Molecular Mechanisms Governing Sight Loss in Inherited Cone Disorders
Abstract
:1. Introduction
2. Achromatopsia
2.1. CNGB3 and CNGA
2.2. PDE6C and PDE6H
2.3. GNAT2
2.4. ATF6
2.5. Animal Models
3. Xp28-Associated Disorders
3.1. Blue-Cone Monochromatism
Animal Models
3.2. Bornholm Eye Disease
Animal Model
4. Cone and Cone–Rod Dystrophies
4.1. ABCA4
4.2. PRPH2
4.3. RPGR
4.4. Animal Model
5. Gene Therapies
NCT Number | Study Title | Interventions | Phases | Start Date | Completion Date | Study Status |
---|---|---|---|---|---|---|
CNGA3 | ||||||
NCT02610582 | Safety and Efficacy of rAAV.hCNGA3 Gene Therapy in Patients With CNGA3-linked Achromatopsia | rAAV.hCNGA3—gene therapy | PHASE1|PHASE2 | November 2015 | June 2027 | Active |
NCT03278873 | Long-Term Follow-Up Gene Therapy Study for Achromatopsia CNGB3 and CNGA3 | AAV—CNGA3—gene therapy | PHASE1|PHASE2 | 29 June 2017 | 4 April 2024 | Completed—no results published |
NCT03758404 | Gene Therapy for Achromatopsia (CNGA3) | AAV—CNGA3—gene therapy | PHASE1|PHASE2 | 12 August 2019 | 10 June 2021 | Completed—results published [98] |
NCT02935517 | Safety and Efficacy Trial of AAV Gene Therapy in Patients With CNGA3 Achromatopsia (A Clarity Clinical Trial) | AGTC-402—gene therapy | PHASE1|PHASE2 | 3 August 2017 | August 2026 | Active |
CNGB3 | ||||||
NCT02599922 | Safety and Efficacy Trial of AAV Gene Therapy in Patients With CNGB3 Achromatopsia (A Clarity Clinical Trial) | rAAV2tYF-PR1.7-hCNGB3—gene therapy | PHASE1|PHASE2 | 11 April 2016 | July 2026 | Active |
NCT03278873 | Long-Term Follow-Up Gene Therapy Study for Achromatopsia CNGB3 and CNGA3 | AAV—CNGB3—gene therapy | PHASE1|PHASE2 | 29 June 2017 | 4 April 2024 | Completed—no results published |
NCT03001310 | Gene Therapy for Achromatopsia (CNGB3) | AAV—CNGB3—gene therapy | PHASE1|PHASE2 | 16 January 2017 | 25 October 2019 | Completed—results published [96] |
RPGR | ||||||
NCT04794101 | Follow-up Gene Therapy Trial for the Treatment of X-linked Retinitis Pigmentosa Associated With Variants in the RPGR Gene | AAV5-hRKp.RPGR—gene therapy | PHASE3 | 4 December 2020 | 19 December 2029 | Active |
NCT03316560 | Safety and Efficacy of rAAV2tYF-GRK1-RPGR in Subjects With X-linked Retinitis Pigmentosa Caused by RPGR Mutations | rAAV2tYF-GRK1-RPGR—gene therapy | PHASE1|PHASE2 | 16 April 2018 | March 2025 | Active |
NCT05874310 | Gene Therapy for Subjects With RPGR Mutation-associated X-linked Retinitis Pigmentosa | FT-002—gene therapy | EARLY_PHASE1 | 1 February 2023 | 1 November 2027 | Recruiting |
NCT06275620 | A Study Comparing Two Doses of AGTC-501 in Male Participants With X-linked Retinitis Pigmentosa Caused by RPGR Mutations (DAWN) | AGTC-501—gene therapy | PHASE2 | 14 November 2023 | August 2029 | Enrolling |
NCT04671433 | Gene Therapy Trial for the Treatment of X-linked Retinitis Pigmentosa Associated with Variants in the RPGR Gene | AAV5-hRKp.RPGR—gene therapy | PHASE3 | 4 December 2020 | 20 September 2024 | Active |
NCT04850118 | A Clinical Trial Evaluating the Safety and Efficacy of a Single Subretinal Injection of AGTC-501 in Participants With XLRP | rAAV2tYF-GRK1-hRPGRco G | PHASE2|PHASE3 | 14 March 2024 | October 2029 | Recruiting |
NCT04517149 | 4D-125 in Patients With X-Linked Retinitis Pigmentosa (XLRP) | 4D-125—gene therapy | PHASE1|PHASE2 | 9 June 2020 | May 2029 | Active |
NCT03584165 | Long-term Safety and Efficacy Follow-up of BIIB111 for the Treatment of Choroideremia and BIIB112 for the Treatment of X-Linked Retinitis Pigmentosa | BIIB111/BIIB112—gene therapy | PHASE3 | 4 June 2018 | 4 June 2026 | Enrolling |
NCT03252847 | Gene Therapy for X-linked Retinitis Pigmentosa (XLRP)—Retinitis Pigmentosa GTPase Regulator (RPGR) | AAV2/5-RPGR—gene therapy | PHASE1|PHASE2 | 14 July 2017 | 18 November 2021 | Completed—no results published |
NCT05926583 | A Study of AAV5-hRKp.RPGR for the Treatment of Japanese Participants With X-linked Retinitis Pigmentosa | AAV5-hRKp.RPGR—gene therapy | PHASE3 | 12 September 2023 | 9 October 2029 | Recruiting |
NCT03116113 | A Clinical Trial of Retinal Gene Therapy for X-linked Retinitis Pigmentosa Using BIIB112 | BIIB112—gene therapy | PHASE1|PHASE2 | 8 March 2017 | 18 November 2020 | Completed—Results Published [85] |
NCT06333249 | A Study Comparing Two Doses of AGTC-501 in Male Subjects With X-linked Retinitis Pigmentosa Caused by RPGR Mutations (SKYLINE) | rAAV2tYF-GRK1-RPGR—gene therapy | PHASE2 | 13 April 2021 | February 2027 | Active |
ABCA4 | ||||||
NCT01367444 | Phase I/IIA Study of SAR422459 in Participants With Stargardt’s Macular Degeneration | SAR422459—EIAV-ABCA4 gene therapy | PHASE1|PHASE2 | 8 June 2011 | 16 August 2019 | Terminated due to adverse effects [94,95] |
NCT06300476 | Safety and Efficacy of a Single Subretinal Injection of JWK006 Gene Therapy in Subjects With Stargardt Disease (STGD1) | JWK006—AAV-ABCA4 gene therapy | PHASE1|PHASE2 | 20 November 2023 | 30 December 2029 | Active |
Clinical Heterogeneity
6. Conclusions
7. Limitations of the Review
Funding
Conflicts of Interest
References
- Ben-Yosef, T. Inherited Retinal Diseases. Int. J. Mol. Sci. 2022, 23, 13467. [Google Scholar] [CrossRef] [PubMed]
- RetNet—Retinal Information Network. Available online: https://web.sph.uth.edu/RetNet/ (accessed on 14 November 2023).
- Mustafi, D.; Engel, A.H.; Palczewski, K. Structure of Cone Photoreceptors. Prog. Retin. Eye Res. 2009, 28, 289–302. [Google Scholar] [CrossRef] [PubMed]
- Megaw, R.; Moye, A.; Zhang, Z.; Newton, F.; McPhie, F.; Murphy, L.C.; McKie, L.; He, F.; Jungnickel, M.K.; von Kriegsheim, A.; et al. Ciliary Tip Actin Dynamics Regulate Photoreceptor Outer Segment Integrity. Nat. Commun. 2024, 15, 4316. [Google Scholar] [CrossRef]
- Zhang, Z.; Moye, A.R.; He, F.; Chen, M.; Agosto, M.A.; Wensel, T.G. Centriole and Transition Zone Structures in Photoreceptor Cilia Revealed by Cryo-Electron Tomography. Life Sci. Alliance 2024, 7, e202302409. [Google Scholar] [CrossRef] [PubMed]
- Spencer, W.J.; Lewis, T.R.; Pearring, J.N.; Arshavsky, V.Y. Photoreceptor Discs: Built like Ectosomes. Trends Cell Biol. 2020, 30, 904–915. [Google Scholar] [CrossRef] [PubMed]
- Terakita, A. The Opsins. Genome Biol. 2005, 6, 213. [Google Scholar] [CrossRef] [PubMed]
- Grzybowski, A. General Structure of the Retina. Acta Ophthalmol. 2015, 93. [Google Scholar] [CrossRef]
- Masland, R.H. The Fundamental Plan of the Retina. Nat. Neurosci. 2001, 4, 877–886. [Google Scholar] [CrossRef]
- Grossniklaus, H.E.; Geisert, E.E.; Nickerson, J.M. Introduction to the Retina. Prog. Mol. Biol. Transl. Sci. 2015, 134, 383–396. [Google Scholar] [CrossRef]
- Sechrest, E.R.; Chmelik, K.; Tan, W.D.; Deng, W.-T. Blue Cone Monochromacy and Gene Therapy. Vis. Res. 2023, 208, 108221. [Google Scholar] [CrossRef]
- Patterson, E.J.; Langlo, C.S.; Georgiou, M.; Kalitzeos, A.; Pennesi, M.E.; Neitz, J.; Hardcastle, A.J.; Neitz, M.; Michaelides, M.; Carroll, J. Comparing Retinal Structure in Patients with Achromatopsia and Blue Cone Monochromacy Using OCT. Ophthalmol. Sci. 2021, 1, 100047. [Google Scholar] [CrossRef] [PubMed]
- Georgiou, M.; Robson, A.G.; Fujinami, K.; de Guimarães, T.A.C.; Fujinami-Yokokawa, Y.; Daich Varela, M.; Pontikos, N.; Kalitzeos, A.; Mahroo, O.A.; Webster, A.R.; et al. Phenotyping and Genotyping Inherited Retinal Diseases: Molecular Genetics, Clinical and Imaging Features, and Therapeutics of Macular Dystrophies, Cone and Cone-Rod Dystrophies, Rod-Cone Dystrophies, Leber Congenital Amaurosis, and Cone Dysfunction Syndromes. Prog. Retin. Eye Res. 2024, 100, 101244. [Google Scholar] [CrossRef] [PubMed]
- Szikra, T.; Trenholm, S.; Drinnenberg, A.; Jüttner, J.; Raics, Z.; Farrow, K.; Biel, M.; Awatramani, G.; Clark, D.A.; Sahel, J.-A.; et al. Rods in Daylight Act as Relay Cells for Cone-Driven Horizontal Cell–Mediated Surround Inhibition. Nat. Neurosci. 2014, 17, 1728–1735. [Google Scholar] [CrossRef]
- Rosenberg, T.; Baumann, B.; Kohl, S.; Zrenner, E.; Jorgensen, A.L.; Wissinger, B. Variant Phenotypes of Incomplete Achromatopsia in Two Cousins with GNAT2 Gene Mutations. Investig. Ophthalmol. Vis. Sci. 2004, 45, 4256–4262. [Google Scholar] [CrossRef] [PubMed]
- Cehajic-Kapetanovic, J.; de la Camara, C.M.F.; Birtel, J.; Rehman, S.; McClements, M.E.; Issa, P.C.; Lotery, A.J.; MacLaren, R.E. Impaired Glutamylation of RPGRORF15 Underlies the Cone-Dominated Phenotype Associated with Truncating Distal ORF15 Variants. Proc. Natl. Acad. Sci. USA 2022, 119, e2208707119. [Google Scholar] [CrossRef] [PubMed]
- Gardner, J.C.; Liew, G.; Quan, Y.-H.; Ermetal, B.; Ueyama, H.; Davidson, A.E.; Schwarz, N.; Kanuga, N.; Chana, R.; Maher, E.R.; et al. Three Different Cone Opsin Gene Array Mutational Mechanisms; Genotype-Phenotype Correlation and Functional Investigation of Cone Opsin Variants. Hum. Mutat. 2014, 35, 1354–1362. [Google Scholar] [CrossRef] [PubMed]
- Michaelides, M.; Johnson, S.; Simunovic, M.P.; Bradshaw, K.; Holder, G.; Mollon, J.D.; Moore, A.T.; Hunt, D.M. Blue Cone Monochromatism: A Phenotype and Genotype Assessment with Evidence of Progressive Loss of Cone Function in Older Individuals. Eye 2005, 19, 2–10. [Google Scholar] [CrossRef] [PubMed]
- Thiadens, A.A.H.J.; Phan, T.M.L.; Zekveld-Vroon, R.C.; Leroy, B.P.; van den Born, L.I.; Hoyng, C.B.; Klaver, C.C.W.; Roosing, S.; Pott, J.-W.R.; van Schooneveld, M.J.; et al. Clinical Course, Genetic Etiology, and Visual Outcome in Cone and Cone–Rod Dystrophy. Ophthalmology 2012, 119, 819–826. [Google Scholar] [CrossRef] [PubMed]
- Gill, J.S.; Georgiou, M.; Kalitzeos, A.; Moore, A.T.; Michaelides, M. Progressive Cone and Cone-Rod Dystrophies: Clinical Features, Molecular Genetics and Prospects for Therapy. Br. J. Ophthalmol. 2019, 103, 711–720. [Google Scholar] [CrossRef]
- Pontikos, N.; Arno, G.; Jurkute, N.; Schiff, E.; Ba-Abbad, R.; Malka, S.; Gimenez, A.; Georgiou, M.; Wright, G.; Armengol, M.; et al. Genetic Basis of Inherited Retinal Disease in a Molecularly Characterized Cohort of More Than 3000 Families from the United Kingdom. Ophthalmology 2020, 127, 1384–1394. [Google Scholar] [CrossRef]
- Mayer, A.K.; Van Cauwenbergh, C.; Rother, C.; Baumann, B.; Reuter, P.; De Baere, E.; Wissinger, B.; Kohl, S. CNGB3 Mutation Spectrum Including Copy Number Variations in 552 Achromatopsia Patients. Hum. Mutat. 2017, 38, 1579–1591. [Google Scholar] [CrossRef] [PubMed]
- Andersen, M.K.G.; Bertelsen, M.; Grønskov, K.; Kohl, S.; Kessel, L. Genetic and Clinical Characterization of Danish Achromatopsia Patients. Genes 2023, 14, 690. [Google Scholar] [CrossRef] [PubMed]
- Genead, M.A.; Fishman, G.A.; Rha, J.; Dubis, A.M.; Bonci, D.M.O.; Dubra, A.; Stone, E.M.; Neitz, M.; Carroll, J. Photoreceptor Structure and Function in Patients with Congenital Achromatopsia. Investig. Ophthalmol. Vis. Sci. 2011, 52, 7298. [Google Scholar] [CrossRef]
- Daich Varela, M.; Ullah, E.; Yousaf, S.; Brooks, B.P.; Hufnagel, R.B.; Huryn, L.A. PDE6C: Novel Mutations, Atypical Phenotype, and Differences Among Children and Adults. Investig. Ophthalmol. Vis. Sci. 2020, 61, 1. [Google Scholar] [CrossRef] [PubMed]
- Ansar, M.; Santos-Cortez, R.L.P.; Saqib, M.A.N.; Zulfiqar, F.; Lee, K.; Ashraf, N.M.; Ullah, E.; Wang, X.; Sajid, S.; Khan, F.S.; et al. Mutation of ATF6 Causes Autosomal Recessive Achromatopsia. Hum. Genet. 2015, 134, 941. [Google Scholar] [CrossRef]
- Mastey, R.R.; Georgiou, M.; Langlo, C.S.; Kalitzeos, A.; Patterson, E.J.; Kane, T.; Singh, N.; Vincent, A.; Moore, A.T.; Tsang, S.H.; et al. Characterization of Retinal Structure in ATF6-Associated Achromatopsia. Investig. Ophthalmol. Vis. Sci. 2019, 60, 2631–2640. [Google Scholar] [CrossRef] [PubMed]
- Remmer, M.H.; Rastogi, N.; Ranka, M.P.; Ceisler, E.J. Achromatopsia. Curr. Opin. Ophthalmol. 2015, 26, 333–340. [Google Scholar] [CrossRef] [PubMed]
- Solaki, M.; Baumann, B.; Reuter, P.; Andreasson, S.; Audo, I.; Ayuso, C.; Balousha, G.; Benedicenti, F.; Birch, D.; Bitoun, P.; et al. Comprehensive Variant Spectrum of the CNGA3 Gene in Patients Affected by Achromatopsia. Hum. Mutat. 2022, 43, 832–858. [Google Scholar] [CrossRef] [PubMed]
- Kohl, S.; Zobor, D.; Chiang, W.-C.; Weisschuh, N.; Staller, J.; Menendez, I.G.; Chang, S.; Beck, S.C.; Garrido, M.G.; Sothilingam, V.; et al. Mutations in the Unfolded Protein Response Regulator ATF6 Cause the Cone Dysfunction Disorder Achromatopsia. Nat. Genet. 2015, 47, 757–765. [Google Scholar] [CrossRef]
- Chen, S.; Francioli, L.C.; Goodrich, J.K.; Collins, R.L.; Kanai, M.; Wang, Q.; Alföldi, J.; Watts, N.A.; Vittal, C.; Gauthier, L.D.; et al. A Genomic Mutational Constraint Map Using Variation in 76,156 Human Genomes. Nature 2023, 625, 92–100. [Google Scholar] [CrossRef]
- Zheng, X.; Hu, Z.; Li, H.; Yang, J. Structure of the Human Cone Photoreceptor Cyclic Nucleotide-Gated Channel. Nat. Struct. Mol. Biol. 2022, 29, 40–46. [Google Scholar] [CrossRef] [PubMed]
- Kohl, S.; Jägle, H.; Wissinger, B.; Zobor, D. Achromatopsia. In GeneReviews; University of Washington: Seattle, WA, USA, 2018. [Google Scholar]
- Kohl, S.; Varsanyi, B.; Antunes, G.A.; Baumann, B.; Hoyng, C.B.; Jägle, H.; Rosenberg, T.; Kellner, U.; Lorenz, B.; Salati, R.; et al. CNGB3 Mutations Account for 50% of All Cases with Autosomal Recessive Achromatopsia. Eur. J. Hum. Genet. 2005, 13, 302–308. [Google Scholar] [CrossRef] [PubMed]
- González-del Pozo, M.; Martín-Sánchez, M.; Bravo-Gil, N.; Méndez-Vidal, C.; Chimenea, Á.; Rodríguez-de la Rúa, E.; Borrego, S.; Antiñolo, G. Searching the Second Hit in Patients with Inherited Retinal Dystrophies and Monoallelic Variants in ABCA4, USH2A and CEP290 by Whole-Gene Targeted Sequencing. Sci. Rep. 2018, 8, 13312. [Google Scholar] [CrossRef] [PubMed]
- Georgiou, M.; Robson, A.G.; Singh, N.; Pontikos, N.; Kane, T.; Hirji, N.; Ripamonti, C.; Rotsos, T.; Dubra, A.; Kalitzeos, A.; et al. Deep Phenotyping of PDE6C—Associated Achromatopsia. Investig. Ophthalmol. Vis. Sci. 2019, 60, 5112. [Google Scholar] [CrossRef] [PubMed]
- Kohl, S.; Coppieters, F.; Meire, F.; Schaich, S.; Roosing, S.; Brennenstuhl, C.; Bolz, S.; van Genderen, M.M.; Riemslag, F.C.C.; Lukowski, R.; et al. A Nonsense Mutation in PDE6H Causes Autosomal-Recessive Incomplete Achromatopsia. Am. J. Hum. Genet. 2012, 91, 527–532. [Google Scholar] [CrossRef] [PubMed]
- Brennenstuhl, C.; Tanimoto, N.; Burkard, M.; Wagner, R.; Bolz, S.; Trifunovic, D.; Kabagema-Bilan, C.; Paquet-Durand, F.; Beck, S.C.; Huber, G.; et al. Targeted Ablation of the Pde6h Gene in Mice Reveals Cross-Species Differences in Cone and Rod Phototransduction Protein Isoform Inventory. J. Biol. Chem. 2015, 290, 10242–10255. [Google Scholar] [CrossRef]
- Madeira, C.; Godinho, G.; Grangeia, A.; Falcão, M.; Silva, R.; Carneiro, Â.; Brandão, E.; Magalhães, A.; Falcão-Reis, F.; Estrela-Silva, S. Two Novel Disease-Causing Variants in the PDE6C Gene Underlying Achromatopsia. Case Rep. Ophthalmol. 2021, 12, 749–760. [Google Scholar] [CrossRef] [PubMed]
- Georgiou, M.; Singh, N.; Kane, T.; Robson, A.G.; Kalitzeos, A.; Hirji, N.; Webster, A.R.; Dubra, A.; Carroll, J.; Michaelides, M. Photoreceptor Structure in GNAT2—Associated Achromatopsia. Investig. Ophthalmol. Vis. Sci. 2020, 61, 40. [Google Scholar] [CrossRef]
- Kroeger, H.; Grandjean, J.M.D.; Chiang, W.C.J.; Bindels, D.D.; Mastey, R.; Okalova, J.; Nguyen, A.; Powers, E.T.; Kelly, J.W.; Grimsey, N.J.; et al. ATF6 Is Essential for Human Cone Photoreceptor Development. Proc. Natl. Acad. Sci. USA 2021, 118, 10242–10255. [Google Scholar] [CrossRef]
- Biel, M.; Seeliger, M.; Pfeifer, A.; Kohler, K.; Gerstner, A.; Ludwig, A.; Jaissle, G.; Fauser, S.; Zrenner, E.; Hofmann, F. Selective Loss of Cone Function in Mice Lacking the Cyclic Nucleotide-Gated Channel CNG3. Proc. Natl. Acad. Sci. USA 1999, 96, 7553–7557. [Google Scholar] [CrossRef]
- Thapa, A.; Morris, L.; Xu, J.; Ma, H.; Michalakis, S.; Biel, M.; Ding, X.-Q. Endoplasmic Reticulum Stress-Associated Cone Photoreceptor Degeneration in Cyclic Nucleotide-Gated Channel Deficiency. J. Biol. Chem. 2012, 287, 18018–18029. [Google Scholar] [CrossRef] [PubMed]
- Ronning, K.E.; Allina, G.P.; Miller, E.B.; Zawadzki, R.J.; Pugh, E.N.; Herrmann, R.; Burns, M.E. Loss of Cone Function without Degeneration in a Novel Gnat2 Knock-out Mouse. Exp. Eye Res. 2018, 171, 111–118. [Google Scholar] [CrossRef] [PubMed]
- Chang, B.; Hawes, N.L.; Hurd, R.E.; Davisson, M.T.; Nusinowitz, S.; Heckenlively, J.R. Retinal Degeneration Mutants in the Mouse. Vis. Res. 2002, 42, 517–525. [Google Scholar] [CrossRef] [PubMed]
- Chang, B.; Grau, T.; Dangel, S.; Hurd, R.; Jurklies, B.; Sener, E.C.; Andreasson, S.; Dollfus, H.; Baumann, B.; Bolz, S.; et al. A Homologous Genetic Basis of the Murine Cpfl1 Mutant and Human Achromatopsia Linked to Mutations in the PDE6C Gene. Proc. Natl. Acad. Sci. USA 2009, 106, 19581–19586. [Google Scholar] [CrossRef] [PubMed]
- Moshiri, A.; Chen, R.; Kim, S.; Harris, R.A.; Li, Y.; Raveendran, M.; Davis, S.; Liang, Q.; Pomerantz, O.; Wang, J.; et al. A Nonhuman Primate Model of Inherited Retinal Disease. J. Clin. Investig. 2019, 129, 863–874. [Google Scholar] [CrossRef] [PubMed]
- Wissinger, B.; Baumann, B.; Buena-Atienza, E.; Ravesh, Z.; Cideciyan, A.V.; Stingl, K.; Audo, I.; Meunier, I.; Bocquet, B.; Traboulsi, E.I.; et al. The Landscape of Submicroscopic Structural Variants at the OPN1LW/OPN1MW Gene Cluster on Xq28 Underlying Blue Cone Monochromacy. Proc. Natl. Acad. Sci. USA 2022, 119, e2115538119. [Google Scholar] [CrossRef] [PubMed]
- Gardner, J.C.; Webb, T.R.; Kanuga, N.; Robson, A.G.; Holder, G.E.; Stockman, A.; Ripamonti, C.; Ebenezer, N.D.; Ogun, O.; Devery, S.; et al. X-Linked Cone Dystrophy Caused by Mutation of the Red and Green Cone Opsins. Am. J. Hum. Genet. 2010, 87, 26–39. [Google Scholar] [CrossRef] [PubMed]
- Sumaroka, A.; Garafalo, A.V.; Cideciyan, A.V.; Charng, J.; Roman, A.J.; Choi, W.; Saxena, S.; Aksianiuk, V.; Kohl, S.; Wissinger, B.; et al. Blue Cone Monochromacy Caused by the C203R Missense Mutation or Large Deletion Mutations. Investig. Ophthalmol. Vis. Sci. 2018, 59, 5762. [Google Scholar] [CrossRef] [PubMed]
- Frederiksen, A.L.; Duno, M.; Welinder, L.G. Blue Cone Monochromatism in a Female Due to Skewed X-Inactivation. Ophthalmic Genet. 2013, 34, 101–104. [Google Scholar] [CrossRef]
- Zhang, Y.; Deng, W.-T.; Du, W.; Zhu, P.; Li, J.; Xu, F.; Sun, J.; Gerstner, C.D.; Baehr, W.; Boye, S.L.; et al. Gene-Based Therapy in a Mouse Model of Blue Cone Monochromacy. Sci. Rep. 2017, 7, 6690. [Google Scholar] [CrossRef]
- Deng, W.-T.; Li, J.; Zhu, P.; Freedman, B.; Smith, W.C.; Baehr, W.; Hauswirth, W.W. Rescue of M-Cone Function in Aged Opn1mw −/− Mice, a Model for Late-Stage Blue Cone Monochromacy. Investig. Ophthalmol. Vis. Sci. 2019, 60, 3644. [Google Scholar] [CrossRef] [PubMed]
- Cahill, M.; Chmelik, K.; Sechrest, E.R.; Barbera, R.J.; Beahr, W.; Deng, W.-T. Gene Therapy Restores Vision to the All-Cone Nrl-/-/Opn1mw-/-/Opn1sw-/-Mouse Model of Blue Cone Monochromacy. Investig. Ophthalmol. Vis. Sci. 2023, 64, 769. [Google Scholar]
- Haim, M.; Fledelius, H.C. Skarsholm X-linked Myopia in Danish Family. Acta Ophthalmol. 1988, 66, 450–456. [Google Scholar] [CrossRef] [PubMed]
- Georgiou, M.; Fujinami, K.; Michaelides, M. Inherited Retinal Diseases: Therapeutics, Clinical Trials and End Points—A Review. Clin. Exp. Ophthalmol. 2021, 49, 270–288. [Google Scholar] [CrossRef] [PubMed]
- Michaelides, M.; Johnson, S.; Bradshaw, K.; Holder, G.E.; Simunovic, M.P.; Mollon, J.D.; Moore, A.T.; Hunt, D.M. X-Linked Cone Dysfunction Syndrome with Myopia and Protanopia. Ophthalmology 2005, 112, 1448–1454. [Google Scholar] [CrossRef]
- Holmquist, D.; Epstein, D.; Olsson, M.; Wissinger, B.; Kohl, S.; Hengstler, J.; Tear-Fahnehjelm, K. Visual and Ocular Findings in a Family with X-Linked Cone Dysfunction and Protanopia. Ophthalmic Genet. 2021, 42, 570–576. [Google Scholar] [CrossRef]
- Neitz, M.; Neitz, J. Intermixing the OPN1LW and OPN1MW Genes Disrupts the Exonic Splicing Code Causing an Array of Vision Disorders. Genes 2021, 12, 1180. [Google Scholar] [CrossRef] [PubMed]
- Greenwald, S.H.; Kuchenbecker, J.A.; Neitz, M.; Neitz, J. A Mouse Model of Cone Dystrophy Caused by a Toxic Opsin Variant. Investig. Ophthalmol. Vis. Sci. 2012, 53, 4643. [Google Scholar]
- Greenwald, S.H.; Kuchenbecker, J.A.; Rowlan, J.S.; Neitz, J.; Neitz, M. Role of a Dual Splicing and Amino Acid Code in Myopia, Cone Dysfunction and Cone Dystrophy Associated with L/M Opsin Interchange Mutations. Transl. Vis. Sci. Technol. 2017, 6, 2. [Google Scholar] [CrossRef]
- Greenwald, S.H.; Kuchenbecker, J.A.; Roberson, D.K.; Neitz, M.; Neitz, J. S-Opsin Knockout Mice with the Endogenous M-Opsin Gene Replaced by an L-Opsin Variant. Vis. Neurosci. 2014, 31, 25–37. [Google Scholar] [CrossRef]
- Song, H.; Rossi, E.A.; Stone, E.; Latchney, L.; Williams, D.; Dubra, A.; Chung, M. Phenotypic Diversity in Autosomal-Dominant Cone-Rod Dystrophy Elucidated by Adaptive Optics Retinal Imaging. Br. J. Ophthalmol. 2018, 102, 136–141. [Google Scholar] [CrossRef]
- Creel, D.J. Electroretinograms. In Handbook of Clinical Neurology; Elsevier: Amsterdam, The Netherlands, 2019; pp. 481–493. [Google Scholar]
- Han, J.H.; Rodenburg, K.; Hayman, T.; Calzetti, G.; Kaminska, K.; Quinodoz, M.; Marra, M.; Wallerich, S.; Allon, G.; Nagy, Z.Z.; et al. Loss-of-Function Variants in UBAP1L Cause Autosomal Recessive Retinal Degeneration. Genet. Med. 2024, 2024, 101106. [Google Scholar] [CrossRef]
- Zeitz, C.; Navarro, J.; Azizzadeh Pormehr, L.; Méjécase, C.; Neves, L.M.; Letellier, C.; Condroyer, C.; Albadri, S.; Amprou, A.; Antonio, A.; et al. Variants in UBAP1L Lead to Autosomal Recessive Rod-Cone and Cone-Rod Dystrophy. Genet. Med. 2024, 2024, 101081. [Google Scholar] [CrossRef] [PubMed]
- Gao, Z.; Liao, Y.; Chen, C.; Liao, C.; He, D.; Chen, J.; Ma, J.; Liu, Z.; Wu, Y. Conversion of All-Trans-Retinal into All-Trans-Retinal Dimer Reflects an Alternative Metabolic/Antidotal Pathway of All-Trans-Retinal in the Retina. J. Biol. Chem. 2018, 293, 14507–14519. [Google Scholar] [CrossRef] [PubMed]
- Al-Khuzaei, S.; Broadgate, S.; Foster, C.R.; Shah, M.; Yu, J.; Downes, S.M.; Halford, S. An Overview of the Genetics of ABCA4 Retinopathies, an Evolving Story. Genes 2021, 12, 1241. [Google Scholar] [CrossRef] [PubMed]
- Khan, K.N.; Kasilian, M.; Mahroo, O.A.R.; Tanna, P.; Kalitzeos, A.; Robson, A.G.; Tsunoda, K.; Iwata, T.; Moore, A.T.; Fujinami, K.; et al. Early Patterns of Macular Degeneration in ABCA4-Associated Retinopathy. Ophthalmology 2018, 125, 735–746. [Google Scholar] [CrossRef]
- Maugeri, A.; Klevering, B.J.; Rohrschneider, K.; Blankenagel, A.; Brunner, H.G.; Deutman, A.F.; Hoyng, C.B.; Cremers, F.P.M. Mutations in the ABCA4 (ABCR) Gene Are the Major Cause of Autosomal Recessive Cone-Rod Dystrophy. Am. J. Hum. Genet. 2000, 67, 960–966. [Google Scholar] [CrossRef]
- Ducroq, D.; Rozet, J.-M.; Gerber, S.; Perrault, I.; Barbet, F.; Hanein, S.; Hakiki, S.; Dufier, J.-L.; Munnich, A.; Hamel, C.; et al. The ABCA4 Gene in Autosomal Recessive Cone-Rod Dystrophies. Am. J. Hum. Genet. 2002, 71, 1480–1482. [Google Scholar] [CrossRef]
- Bianco, L.; Arrigo, A.; Antropoli, A.; Saladino, A.; Spiga, I.; Patricelli, M.G.; Bandello, F.; Carrera, P.; Battaglia Parodi, M. PRPH2-Associated Retinopathy. Ophthalmol. Retin. 2023, 7, 450–461. [Google Scholar] [CrossRef]
- Chakraborty, D.; Strayve, D.G.; Makia, M.S.; Conley, S.M.; Kakahel, M.; Al-Ubaidi, M.R.; Naash, M.I. Novel Molecular Mechanisms for Prph2-associated Pattern Dystrophy. FASEB J. 2020, 34, 1211–1230. [Google Scholar] [CrossRef]
- Salinas, R.Y.; Pearring, J.N.; Ding, J.-D.; Spencer, W.J.; Hao, Y.; Arshavsky, V.Y. Photoreceptor Discs Form through Peripherin-Dependent Suppression of Ciliary Ectosome Release. J. Cell Biol. 2017, 216, 1489–1499. [Google Scholar] [CrossRef] [PubMed]
- Gocho, K.; Akeo, K.; Itoh, N.; Kameya, S.; Hayashi, T.; Katagiri, S.; Gekka, T.; Ohkuma, Y.; Tsuneoka, H.; Takahashi, H. High-Resolution Adaptive Optics Retinal Image Analysis at Early Stage Central Areolar Choroidal Dystrophy with PRPH2 Mutation. Ophthalmic Surg Lasers Imaging Retin. 2016, 47, 1115–1126. [Google Scholar] [CrossRef] [PubMed]
- Michaelides, M.; Holder, G.E.; Bradshaw, K.; Hunt, D.M.; Moore, A.T. Cone–Rod Dystrophy, Intrafamilial Variability, and Incomplete Penetrance Associated with the R172W Mutation in the Peripherin/RDS Gene. Ophthalmology 2005, 112, 1592–1598. [Google Scholar] [CrossRef] [PubMed]
- Shankar, S.P.; Hughbanks-Wheaton, D.K.; Birch, D.G.; Sullivan, L.S.; Conneely, K.N.; Bowne, S.J.; Stone, E.M.; Daiger, S.P. Autosomal Dominant Retinal Dystrophies Caused by a Founder Splice Site Mutation, c.828+3A>T, in PRPH2 and Protein Haplotypes in Trans as Modifiers. Investig. Ophthalmol. Vis. Sci. 2016, 57, 349–359. [Google Scholar] [CrossRef] [PubMed]
- Beltran, W.A.; Hammond, P.; Acland, G.M.; Aguirre, G.D. A Frameshift Mutation in RPGR Exon ORF15 Causes Photoreceptor Degeneration and Inner Retina Remodeling in a Model of X-Linked Retinitis Pigmentosa. Investig. Ophthalmol. Vis. Sci. 2006, 47, 1669–1681. [Google Scholar] [CrossRef] [PubMed]
- Vössing, C.; Atigbire, P.; Eilers, J.; Markus, F.; Stieger, K.; Song, F.; Neidhardt, J. The Major Ciliary Isoforms of RPGR Build Different Interaction Complexes with INPP5E and RPGRIP1L. Int. J. Mol. Sci. 2021, 22, 3583. [Google Scholar] [CrossRef] [PubMed]
- Martin, F.J.; Amode, M.R.; Aneja, A.; Austine-Orimoloye, O.; Azov, A.G.; Barnes, I.; Becker, A.; Bennett, R.; Berry, A.; Bhai, J.; et al. Ensembl 2023. Nucleic Acids Res. 2023, 51, D933–D941. [Google Scholar] [CrossRef] [PubMed]
- Megaw, R.D.; Soares, D.C.; Wright, A.F. RPGR: Its Role in Photoreceptor Physiology, Human Disease, and Future Therapies. Exp. Eye Res. 2015, 138, 32–41. [Google Scholar] [CrossRef]
- Megaw, R.; Abu-Arafeh, H.; Jungnickel, M.; Mellough, C.; Gurniak, C.; Witke, W.; Zhang, W.; Khanna, H.; Mill, P.; Dhillon, B.; et al. Gelsolin Dysfunction Causes Photoreceptor Loss in Induced Pluripotent Cell and Animal Retinitis Pigmentosa Models. Nat. Commun. 2017, 8, 271. [Google Scholar] [CrossRef]
- Talib, M.; Van Schooneveld, M.J.; Thiadens, A.A.; Fiocco, M.; Wijnholds, J.; Florijn, R.J.; Schalij-Delfos, N.E.; Van Genderen, M.M.; Putter, H.; Cremers, F.P.M.; et al. CLINICAL and GENETIC CHARACTERISTICS of MALE PATIENTS with RPGR-ASSOCIATED RETINAL DYSTROPHIES: A Long-Term Follow-up Study. Retina 2019, 39, 1186–1189. [Google Scholar] [CrossRef]
- Hadalin, V.; Buscarino, M.; Sajovic, J.; Meglič, A.; Jarc-Vidmar, M.; Hawlina, M.; Volk, M.; Fakin, A. Genetic Characteristics and Long-Term Follow-Up of Slovenian Patients with RPGR Retinal Dystrophy. Int. J. Mol. Sci. 2023, 24, 3840. [Google Scholar] [CrossRef] [PubMed]
- Cehajic-Kapetanovic, J.; Xue, K.; Martinez-Fernandez de la Camara, C.; Nanda, A.; Davies, A.; Wood, L.J.; Salvetti, A.P.; Fischer, M.D.; Aylward, J.W.; Barnard, A.R.; et al. Initial Results from a First-in-Human Gene Therapy Trial on X-Linked Retinitis Pigmentosa Caused by Mutations in RPGR. Nat. Med. 2020, 26, 354–359. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Park, J.H.; Gumerson, J.; Wu, Z.; Swaroop, A.; Qian, H.; Roll-Mecak, A.; Li, T. Loss of RPGR Glutamylation Underlies the Pathogenic Mechanism of Retinal Dystrophy Caused by TTLL5 Mutations. Proc. Natl. Acad. Sci. USA 2016, 113, E2925–E2934. [Google Scholar] [CrossRef] [PubMed]
- Brunner, S.; Skosyrski, S.; Kirschner-Schwabe, R.; Knobeloch, K.-P.; Neidhardt, J.; Feil, S.; Glaus, E.; Luhmann, U.F.O.; Rüther, K.; Berger, W. Cone versus Rod Disease in a Mutant Rpgr Mouse Caused by Different Genetic Backgrounds. Investig. Ophthalmol. Vis. Sci. 2010, 51, 1106. [Google Scholar] [CrossRef] [PubMed]
- Ding, X.Q.; Nour, M.; Ritter, L.M.; Goldberg, A.F.X.; Fliesler, S.J.; Naash, M.I. The R172W Mutation in Peripherin/Rds Causes a Cone-Rod Dystophy in Transgenic Mice. Hum. Mol. Genet. 2004, 13, 2075–2087. [Google Scholar] [CrossRef] [PubMed]
- Chakraborty, D.; Conley, S.M.; Zulliger, R.; Naash, M.I. The K153Del PRPH2 Mutation Differentially Impacts Photoreceptor Structure and Function. Hum. Mol. Genet. 2016, 25, 3500–3514. [Google Scholar] [CrossRef] [PubMed]
- Molday, R.S. ATP-Binding Cassette Transporter ABCA4: Molecular Properties and Role in Vision and Macular Degeneration. J. Bioenergy Biomembr. 2007, 39, 507–517. [Google Scholar] [CrossRef] [PubMed]
- Maeda, A.; Maeda, T.; Golczak, M.; Palczewski, K. Retinopathy in Mice Induced by Disrupted All-Trans-Retinal Clearance. J. Biol. Chem. 2008, 283, 26684–26693. [Google Scholar] [CrossRef] [PubMed]
- Fujinami, K.; Waheed, N.; Laich, Y.; Yang, P.; Fujinami-Yokokawa, Y.; Higgins, J.J.; Lu, J.T.; Curtiss, D.; Clary, C.; Michaelides, M. Stargardt Macular Dystrophy and Therapeutic Approaches. Br. J. Ophthalmol. 2023, 108, 495–505. [Google Scholar] [CrossRef]
- Wang, R.; McClard, C.K.; Laswell, S.; Mahmoudzadeh, R.; Salabati, M.; Ammar, M.; Vannavong, J.; Aziz, A.A.; Ewald, A.; Calvanese, A.V.; et al. Quantifying Burden of Intravitreal Injections: Questionnaire Assessment of Life Impact of Treatment by Intravitreal Injections (QUALITII). BMJ Open Ophthalmol. 2022, 7, e001188. [Google Scholar] [CrossRef]
- Parker, M.A.; Erker, L.R.; Audo, I.; Choi, D.; Mohand-Said, S.; Sestakauskas, K.; Benoit, P.; Appelqvist, T.; Krahmer, M.; Ségaut-Prévost, C.; et al. Three-Year Safety Results of SAR422459 (EIAV-ABCA4) Gene Therapy in Patients With ABCA4-Associated Stargardt Disease: An Open-Label Dose-Escalation Phase I/IIa Clinical Trial, Cohorts 1-5. Am. J. Ophthalmol. 2022, 240, 285–301. [Google Scholar] [CrossRef] [PubMed]
- Parker, M.A.; Choi, D.; Erker, L.R.; Pennesi, M.E.; Yang, P.; Chegarnov, E.N.; Steinkamp, P.N.; Schlechter, C.L.; Dhaenens, C.-M.; Mohand-Said, S.; et al. Test–Retest Variability of Functional and Structural Parameters in Patients with Stargardt Disease Participating in the SAR422459 Gene Therapy Trial. Transl. Vis. Sci. Technol. 2016, 5, 10. [Google Scholar] [CrossRef] [PubMed]
- Reichel, F.F.; Michalakis, S.; Wilhelm, B.; Zobor, D.; Muehlfriedel, R.; Kohl, S.; Weisschuh, N.; Sothilingam, V.; Kuehlewein, L.; Kahle, N.; et al. Three-Year Results of Phase I Retinal Gene Therapy Trial for CNGA3-Mutated Achromatopsia: Results of a Non Randomised Controlled Trial. Br. J. Ophthalmol. 2022, 106, 1567–1572. [Google Scholar] [CrossRef] [PubMed]
- Farahbakhsh, M.; Anderson, E.J.; Maimon-Mor, R.O.; Rider, A.; Greenwood, J.A.; Hirji, N.; Zaman, S.; Jones, P.R.; Schwarzkopf, D.S.; Rees, G.; et al. A Demonstration of Cone Function Plasticity after Gene Therapy in Achromatopsia. Brain 2022, 145, 3803–3815. [Google Scholar] [CrossRef]
- Michaelides, M.; Hirji, N.; Wong, S.C.; Besirli, C.G.; Zaman, S.; Kumaran, N.; Georgiadis, A.; Smith, A.J.; Ripamonti, C.; Gottlob, I.; et al. First-in-Human Gene Therapy Trial of AAV8-HCARp.HCNGB3 in Adults and Children with CNGB3-Associated Achromatopsia. Am. J. Ophthalmol. 2023, 253, 243–251. [Google Scholar] [CrossRef] [PubMed]
- National Library of Medicine ClinicalTrials.Gov. Available online: https://clinicaltrials.gov/ (accessed on 21 May 2024).
- Sun, D.; Sun, W.; Gao, S.-Q.; Lehrer, J.; Naderi, A.; Wei, C.; Lee, S.; Schilb, A.L.; Scheidt, J.; Hall, R.C.; et al. Effective Gene Therapy of Stargardt Disease with PEG-ECO/PGRK1-ABCA4-S/MAR Nanoparticles. Mol. Ther. Nucleic Acids 2022, 29, 823–835. [Google Scholar] [CrossRef]
- Li, R.; Jing, Q.; She, K.; Wang, Q.; Jin, X.; Zhao, Q.; Su, J.; Song, L.; Fu, J.; Wu, X.; et al. Split AAV8 Mediated ABCA4 Expression for Gene Therapy of Mouse Stargardt Disease (STGD1). Hum. Gene Ther. 2023, 34, 616–628. [Google Scholar] [CrossRef]
- Barroso-Gil, M.; Olinger, E.; Ramsbottom, S.A.; Molinari, E.; Miles, C.G.; Sayer, J.A. Update of Genetic Variants in CEP120 and CC2D2A —With an Emphasis on Genotype-phenotype Correlations, Tissue Specific Transcripts and Exploring Mutation Specific Exon Skipping Therapies. Mol. Genet. Genom. Med. 2021, 9, e1603. [Google Scholar] [CrossRef]
- Méjécase, C.; Mohand-Said, S.; Andrieux, C.; Hummel, A.; El Shamieh, S.; Antonio, A.; Boyard, F.; Condroyer, C.; Michiels, C.; Blanchard, S.; et al. CC2D2A Mutations Lead to Variable Phenotypes in a Family with Retinal Dystrophy. Investig. Ophthalmol. Vis. Sci. 2017, 58, 573. [Google Scholar]
- Fadaie, Z.; Whelan, L.; Dockery, A.; Li, C.H.Z.; Van Den Born, L.I.; Hoyng, C.B.; Gilissen, C.; Corominas, J.; Rowlands, C.; Megaw, R.; et al. BBS1 Branchpoint Variant Is Associated with Non-Syndromic Retinitis Pigmentosa. J. Med. Genet. 2022, 59, 438–444. [Google Scholar] [CrossRef]
- Scheidecker, S.; Hull, S.; Perdomo, Y.; Studer, F.; Pelletier, V.; Muller, J.; Stoetzel, C.; Schaefer, E.; Defoort-Dhellemmes, S.; Drumare, I.; et al. Predominantly Cone-System Dysfunction as Rare Form of Retinal Degeneration in Patients with Molecularly Confirmed Bardet-Biedl Syndrome. Am. J. Ophthalmol. 2015, 160, 364–372. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brotherton, C.; Megaw, R. Molecular Mechanisms Governing Sight Loss in Inherited Cone Disorders. Genes 2024, 15, 727. https://doi.org/10.3390/genes15060727
Brotherton C, Megaw R. Molecular Mechanisms Governing Sight Loss in Inherited Cone Disorders. Genes. 2024; 15(6):727. https://doi.org/10.3390/genes15060727
Chicago/Turabian StyleBrotherton, Chloe, and Roly Megaw. 2024. "Molecular Mechanisms Governing Sight Loss in Inherited Cone Disorders" Genes 15, no. 6: 727. https://doi.org/10.3390/genes15060727
APA StyleBrotherton, C., & Megaw, R. (2024). Molecular Mechanisms Governing Sight Loss in Inherited Cone Disorders. Genes, 15(6), 727. https://doi.org/10.3390/genes15060727