gui, J.S.; Shen, J.H.; Li, L.G. Functional characterization of evolutionarily divergent 4-coumarate: Coenzyme A ligases in rice. Plant Physiol. 2011, 157, 574–586. [Google Scholar] [CrossRef] [PubMed]
- Qi, J.; Qian, Q.; Bu, Q.Y.; Li, S.Y.; Chen, Q.; Sun, J.Q.; Liang, W.X.; Zhou, Y.H.; Chu, C.C.; Li, X.G.; et al. Mutation of the rice Narrow leaf1 gene, which encodes a novel protein, affects vein patterning and polar auxin transport. Plant Physiol. 2008, 147, 1947–1959. [Google Scholar] [CrossRef]
- Cho, S.H.; Yoo, S.C.; Zhang, H.T.; Lim, J.H.; Paek, N.C. Rice NARROW LEAF1 regulates leaf and adventitious root development. Plant Mol. Biol. Report. 2014, 32, 270–281. [Google Scholar] [CrossRef]
- Xie, L.; Liu, M.H.; Zhao, L.; Cao, K.; Wang, P.; Xu, W.H.; Sung, W.K.; Li, X.W.; Li, G.L. RiceENCODE: A comprehensive epigenomic database as a rice Encyclopedia of DNA Elements. Mol. Plant. 2021, 14, 1604–1606. [Google Scholar] [CrossRef]
- Springer, N.M.; Ying, K.; Fu, Y.; Ji, T.M.; Yeh, C.T.; Jia, Y.; Wu, W.; Richmond, T.; Kitzman, J.; Rosenbaum, H.; et al. Maize inbreds exhibit high levels of copy number variation (CNV) and presence/absence variation (PAV) in genome content. PLoS Genet. 2009, 5, e1000734. [Google Scholar] [CrossRef]
- Zhang, L.M.; Luo, H.; Liu, Z.Q.; Zhao, Y.; Luo, J.C.; Hao, D.Y.; Jing, H.C. Genome-wide patterns of large-size presence/absence variants in sorghum. J. Integr. Plant Biol. 2014, 56, 24–37. [Google Scholar] [CrossRef]
- Zhang, Y.L.; Fu, J.; Wang, K.; Han, X.; Yan, T.Z.; Su, Y.M.; Li, Y.F.; Lin, Z.C.; Qin, P.; Fu, C.J.; et al. The telomere-to-telomere gap-free genome of four rice parents reveals SV and PAV patterns in hybrid rice breeding. Plant Biotechnol. J. 2022, 20, 1642–1644. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Zhang, H.L.; Xu, J.L.; Jiang, C.H.; Yin, Z.G.; Xiong, H.Y.; Xie, J.Y.; Wang, X.Q.; Zhu, X.Y.; Li, Y.; et al. Loci and natural alleles underlying robust roots and adaptive domestication of upland ecotype rice in aerobic conditions. PLoS Genet. 2018, 14, e1007521. [Google Scholar] [CrossRef] [PubMed]
- Saco, A.; Rey-Campos, M.; Gallardo-Escárate, C.; Gerdol, M.; Novoa, B.; Figueras, A. Gene presence/absence variation in Mytilus galloprovincialis and its implications in gene expression and adaptation. iScience 2023, 26, 107827. [Google Scholar] [CrossRef] [PubMed]
- Zheng, L.Y.; Guo, X.S.; He, B.; Sun, L.J.; Peng, Y.; Dong, S.S.; Liu, T.F.; Jiang, S.Y.; Ramachandran, S.; Liu, C.M.; et al. Genome-wide patterns of genetic variation in sweet and grain sorghum (Sorghum bicolor). Genome Biol. 2011, 12, R114. [Google Scholar] [CrossRef] [PubMed]
- Göktay, M.; Fulgione, A.; Hancock, A.M. A new catalog of structural variants in 1301 A. thaliana lines from Africa, Eurasia, and North America reveals a signature of balancing selection at defense response genes. Mol. Biol. Evol. 2021, 38, 1498–1511. [Google Scholar] [CrossRef] [PubMed]
- Fitzgerald, T.L.; Kazan, K.; Li, Z.Y.; Morell, M.K.; Manners, J.M. A high-throughput method for the detection of homoeologous gene deletions in hexaploid wheat. BMC Plant Biol. 2010, 10, 264. [Google Scholar] [CrossRef]
- Delteil, A.; Gobbato, E.; Cayrol, B.; Estevan, J.; Michel-Romiti, C.; Dievart, A.; Kroj, T.; Morel, J.B. Several wall-associated kinases participate positively and negatively in basal defense against rice blast fungus. BMC Plant Biol. 2016, 16, 17. [Google Scholar] [CrossRef]
- Anandan, A.; Parameswaran, C.; Mahender, A.; Nayak, A.K.; Vellaikumar, S.; Balasubramaniasai, C.; Ali, J. Trait variations and expression profiling of OsPHT1 gene family at the early growth-stages under phosphorus-limited conditions. Sci. Rep. 2021, 11, 13563. [Google Scholar] [CrossRef]
- Chang, M.C.; Wang, B.Y.; Chen, X.F.; Wu, R. Molecular characterization of catalytic-subunit cDNA sequences encoding protein phosphatases 1 and 2A and study of their roles in the gibberellin-dependent Osamy-c expression in rice. Plant Mol. Biol. 1999, 39, 105–115. [Google Scholar] [CrossRef]
- Huang, X.Z.; Qian, Q.; Liu, Z.B.; Sun, H.Y.; He, S.Y.; Luo, D.; Xia, G.M.; Chu, C.C.; Li, J.Y.; Fu, X.D. Natural variation at the DEP1 locus enhances grain yield in rice. Nat. Genet. 2009, 41, 494–497. [Google Scholar] [CrossRef]
- Liao, Y.D.; Lin, K.H.; Chen, C.C.; Chiang, C.M. Oryza sativa protein phosphatase 1a (OsPP1a) involved in salt stress tolerance in transgenic rice. Mol. Breed. 2016, 36, 22. [Google Scholar] [CrossRef]
- Song, S.; Wang, G.F.; Wu, H.; Fan, X.W.; Liang, L.W.; Zhao, H.; Li, S.L.; Hu, Y.; Liu, H.Y.; Ayaad, M.; et al. OsMFT2 is involved in the regulation of ABA signaling-mediated seed germination through interacting with OsbZIP23/66/72 in rice. Plant J. 2020, 103, 532–546. [Google Scholar] [CrossRef] [PubMed]
- Sugiyama, N.; Izawa, T.; Oikawa, T.; Shimamoto, K. Light regulation of circadian clock-controlled gene expression in rice. Plant J. 2001, 26, 607–615. [Google Scholar] [CrossRef] [PubMed]
- Tamiru, M.; Takagi, H.; Abe, A.; Yokota, T.; Kanzaki, H.; Okamoto, H.; Saitoh, H.; Takahashi, H.; Fujisaki, K.; Oikawa, K.; et al. A chloroplast-localized protein LESION AND LAMINA BENDING affects defence and growth responses in rice. New Phytol. 2016, 210, 1282–1297. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.Y.; Qian, Q.; Wu, K.; Luo, J.J.; Wang, S.S.; Zhang, C.W.; Ma, Y.F.; Liu, Q.; Huang, X.Z.; Yuan, Q.B.; et al. Heterotrimeric G proteins regulate nitrogen-use efficiency in rice. Nat. Genet. 2014, 46, 652–656. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Lee, C.R. The role of gene presence-absence variations on genetic incompatibility in Asian rice. New Phytol. 2023, 239, 778–791. [Google Scholar] [CrossRef] [PubMed]
- Dolatabadian, A.; Bayer, P.E.; Tirnaz, S.; Hurgobin, B.; Edwards, D.; Batley, J. Characterization of disease resistance genes in the Brassica napus pangenome reveals significant structural variation. Plant Biotechnol. J. 2020, 18, 969–982. [Google Scholar] [CrossRef]
- Zhang, F.; Xue, H.Z.; Dong, X.R.; Li, M.; Zheng, X.M.; Li, Z.K.; Xu, J.L.; Wang, W.S.; Wei, C.C. Long-read sequencing of 111 rice genomes reveals significantly larger pan-genomes. Genome Res. 2022, 32, 853–863. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, X.; Qiang, C.; Chen, L.; Qing, D.; Huang, J.; Li, J.; Pan, Y. The Landscape of Presence/Absence Variations during the Improvement of Rice. Genes 2024, 15, 645. https://doi.org/10.3390/genes15050645
Zhou X, Qiang C, Chen L, Qing D, Huang J, Li J, Pan Y. The Landscape of Presence/Absence Variations during the Improvement of Rice. Genes. 2024; 15(5):645. https://doi.org/10.3390/genes15050645
Chicago/Turabian StyleZhou, Xia, Chenggen Qiang, Lei Chen, Dongjin Qing, Juan Huang, Jilong Li, and Yinghua Pan. 2024. "The Landscape of Presence/Absence Variations during the Improvement of Rice" Genes 15, no. 5: 645. https://doi.org/10.3390/genes15050645
APA StyleZhou, X., Qiang, C., Chen, L., Qing, D., Huang, J., Li, J., & Pan, Y. (2024). The Landscape of Presence/Absence Variations during the Improvement of Rice. Genes, 15(5), 645. https://doi.org/10.3390/genes15050645