Whole-Genome Sequencing Identified a Novel Mutation in the N-Terminal Domain of KIF5A in Chinese Patients with Familial Amyotrophic Lateral Sclerosis
Abstract
:1. Introduction
2. Material and Methods
2.1. Study Population
2.2. Sample
2.3. Bioinformatic Analysis
2.4. Mutation Screening
3. Results
3.1. Mutation Analysis
3.2. Clinical Information
4. Discussions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Brown, R.H.; Al-Chalabi, A. Amyotrophic Lateral Sclerosis. N. Engl. J. Med. 2017, 377, 162–172. [Google Scholar] [CrossRef] [PubMed]
- Taylor, J.P.; Brown, R.H.; Cleveland, D.W. Decoding ALS: From genes to mechanism. Nature 2016, 539, 197–206. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Guan, L.; Deng, M. Recent progress of the genetics of amyotrophic lateral sclerosis and challenges of gene therapy. Front. Neurosci. 2023, 17, 1170996. [Google Scholar] [CrossRef] [PubMed]
- Brenner, D.; Yilmaz, R.; Muller, K.; Grehl, T.; Petri, S.; Meyer, T.; Grosskreutz, J.; Weydt, P.; Ruf, W.; Neuwirth, C.; et al. Hot-spot KIF5A mutations cause familial ALS. Brain 2018, 141, 688–697. [Google Scholar] [CrossRef] [PubMed]
- Nicolas, A.; Kenna, K.P.; Renton, A.E.; Ticozzi, N.; Faghri, F.; Chia, R.; Dominov, J.A.; Kenna, B.J.; Nalls, M.A.; Keagle, P.; et al. Genome-wide Analyses Identify KIF5A as a Novel ALS Gene. Neuron 2018, 97, 1268–1283.e6. [Google Scholar] [CrossRef] [PubMed]
- Miki, H.; Okada, Y.; Hirokawa, N. Analysis of the kinesin superfamily: Insights into structure and function. Trends Cell Biol. 2005, 15, 467–476. [Google Scholar] [CrossRef] [PubMed]
- Hirokawa, N.; Noda, Y. Intracellular transport and kinesin superfamily proteins, KIFs: Structure, function, and dynamics. Physiol. Rev. 2008, 88, 1089–1118. [Google Scholar] [CrossRef]
- Jennings, S.; Chenevert, M.; Liu, L.; Mottamal, M.; Wojcik, E.J.; Huckaba, T.M. Characterization of kinesin switch I mutations that cause hereditary spastic paraplegia. PLoS ONE 2017, 12, e0180353. [Google Scholar] [CrossRef]
- Liu, Y.-T.; Laurá, M.; Hersheson, J.; Horga, A.; Jaunmuktane, Z.; Brandner, S.; Pittman, A.; Hughes, D.; Polke, J.M.; Sweeney, M.G.; et al. Extended phenotypic spectrum of KIF5A mutations: From spastic paraplegia to axonal neuropathy. Neurology 2014, 83, 612–619. [Google Scholar] [CrossRef]
- Baron, D.M.; Fenton, A.R.; Saez-Atienzar, S.; Giampetruzzi, A.; Sreeram, A.; Shankaracharya Keagle, P.J.; Doocy, V.R.; Smith, N.J.; Danielson, E.W.; Andresano, M.; et al. ALS-associated KIF5A mutations abolish autoinhibition resulting in a toxic gain of function. Cell Rep. 2022, 39, 110598. [Google Scholar] [CrossRef]
- Liu, W.; Li, X.; Sun, Y.; Yu, X.; Wang, Y.; Liu, N.; Deng, M. Genotype-phenotype correlations in a chinese population with familial amyotrophic lateral sclerosis. Neurol. Res. 2022, 44, 206–216. [Google Scholar] [CrossRef]
- Deng, M.; Wei, L.; Zuo, X.; Tian, Y.; Xie, F.; Hu, P.; Zhu, C.; Yu, F.; Meng, Y.; Wang, H.; et al. Genome-wide association analyses in Han Chinese identify two new susceptibility loci for amyotrophic lateral sclerosis. Nat. Genet. 2013, 45, 697–700. [Google Scholar] [CrossRef]
- Gao, M.; Liu, N.; Li, X.-M.; Chao, L.-W.; Lin, H.-Q.; Wang, Y.; Sun, Y.; Huang, C.; Li, X.-G.; Deng, M. Epidemiology and factors predicting survival of amyotrophic lateral sclerosis in a large Chinese cohort. Chin. Med. J. (Engl.) 2021, 134, 2231–2236. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Zhang, B.; Chen, R.; Tang, L.; Liu, R.; Yang, Y.; Yang, Y.; Liu, X.; Ye, S.; Zhan, S.; et al. Natural history and clinical features of sporadic amyotrophic lateral sclerosis in China. J. Neurol. Neurosurg. Psychiatry 2015, 86, 1075–1081. [Google Scholar] [CrossRef]
- Brown, C.A.; Lally, C.; Kupelian, V.; Flanders, W.D. Estimated Prevalence and Incidence of Amyotrophic Lateral Sclerosis and SOD1 and C9orf72 Genetic Variants. Neuroepidemiology 2021, 55, 342–353. [Google Scholar] [CrossRef] [PubMed]
- Brooks, B.R.; Miller, R.G.; Swash, M.; Munsat, T.L. El Escorial revisited: Revised criteria for the diagnosis of amyotrophic lateral sclerosis. Amyotroph. Lateral Scler. Other Motor Neuron Disord. 2000, 1, 293–299. [Google Scholar] [CrossRef]
- Chen, Y.; Chen, Y.; Shi, C.; Huang, Z.; Zhang, Y.; Li, S.; Li, Y.; Ye, J.; Yu, C.; Li, Z.; et al. SOAPnuke: A MapReduce acceleration-supported software for integrated quality control and preprocessing of high-throughput sequencing data. Gigascience 2018, 7, gix120. [Google Scholar] [CrossRef]
- Li, H.; Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 2009, 25, 1754–1760. [Google Scholar] [CrossRef] [PubMed]
- Danecek, P.; Bonfield, J.K.; Liddle, J.; Marshall, J.; Ohan, V.; Pollard, M.O.; Whitwham, A.; Keane, T.; McCarthy, S.A.; Davies, R.M.; et al. Twelve years of SAMtools and BCFtools. Gigascience 2021, 10, giab008. [Google Scholar] [CrossRef]
- McKenna, A.; Hanna, M.; Banks, E.; Sivachenko, A.; Cibulskis, K.; Kernytsky, A.; Garimella, K.; Altshuler, D.; Gabriel, S.; Daly, M.; et al. The Genome Analysis Toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010, 20, 1297–1303. [Google Scholar] [CrossRef]
- Karczewski, K.J.; Francioli, L.C.; Tiao, G.; Cummings, B.B.; Alföldi, J.; Wang, Q.; Collins, R.L.; Laricchia, K.M.; Ganna, A.; Birnbaum, D.P.; et al. The mutational constraint spectrum quantified from variation in 141, 456 humans. Nature 2020, 581, 434–443. [Google Scholar] [CrossRef] [PubMed]
- Dolzhenko, E.; Deshpande, V.; Schlesinger, F.; Krusche, P.; Petrovski, R.; Chen, S.; Emig-Agius, D.; Gross, A.; Narzisi, G.; Bowman, B.; et al. ExpansionHunter: A sequence-graph-based tool to analyze variation in short tandem repeat regions. Bioinformatics 2019, 35, 4754–4756. [Google Scholar] [CrossRef] [PubMed]
- Abyzov, A.; Urban, A.E.; Snyder, M.; Gerstein, M. CNVnator: An approach to discover, genotype, and characterize typical and atypical CNVs from family and population genome sequencing. Genome Res. 2011, 21, 974–984. [Google Scholar] [CrossRef] [PubMed]
- Quinlan, A.R.; Hall, I.M. BEDTools: A flexible suite of utilities for comparing genomic features. Bioinformatics 2010, 26, 841–842. [Google Scholar] [CrossRef]
- Layer, R.M.; Chiang, C.; Quinlan, A.R.; Hall, I.M. LUMPY: A probabilistic framework for structural variant discovery. Genome Biol. 2014, 15, R84. [Google Scholar] [CrossRef] [PubMed]
- Chiang, C.; Layer, R.M.; Faust, G.G.; Lindberg, M.R.; Rose, D.B.; Garrison, E.P.; Marth, G.T.; Quinlan, A.R.; Hall, I.M. SpeedSeq: Ultra-fast personal genome analysis and interpretation. Nat. Methods 2015, 12, 966–968. [Google Scholar] [CrossRef] [PubMed]
- Abel, H.J.; Larson, D.E.; Regier, A.A.; Chiang, C.; Das, I.; Kanchi, K.L.; Layer, R.M.; Neale, B.M.; Salerno, W.J.; Reeves, C.; et al. Mapping and characterization of structural variation in 17,795 human genomes. Nature 2020, 583, 83–89. [Google Scholar] [CrossRef] [PubMed]
- McLaren, W.; Pritchard, B.; Rios, D.; Chen, Y.; Flicek, P.; Cunningham, F. Deriving the consequences of genomic variants with the Ensembl API and SNP Effect Predictor. Bioinformatics 2010, 26, 2069–2070. [Google Scholar] [CrossRef]
- Richards, S.; Aziz, N.; Bale, S.; Bick, D.; Das, S.; Gastier-Foster, J.; Grody, W.W.; Hegde, M.; Lyon, E.; Spector, E.; et al. Standards and guidelines for the interpretation of sequence variants: A joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 2015, 17, 405–424. [Google Scholar] [CrossRef]
- Geoffroy, V.; Herenger, Y.; Kress, A.; Stoetzel, C.; Piton, A.; Dollfus, H.; Muller, J. AnnotSV: An integrated tool for structural variations annotation. Bioinformatics 2018, 34, 3572–3574. [Google Scholar] [CrossRef]
- Rich, K.A.; Pino, M.G.; Yalvac, M.E.; Fox, A.; Harris, H.; Balch, M.H.H.; Arnold, W.D.; Kolb, S.J. Impaired motor unit recovery and maintenance in a knock-in mouse model of ALS-associated Kif5a variant. Neurobiol. Dis. 2023, 182, 106148. [Google Scholar] [CrossRef] [PubMed]
- Szebényi, K.; Barrio-Hernandez, I.; Gibbons, G.M.; Biasetti, L.; Troakes, C.; Beltrao, P.; Lakatos, A. A human proteogenomic-cellular framework identifies KIF5A as a modulator of astrocyte process integrity with relevance to ALS. Commun. Biol. 2023, 6, 678. [Google Scholar] [CrossRef] [PubMed]
- Kaji, S.; Kawarai, T.; Miyamoto, R.; Nodera, H.; Pedace, L.; Orlacchio, A.; Izumi, Y.; Takahashi, R.; Kaji, R. Late-onset spastic paraplegia type 10 (SPG10) family presenting with bulbar symptoms and fasciculations mimicking amyotrophic lateral sclerosis. J. Neurol. Sci. 2016, 364, 45–49. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Liu, Q.; Shen, D.; Tai, H.; Liu, S.; Wang, Z.; Shi, J.; Fu, H.; Wu, S.; Ding, Q.; et al. Mutation analysis of KIF5A in Chinese amyotrophic lateral sclerosis patients. Neurobiol. Aging 2019, 73, e1–e29. [Google Scholar] [CrossRef] [PubMed]
- Gu, X.; Li, C.; Chen, Y.; Wei, Q.; Cao, B.; Ou, R.; Yuan, X.; Hou, Y.; Zhang, L.; Liu, H.; et al. Mutation screening of the gene in Chinese patients with amyotrophic lateral sclerosis. J. Neurol. Neurosurg. Psychiatry 2019, 90, 245–246. [Google Scholar] [CrossRef] [PubMed]
- He, J.; Liu, X.; Tang, L.; Zhao, C.; He, J.; Fan, D. Whole-exome sequencing identified novel KIF5A mutations in Chinese patients with amyotrophic lateral sclerosis and Charcot-Marie-Tooth type. J. Neurol. Neurosurg. Psychiatry 2020, 91, 326–328. [Google Scholar] [CrossRef]
- Naruse, H.; Ishiura, H.; Mitsui, J.; Takahashi, Y.; Matsukawa, T.; Sakuishi, K.; Nakamagoe, K.; Miyake, Z.; Tamaoka, A.; Goto, J.; et al. Splice-site mutations in KIF5A in the Japanese case series of amyotrophic lateral sclerosis. Neurogenetics 2021, 22, 11–17. [Google Scholar] [CrossRef]
- Nakamura, R.; Tohnai, G.; Atsuta, N.; Nakatochi, M.; Hayashi, N.; Watanabe, H.; Yokoi, D.; Watanabe, H.; Katsuno, M.; Izumi, Y.; et al. Genetic and functional analysis of KIF5A variants in Japanese patients with sporadic amyotrophic lateral sclerosis. Neurobiol. Aging 2021, 97, e11–e47. [Google Scholar] [CrossRef] [PubMed]
- McCann, E.P.; Henden, L.; Fifita, J.A.; Zhang, K.Y.; Grima, N.; Bauer, D.C.; Chan Moi Fat, S.; Twine, N.A.; Pamphlett, R.; Kiernan, M.C.; et al. Evidence for polygenic and oligogenic basis of Australian sporadic amyotrophic lateral sclerosis. J. Med. Genet. 2021, 58, 87–95. [Google Scholar] [CrossRef]
- van Blitterswijk, M.; van Es, M.A.; Hennekam, E.A.M.; Dooijes, D.; van Rheenen, W.; Medic, J.; Bourque, P.R.; Schelhaas, H.J.; van der Kooi, A.J.; de Visser, M.; et al. Evidence for an oligogenic basis of amyotrophic lateral sclerosis. Hum. Mol. Genet. 2012, 21, 3776–3784. [Google Scholar] [CrossRef]
- Ebbing, B.; Mann, K.; Starosta, A.; Jaud, J.; Schöls, L.; Schüle, R.; Woehlke, G. Effect of spastic paraplegia mutations in KIF5A kinesin on transport activity. Hum. Mol. Genet. 2008, 17, 1245–1252. [Google Scholar] [CrossRef] [PubMed]
- Dulski, J.; Strongosky, A.J.; Al-Shaikh, R.H.; Wszolek, Z.K. Expanding the spectrum of KIF5A mutations-case report of a large kindred with familial ALS and overlapping syndrome. Amyotroph. Lateral Scler. Front. Degener. 2023, 24, 347–350. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.S.; Cui, L.Y.; Fan, D.S. Age at onset of amyotrophic lateral sclerosis in China. Acta Neurol. Scand. 2014, 129, 163–167. [Google Scholar] [CrossRef] [PubMed]
- Wei, Q.; Chen, X.; Zheng, Z.; Guo, X.; Huang, R.; Cao, B.; Zeng, Y.; Shang, H. The predictors of survival in Chinese amyotrophic lateral sclerosis patients. Amyotroph. Lateral Scler. Front. Degener. 2015, 16, 237–244. [Google Scholar] [CrossRef] [PubMed]
All Patients (n = 127) | Patient Carrying KIF5A p.K29R Variant and CNV | |
---|---|---|
Age, years | 45.5 ± 12.45 a | 64 |
Sex, num (%) | ||
| 80 (63%) 47 (27%) | Male |
Age at onset, years | 41.86 ± 13.25 a | 60 |
Site of onset, num (%) | ||
| 15 (11.8%) 111 (87.4%) 1 (0.8%) | Spinal |
Diagnosis delay, months | 29 (13.0–69.5) b | 51 |
Survival time, months | 54 (26–89) b | 68 |
ALSFRS score at diagnosis | 33.47 ± 6.75 a | 31 |
Gene | Mutation | cDNA | dbSNP | Coordinates | ExAC (EAS) | gnomAD v3 |
---|---|---|---|---|---|---|
KIF5A | p.K29R | c.86A>G | - | 12:57550357 | - | - |
Scheme 100 | PolyPhen | MutationTaster | FATHMM | M-CAP | REVEL | CADD | PhyloP100way | phastCons100way |
---|---|---|---|---|---|---|---|---|
Tolerated (0.1) | Benign (0.012) | NA | T | D | 0.243 | 23.3 | 5.85 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, H.; Guan, L.; Ma, X.; Wang, Y.; Wang, J.; Zhang, P.; Deng, M. Whole-Genome Sequencing Identified a Novel Mutation in the N-Terminal Domain of KIF5A in Chinese Patients with Familial Amyotrophic Lateral Sclerosis. Genes 2024, 15, 680. https://doi.org/10.3390/genes15060680
Wang H, Guan L, Ma X, Wang Y, Wang J, Zhang P, Deng M. Whole-Genome Sequencing Identified a Novel Mutation in the N-Terminal Domain of KIF5A in Chinese Patients with Familial Amyotrophic Lateral Sclerosis. Genes. 2024; 15(6):680. https://doi.org/10.3390/genes15060680
Chicago/Turabian StyleWang, Hui, Liping Guan, Xiaojuan Ma, Yiying Wang, Jinhao Wang, Peipei Zhang, and Min Deng. 2024. "Whole-Genome Sequencing Identified a Novel Mutation in the N-Terminal Domain of KIF5A in Chinese Patients with Familial Amyotrophic Lateral Sclerosis" Genes 15, no. 6: 680. https://doi.org/10.3390/genes15060680
APA StyleWang, H., Guan, L., Ma, X., Wang, Y., Wang, J., Zhang, P., & Deng, M. (2024). Whole-Genome Sequencing Identified a Novel Mutation in the N-Terminal Domain of KIF5A in Chinese Patients with Familial Amyotrophic Lateral Sclerosis. Genes, 15(6), 680. https://doi.org/10.3390/genes15060680