A Characterization and Functional Analysis of Peroxisome Proliferator-Activated Receptor Gamma Splicing Variants in the Buffalo Mammary Gland
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Animals and Sampling
2.2. Milk Routine Component Analysis
2.3. Extraction and Component Analysis of Fatty Acids (FA in Milk and BMECs)
2.4. Extraction of Total RNA and DNA from Buffalo Milk
2.5. Identification of PPARG Splices from Buffalo Somatic Cells in Milk
2.6. Characteristic Analysis of the PPARG Isoforms
2.7. Isolation, Culture, and Purification of Buffalo Mammary Epithelial Cells
2.8. siRNA Synthesis and Overexpression Vector Construction of Buffalo PPARG-X17 and PPARG-X21
2.9. Transfection of BMECs
2.10. qRT-PCR Analysis
2.11. Statistical Analysis
3. Results
3.1. Composition Analysis of Milk and FAs from Different Lactation Periods
3.2. Identification of PPARG Splices from Buffalo Somatic Cells in Milk
3.3. Characteristic Analysis of the PPARG Isoforms
3.4. Effect of PPARG-X17 Interference and Overexpression on Gene Expression and Fat Synthesis in BMECs
3.5. Effect of PPARG-X21 Interference and Overexpression on Gene Expression and Fat Synthesis in BMECs
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, J.; Liu, H. Nutritional indices for assessing fatty acids: A mini-review. Int. J. Mol. Sci. 2020, 21, 5695. [Google Scholar] [CrossRef] [PubMed]
- Cucchi, D.; Camacho-Muñoz, D.; Certo, M.; Pucino, V.; Nicolaou, A.; Mauro, C. Fatty acids-from energy substrates to key regulators of cell survival, proliferation and effector function. Cell Stress 2020, 4, 9. [Google Scholar] [CrossRef] [PubMed]
- Brodziak, A.; Wajs, J.; Zuba-Ciszewska, M.; Król, J.; Stobiecka, M.; Jańczuk, A. Organic versus conventional raw cow milk as material for processing. Animals 2021, 11, 2760. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Chen, M.; Luo, R.; Huang, G.; Wu, X.; Zheng, N.; Zhang, Y.; Wang, J. Fatty acid profiles of milk from Holstein cows, Jersey cows, buffalos, yaks, humans, goats, camels, and donkeys based on gas chromatography–mass spectrometry. J. Dairy Sci. 2022, 105, 1687–1700. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Lu, S.; Cui, K.; Shafique, L.; Rehman, S.U.; Luo, C.; Wang, Z.; Ruan, J.; Qian, Q.; Liu, Q. Fatty acid biosynthesis and transcriptional regulation of Stearoyl-CoA Desaturase 1 (SCD1) in buffalo milk. BMC Genet. 2020, 21, 23. [Google Scholar] [CrossRef] [PubMed]
- Kushwaha, B.P.; Upadhyay, D.; Singh, S.; Maity, S.B.; Singh, K.K.; Misra, A.K. Fatty acid profile of Murrah buffalo milk fat. Buffalo Bull. 2022, 41, 73–79. [Google Scholar] [CrossRef]
- Bionaz, M.; Loor, J.J. Gene networks driving bovine milk fat synthesis during the lactation cycle. BMC Genom. 2008, 9, 366. [Google Scholar] [CrossRef]
- Lee, J.N.; Wang, Y.; Xu, Y.O.; Li, Y.C.; Tian, F.; Jiang, M.F. Characterisation of gene expression related to milk fat synthesis in the mammary tissue of lactating yaks. J. Dairy Res. 2017, 84, 283–288. [Google Scholar] [CrossRef] [PubMed]
- Mu, T.; Hu, H.; Ma, Y.; Feng, X.; Zhang, J.; Gu, Y. Regulation of Key Genes for Milk Fat Synthesis in Ruminants. Front. Nutr. 2021, 8, 765147. [Google Scholar] [CrossRef]
- Wang, X.; Ma, Q.; Chen, L.; Wu, H.; Chen, L.; Qiao, F.; Luo, Y.; Zhang, M.; Du, Z. Peroxisome proliferator-activated receptor γ is essential for stress adaptation by maintaining lipid homeostasis in female fish. Biochim. Biophys. Acta BBA-Mol. Cell Biol. Lipids 2022, 1867, 159162. [Google Scholar] [CrossRef]
- Long, X.; Zeng, X.; Tan, F.; Yi, R.; Pan, Y.; Zhou, X.; Mu, J.; Zhao, X. Lactobacillus plantarum KFY04 prevents obesity in mice through the PPAR pathway and alleviates oxidative damage and inflammation. Food Funct. 2020, 11, 5460–5472. [Google Scholar] [CrossRef]
- Fan, Y.; Han, Z.; Lu, X.; Zhang, H.; Arbab, A.A.I.; Loor, J.J.; Yang, Y.; Yang, Z. Identification of milk fat metabolism-related pathways of the bovine mammary gland during mid and late lactation and functional verification of the ACSL4 gene. Genes 2020, 11, 1357. [Google Scholar] [CrossRef] [PubMed]
- Georgiadi, A.; Kersten, S. Mechanisms of gene regulation by fatty acids. Adv. Nutr. 2012, 3, 127–134. [Google Scholar] [CrossRef] [PubMed]
- Zhou, F.; Teng, X.; Wang, P.; Zhang, Y.; Miao, Y. Isolation, identification, expression and subcellular localization of PPARG gene in buffalo mammary gland. Gene 2020, 759, 144981. [Google Scholar] [CrossRef] [PubMed]
- Su, J.; Li, Z.; Gao, P.; Ahmed, I.; Liu, Q.; Li, R.; Cui, K.; Rehman, S.U. Comparative evolutionary and molecular genetics based study of Buffalo lysozyme gene family to elucidate their antibacterial function. Int. J. Biol. Macromol. 2023, 234, 123646. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Li, R.; Ren, H.; Qin, C.; Su, J.; Song, X.; Wang, S.; Liu, Q.; Liu, Y.; Cui, K. Role of Different Members of the AGPAT Gene Family in Milk Fat Synthesis in Bubalus bubalis. Genes 2023, 14, 2072. [Google Scholar] [CrossRef] [PubMed]
- Cai, X.; Liu, Q.; Zhang, X.; Ren, Y.; Lei, X.; Li, S.; Chen, Q.; Deng, K.; Wang, P.; Zhang, H.; et al. Identification and analysis of the expression of microRNA from lactating and nonlactating mammary glands of the Chinese swamp buffalo. J. Dairy Sci. 2017, 100, 1971–1986. [Google Scholar] [CrossRef] [PubMed]
- Bionaz, M.; Chen, S.; Khan, M.J.; Loor, J.J. Functional role of PPARs in ruminants: Potential targets for fine-tuning metabolism during growth and lactation. PPAR Res. 2013, 2013, 684159. [Google Scholar] [CrossRef] [PubMed]
- Attianese, G.M.G.; Desvergne, B. Integrative and Systemic Approaches for Evaluating PPARβ/δ (PPARD) Function. Nucl. Recept. Signal. 2015, 13, nrs.13001. [Google Scholar] [CrossRef]
- Sarah, H.P.; Abdelhalim, M.; Collas, P.; Briand, N. Alternative isoform expression of key thermogenic genes in human beige adipocytes. Front. Endocrinol. 2024, 15, 1395750. [Google Scholar]
- Dovinova, I.; Kvandova, M.; Balis, P.; Gresova, L.; Majzunova, M.; Horakova, L.; Chan, J.Y.; Barancik, M. The role of Nrf2 and PPARgamma in the improvement of oxidative stress in hypertension and cardiovascular diseases. Physiol. Res. 2020, 69, S541–S553. [Google Scholar] [CrossRef]
- Guo, Y.; Wei, Z.; Zhang, Y.; Cao, J. Research Progress on the Mechanism of Milk Fat Synthesis in Cows and the Effect of Conjugated Linoleic Acid on Milk Fat Metabolism and Its Underlying Mechanism: A Review. Animals 2024, 14, 204. [Google Scholar] [CrossRef]
- Kadegowda, A.; Bionaz, M.; Piperova, L.S.; Erdman, R.A.; Loor, J.J. Lipogenic gene expression in MAC-T cells is affected differently by fatty acids and enhanced by PPAR-γ activation. J. Dairy Sci. 2008, 91, 678. [Google Scholar]
- Gnoni, A.; Di Chiara Stanca, B.; Giannotti, L.; Gnoni, G.V.; Siculella, L.; Damiano, F. Quercetin reduces lipid accumulation in a cell model of NAFLD by inhibiting de novo fatty acid synthesis through the acetyl-CoA carboxylase 1/AMPK/PP2 A axis. Int. J. Mol. Sci. 2022, 23, 1044. [Google Scholar] [CrossRef]
- Xia, X.; Che, Y.; Gao, Y.; Zhao, S.; Ao, C.; Yang, H.; Liu, J.; Liu, G.; Han, W.; Wang, Y. Arginine supplementation recovered the IFN-γ-mediated decrease in milk protein and fat synthesis by inhibiting the GCN2/eIF2α pathway, which induces autophagy in primary bovine mammary epithelial cells. Mol. Cells 2016, 39, 410–417. [Google Scholar] [CrossRef] [PubMed]
- Quan, J.; Bode, A.M.; Luo, X. ACSL family: The regulatory mechanisms and therapeutic implications in cancer. Eur. J. Pharmacol. 2021, 909, 174397. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, J.; Cui, W.; Silverstein, R.L. CD36, a signaling receptor and fatty acid transporter that regulates immune cell metabolism and fate. J. Exp. Med. 2022, 219, e20211314. [Google Scholar] [CrossRef]
- Lin, Y.; Sun, H.; Shaukat, A.; Deng, T.; Abdel-Shafy, H.; Che, Z.; Zhou, Y.; Hu, C.; Li, H.; Wu, Q. Novel insight into the role of ACSL1 gene in milk production traits in buffalo. Front. Genet. 2022, 13, 896910. [Google Scholar] [CrossRef] [PubMed]
- Fu, C.; Xiang, M.; Chen, S.; Dong, G.; Liu, Z.; Chen, C.; Liang, J.; Cao, Y.; Zhang, M.; Liu, Q. Molecular drug simulation and experimental validation of the CD36 receptor competitively binding to Long-Chain fatty acids by 7-Ketocholesteryl-9-carboxynonanoate. ACS Omega 2023, 8, 28277–28289. [Google Scholar] [CrossRef]
- Puebla, C.; Morselli, E.; Khan, N.A.; Retamal, M.A. Free Fatty Acids as Signaling Molecules: Role of Free Fatty Acid Receptors and CD36. Front. Physiol. 2022, 13, 862458. [Google Scholar] [CrossRef]
- Yang, X.; Lu, X.; Wang, L.; Bai, L.; Yao, R.; Jia, Z.; Ma, Y.; Chen, Y.; Hao, H.; Wu, X. Stearic acid promotes lipid synthesis through CD36/Fyn/FAK/mTORC1 axis in bovine mammary epithelial cells. Int. J. Biol. Macromol. 2023, 253, 127324. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.; Malla, W.A.; Kumar, A.; Jain, A.; Thakur, M.S.; Khare, V.; Tiwari, S.P. genetic background of milk fatty acid synthesis in bovines. Trop. Anim. Health Prod. 2023, 55, 328. [Google Scholar] [CrossRef] [PubMed]
Different Lactation Periods | Milk Fat (%) | Milk Protein (%) | Lactose (%) | Total Milk Solids (%) | Non-Lactose Solids (%) |
---|---|---|---|---|---|
Early Lactation | 6.72 ± 0.46 a | 4.41 ± 0.02 a | 5.29 ± 0.11 a | 17.82 ± 0.55 a | 10.24 ± 0.21 a |
Mid-Lactation | 10.03 ± 0.51 b | 4.57 ± 0.08 ab | 5.08 ± 0.11 a | 20.78 ± 0.58 ab | 9.74 ± 0.09 a |
Late Lactation | 10.45 ± 0.54 b | 4.97 ± 0.09 b | 5.07 ± 0.08 a | 21.52 ± 1.34 b | 10.15 ± 0.12 a |
Fatty Acid Content | Early Lactation | Mid-Lactation | Late Lactation |
---|---|---|---|
C4:0 | 300.0 ± 40.0 | 330.0 ± 80.0 | 330.0 ± 40.0 |
C6:0 | 100.0 ± 20.0 | 110.0 ± 20.0 | 100.0 ± 10.0 |
C8:0 | 50.0 ± 1.0 | 100.0 ± 1.0 | 40.0 ± 1.0 |
C10:0 | 80.0 ± 2.0 | 90.0 ± 2.0 | 80.0 ± 1.0 |
C11:0 | / | 20.0 ± 0.0 | / |
C12:0 | 120.0 ± 3.0 | 130.0 ± 3.0 | 110.0 ± 1.0 |
C13:0 | 5.6 ± 0.8 a | 7.0 ± 0.13 b | 7.2 ± 0.11 b |
C14:0 | 520.0 ± 10.0 | 600.0 ± 9.0 | 560.0 ± 6.0 |
C14:1 | 20.0 ± 1.0 a | 30.0 ± 0.01 b | 40.0 ± 2.0 b |
C15:0 | 60.0 ± 1.0 a | 80.0 ± 2.0 b | 80.0 ± 1.0 ab |
C16:0 | 2220.0 ± 32.0 | 2180.0 ± 36.0 | 2360.0 ± 17.0 |
C16:1 | 70.0 ± 1.0 a | 10.0 ± 0.0 b | 20.0 ± 0.0 c |
C17:0 | 50.0 ± 1.0 | 60.0 ± 1.0 | 60.0 ± 1.0 |
C17:1 | 20.0 ± 1.0 | 60.0 ± 1.0 | 20.0 ± 0.0 |
C18:0 | 1010.0 ± 10.0 | 1040 ± 26.0 | 1000 ± 22.0 |
C18:1 | 1640.0 ± 23.0 a | 1840.0 ± 35.0 ab | 2130 ± 42.0 b |
C18:1 n9 c | 1640.0 ± 23.0 a | 1820.0 ± 40.0 ab | 2130.0 ± 42.0 b |
C18:2 | 230.0 ± 4.0 | 250.0 ± 5.0 | 290.0 ± 6.0 |
C18:3 | 17.5 ± 2.7 a | 51.8 ± 1.2 b | 18.62 ± 3.99 a |
C18:2n6 t | 60.0 ± 3.0 | 60.0 ± 1.0 | 80.0 ± 2.0 |
C18:2n6 c | 170.0 ± 3.0 | 170.0 ± 3.0 | 200.0 ± 3.0 |
C18:3n3 (ALA) | 10.0 ± 0.0 | 10.0 ± 0.0 | 10.0 ± 0.0 |
C18:3n6 | / | 10.0 ± 0.0 | 10.0 ± 0.0 |
C20:0 | 20.0 ± 0.0 | 20.0 ± 0.0 | 20.0 ± 0.0 |
C20:1 | 10.0 ± 0.0 | 10.0 ± 0.0 | 10.0 ± 0.0 |
C21:0 | 150.0 ± 2.0 a | 190.0 ± 4.0 b | 22.0 ± 3.0 b |
C22:0 | 10.0 ± 0.0 | 10.0 ± 0.0 | 10.0 ± 0.0 |
C20:3n6 | 10.0 ± 0.0 | 10.0 ± 0.0 | 10.0 ± 0.0 |
C20:3n3 | 3.0 ± 0.0 | 3.0 ± 0.1 | 3.0 ± 0.1 |
C20:4n6 | 9.3 ± 015 | 10.02 ± 0.34 | 12.1 ± 0.25 |
C21:0 | 150.0 ± 2.0 a | 190.0 ± 4.0 b | 22.0 ± 3.0 b |
C22:6n3 (DHA) | 2.1 ± 0.5 | 1.7 ± 0.4 | / |
C23:0 | 10.0 ± 0.0 | / | / |
C24:0 | 3.5 ± 0.4 a | 5.0 ± 0.1 ab | 5.3 ± 0.1 b |
C24:1 | / | 1.8 ± 0.1 | 1.9 ± 0.3 |
C20:5n3 (EPA) | 5.5 ± 0.9 | 3.8 ± 0.14 | 5.6 ± 0.38 |
CLA | 224 ± 3.0 a | 235.0 ± 4.0 a | 281.0 ± 4.0 b |
Total SFA | 4859.1 ± 45.0 a | 5162 ± 38.0 b | 4806.5 ± 17.0 ab |
Total UFA | 2501.4 ± 25.6 a | 2747.12 ± 47.0 | 3142.22 ± 44.0 b |
Total PUFA | 741.4 ± 1.6 a | 815.32 ± 7.0 b | 920.32 ± 6.0 b |
Total MUFA | 1760 ± 24.0 a | 1931.8 ± 40.0 b | 2221.9 ± 38.0 b |
Total SCFA | 400 ± 5.0 a | 440 ± 8.0 a | 430 ± 5.0 a |
Total MCFA | 250 ± 13.0 a | 340 ± 11.0 b | 230 ± 9.0 a |
Total LCFA | 6710.5 ± 93.0 a | 7129.12 ± 70.0 b | 7288.72 ± 84.0 b |
Total FA | 7360.5 ± 70.6 a | 7909.12 ± 85.0 b | 7948.72 ± 61.0 b |
PPARG-X17 | PPARG-X21 | |
---|---|---|
Formula | C2319 H3659 N653 O689 S17 | C1736 H2795 N461 O500 S18 |
Number of amino acids | 461 | 338 |
Molecular weights | 52.2 kD | 38.7 kD |
Instability coefficients | 59.53 | 49.14 |
Isoelectric points (PI) | 7.61 | 7.61 |
Half-lives | 30 h | 30 h |
Subcellular localization | 30% located in nucleus | 27% located in nucleus |
Fatty Acid Content | Interference Control | Interference Group | Overexpression Control | Overexpression Group |
---|---|---|---|---|
C10:0 | 31.046 ± 0.447 a | 16.602 ± 1.07 b | / | / |
C14:0 | 43.861 ± 1.186 a | 23.167 ± 1.127 b | / | / |
C15:0 | 22.766 ± 1.029 a | 11.841 ± 0.521 b | 4.2 ± 0.781 a | 3.967 ± 0.252 b |
C16:0 | 122.647 ± 0.814 a | 70.815 ± 3.800 b | 103.2 ± 1.489 a | 46.78 ± 1.426 b |
C16:1 | 24.356 ± 1.310 a | 12.631 ± 0.135 b | 5.767 ± 0.874 a | 7.2 ± 0.781 b |
C17:0 | 23.926 ± 0.857 a | 12.599 ± 0.615 b | / | / |
C18:0 | 92.450 ± 0.605 a | 50.498 ± 3.34 b | 99.033 ± 1.935 a | 52.93 ± 1.903 b |
C18:1n9 c | 88.237 ± 1.834 a | 49.455 ± 1.970 b | 32.5 ± 4.779 a | 42.57 ± 4.585 b |
C18:2n6 c | 30.856 ± 2.845 a | 19.698 ± 0.964 b | 22.2 ± 4.618 a | 45.86 ± 4.282 b |
C18:3n3 | 25.756 ± 0.609 a | 13.160 ± 1.263 b | 8.3 ± 1.570 a | 7.535 ± 1.383 b |
C18:3n6 | / | / | 8.3 ± 0.170 a | 7.7 ± 0.7 a |
C20:0 | 48.986 ± 3.108 a | 24.937 ± 0.968 b | 17.6 ± 3.470 a | 12.94 ± 3.606 b |
C20:1 | 24.816 ± 1.329 a | 12.720 ± 0.416 b | 11.267 ± 1.870 a | 9.338 ± 1.267 b |
C20:2 | / | / | 7.4 ± 1.470 a | 9.964 ± 1.404 b |
C20:3n3 | 26.006 ± 2.031 a | 13.335 ± 0.828 b | 9.467 ± 1.770 a | 12.37 ± 1.467 b |
C20:3n6 | 28.886 ± 1.917 a | 15.986 ± 0.857 b | 15.3 ± 3.070 a | 10.40 ± 3.303 b |
C20:4n6 | 28.790 ± 1.993 a | 17.410 ± 1.212 b | 14.167 ± 5.270 a | 15.32 ± 5.167 b |
C20:5n3 | 26.076 ± 1.805 a | 15.110 ± 1.061 b | 6.5 ± 2.070 a | 7.360 ± 2.505 b |
C22:0 | 52.436 ± 2.440 a | 27.583 ± 0.936 b | 19.833 ± 3.670 a | 15.66 ± 3.833 b |
C22:2 | 23.976 ± 0.979 a | 12.646 ± 0.889 b | 8.833 ± 1.970 a | 8.669 ± 1.833 b |
C22:1n9 | 82.068 ± 0.577 a | 38.137 ± 1.569 b | 38.567 ± 6.870 a | 112.8 ± 6.567 b |
C22:6n3 | 22.526 ± 1.112 a | 13.060 ± 1.176 b | 7.7 ± 1.570 a | 9.865 ± 1.727 b |
C23:0 | 23.886 ± 0.981 a | 12.659 ± 0.361 b | 10.4 ± 1.670 a | 7.636 ± 1.434 b |
C24:0 | / | / | 21.467 ± 4.070 a | 13.70 ± 4.467 b |
C24:1 | 26.936 ± 1.419 a | 15.060 ± 2.756 b | 12.067 ± 2.070 a | 8.060 ± 2.067 b |
CLA | 30.856 ± 2.845 a | 19.698 ± 0.964 b | 22.2 ± 4.618 a | 45.86 ± 4.282 b |
Total SFA | 459.387 ± 4.704 a | 250.361 ± 7.955 b | 284.7 ± 49.08 a | 160.2 ± 7.275 b |
Total UFA | 35.412 ± 1.588 a | 19.268 ± 0.950 b | 208.333 ± 3.350 a | 314.667 ± 8.715 b |
Total MUFA | 155.133 ± 5.843 a | 80.618 ± 7.011 b | 100.167 ± 14.054 a | 179.6 ± 2.961 b |
Total PUFA | 295.670 ± 3.765 a | 169.864 ± 5.471 b | 108.167 ± 2.000 a | 135.067 ± 8.844 b |
MCFA | 32.113 ± 1.875 a | 16.602 ± 1.07 b | / | / |
LCFA | 887.629 ± 22.134 a | 484.241 ± 26.722 b | 379.867 ± 6.589 a | 416.967 ± 13.317 a |
Total FA | 921.289 ± 24.091 a | 499.109 ± 27.792 b | 379.867 ± 6.589 a | 416.967 ± 13.317 a |
Fatty Acid Content | Interference Control | Interference Group | Overexpression Control | Overexpression Group |
---|---|---|---|---|
C10:0 | 31.046 ± 0.447 a | 21.216 ± 1.603 b | / | / |
C14:0 | 43.861 ± 1.186 a | 29.979 ± 2.247 b | / | / |
C15:0 | 22.766 ± 1.029 a | 15.398 ± 0.968 b | 4.2 ± 0.78 a | 4.233 ± 0.416 a |
C16:0 | 122.647 ± 0.814 a | 84.563 ± 1.214 b | 103.2 ± 1.489 a | 50.03 ± 1.747 b |
C16:1 | 24.356 ± 1.310 a | 16.479 ± 0.90 b | 5.767 ± 0.874 a | 8.166 ± 0.472 b |
C17:0 | 23.926 ± 0.857 a | 15.700 ± 0.886 b | / | / |
C18:0 | 92.450 ± 0.605 a | 66.331 ± 3.499 b | 99.033 ± 1.935 a | 57.9 ± 2.883 b |
C18:1n9 c | 88.237 ± 1.834 a | 60.896 ± 0.281 b | 32.5 ± 4.779 a | 49.53 ± 2.650 b |
C18:2n6 c | 30.856 ± 2.845 a | 25.310 ± 1.633 b | 22.2 ± 4.618 a | 50.1 ± 3.934 b |
C18:3n3 | 25.756 ± 0.609 a | 15.904 ± 1.186 b | 8.3 ± 1.570 a | 8.166 ± 0.709 a |
C18:3n6 | / | / | 8.3 ± 0.170 a | 8.366 ± 0.650 a |
C20:0 | 48.986 ± 3.108 a | 31.863 ± 2.029 b | 17.6 ± 3.470 a | 13.63 ± 1.514 b |
C20:1 | 24.816 ± 1.329 a | 16.880 ± 1.207 b | 11.267 ± 1.870 a | 9.966 ± 0.929 a |
C20:2 | / | / | 7.4 ± 1.470 a | 10.83 ± 1.150 b |
C20:3n3 | 26.006 ± 2.031 a | 16.432 ± 0.217 b | 9.467 ± 1.770 a | 14.16 ± 0.665 b |
C20:3n6 | 28.886 ± 1.917 a | 19.339 ± 0.57 b | 15.3 ± 3.070 a | 11.76 ± 0.450 a |
C20:4n6 | 28.790 ± 1.993 a | 19.182 ± 0.712 b | 14.167 ± 5.270 a | 19.9 ± 1.916 a |
C20:5n3 | 26.076 ± 1.805 a | 17.788 ± 1.852 b | 6.5 ± 2.070 a | 7.833 ± 0.737 a |
C22:0 | 52.436 ± 2.440 a | 34.984 ± 1.702 b | 19.833 ± 3.670 a | 17.03 ± 0.850 a |
C22:2 | 23.976 ± 0.979 a | 17.038 ± 1.482 b | 8.833 ± 1.970 a | 9.166 ± 0.873 a |
C22:1n9 | 82.068 ± 0.577 a | 56.205 ± 1.307 b | 38.567 ± 6.870 a | 134.5 ± 3.538 b |
C22:6n3 | 22.526 ± 1.112 a | 16.194 ± 0.132 b | 7.7 ± 1.570 a | 9.3 ± 0.557 a |
C23:0 | 23.886 ± 0.981 a | 15.554 ± 0.605 b | 10.4 ± 1.670 a | 7.766 ± 0.850 b |
C24:0 | / | / | 21.467 ± 4.070 a | 14.33 ± 1.553 b |
C24:1 | 26.936 ± 1.419 a | 18.079 ± 0.491 b | 12.067 ± 2.070 a | 8.4 ± 0.656 b |
CLA | 30.856 ± 2.845 a | 25.310 ± 1.633 b | 22.2 ± 4.618 a | 50.1 ± 3.934 b |
Total SFA | 459.387 ± 4.704 a | 318.817.173 b | 284.7 ± 49.08 a | 172.1 ± 10.04 b |
Total UFA | 35.412 ± 1.588 a | 24.704 ± 1.778 b | 208.333 ± 3.350 a | 360.233 ± 1.156 b |
Total MUFA | 155.133 ± 5.843 a | 104.602 ± 7.469 b | 100.167 ± 14.054 a | 210.633 ± 4.010 b |
Total PUFA | 295.670 ± 3.765 a | 207.634 ± 5.486 b | 108.167 ± 2.000 a | 149.6 ± 9.700 b |
MCFA | 32.113 ± 1.875 a | 21.216 ± 1.603 b | / | / |
LCFA | 887.629 ± 22.134 a | 609.838 ± 24.570 b | 379.867 ± 6.589 a | 469.9 ± 19.487 b |
Total FA | 921.289 ± 24.091 a | 631.314 ± 26.173 b | 379.867 ± 6.589 a | 469.9 ± 19.487 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, S.; Ren, H.; Qin, C.; Su, J.; Song, X.; Li, R.; Cui, K.; Liu, Y.; Shi, D.; Liu, Q.; et al. A Characterization and Functional Analysis of Peroxisome Proliferator-Activated Receptor Gamma Splicing Variants in the Buffalo Mammary Gland. Genes 2024, 15, 779. https://doi.org/10.3390/genes15060779
Wang S, Ren H, Qin C, Su J, Song X, Li R, Cui K, Liu Y, Shi D, Liu Q, et al. A Characterization and Functional Analysis of Peroxisome Proliferator-Activated Receptor Gamma Splicing Variants in the Buffalo Mammary Gland. Genes. 2024; 15(6):779. https://doi.org/10.3390/genes15060779
Chicago/Turabian StyleWang, Shuwan, Honghe Ren, Chaobin Qin, Jie Su, Xinhui Song, Ruijia Li, Kuiqing Cui, Yang Liu, Deshun Shi, Qingyou Liu, and et al. 2024. "A Characterization and Functional Analysis of Peroxisome Proliferator-Activated Receptor Gamma Splicing Variants in the Buffalo Mammary Gland" Genes 15, no. 6: 779. https://doi.org/10.3390/genes15060779
APA StyleWang, S., Ren, H., Qin, C., Su, J., Song, X., Li, R., Cui, K., Liu, Y., Shi, D., Liu, Q., & Li, Z. (2024). A Characterization and Functional Analysis of Peroxisome Proliferator-Activated Receptor Gamma Splicing Variants in the Buffalo Mammary Gland. Genes, 15(6), 779. https://doi.org/10.3390/genes15060779