Significance of Multi-Cancer Genome Profiling Testing for Breast Cancer: A Retrospective Analysis of 3326 Cases from Japan’s National Database
Abstract
:1. Introduction
2. Materials and Methods
2.1. BC Patients and Subtype Classification
2.2. Multi-CGP Testing
2.3. Clinical and Genomic Database and Indication for Multi-CGP Tests
2.4. Genetic Abnormalities and Therapeutic Efficacy
2.5. Statistical Analysis
3. Results
3.1. Subtype and Drug Treatment
3.2. Genomic Abnormalities
3.3. Survival
3.4. Therapeutic Response by Proposed Drugs
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer statistics, 2022. CA Cancer J. Clin. 2022, 72, 7–33. [Google Scholar] [CrossRef] [PubMed]
- Carlson, R.W.; Allred, D.C.; Anderson, B.O.; Burstein, H.J.; Carter, W.B.; Edge, S.B.; Erban, J.K.; Farrar, W.B.; Goldstein, L.J.; Gradishar, W.J.; et al. Breast Cancer. Clinical Practice Guidelines in Oncology. J. Natl. Compr. Cancer Netw. 2009, 7, 122–192. [Google Scholar] [CrossRef] [PubMed]
- Lebert, J.M.; Lester, R.; Powell, E.; Seal, M.; McCarthy, J. Advances in the systemic treatment of triple-negative breast cancer. Curr. Oncol. 2018, 25, S142–S150. [Google Scholar] [CrossRef] [PubMed]
- Mukai, Y.; Ueno, H. Establishment and implementation of Cancer Genomic Medicine in Japan. Cancer Sci. 2021, 112, 970–977. [Google Scholar] [CrossRef] [PubMed]
- Kohno, T.; Kato, M.; Kohsaka, S.; Sudo, T.; Tamai, I.; Shiraishi, Y.; Okuma, Y.; Ogasawara, D.; Suzuki, T.; Yoshida, T.; et al. C-CAT: The National Datacenter for Cancer Genomic Medicine in Japan. Cancer Discov. 2022, 12, 2509–2515. [Google Scholar] [CrossRef] [PubMed]
- Yamaguchi, T.; Ikegami, M.; Aruga, T.; Kanemasa, Y.; Horiguchi, S.; Kawai, K.; Takao, M.; Yamada, T.; Ishida, H. Genomic landscape of comprehensive genomic profiling in patients with malignant solid tumors in Japan. Int. J. Clin. Oncol. 2024, in press. [Google Scholar] [CrossRef] [PubMed]
- Oken, M.M.; Creech, R.H.; Tormey, D.C.; Horton, J.; Davis, T.E.; McFadden, E.T.; Carbone, P.P. Toxicity and response criteria of the Eastern Cooperative Oncology Group. Am. J. Clin. Oncol. 1982, 5, 649–655. [Google Scholar] [CrossRef]
- Metzger-Filho, O.; Tutt, A.; De Azambuja, E.; SSaini, K.; Viale, G.; Loi, S.; Bradbury, I.; MBliss, J.; AAzim Jr, H.; Ellis, P.; et al. Dissecting the heterogeneity of triple-negative breast cancer. J. Clin. Oncol. 2012, 30, 1879–1887. [Google Scholar] [CrossRef]
- Chen, Z.; Zheng, Y.; Cao, W.; Zhang, Y.; Zhao, Z.; Wang, G.; Zhao, J.; Cai, S.; Shao, X.; Huang, J.; et al. Everolimus-containing therapy vs conventional therapy in the treatment of refractory breast cancer patients with PI3K/AKT/mTOR mutations: A retrospective study. Cancer Med. 2019, 8, 5544–5553. [Google Scholar] [CrossRef]
- Browne, I.M.; André, F.; Chandarlapaty, S.; Carey, L.A.; Turner, N.C. Optimal Targeting of PI3K-AKT and MTOR in Advanced Oestrogen Receptor-Positive Breast Cancer. Lancet Oncol. 2024, 25, e139–e151. [Google Scholar] [CrossRef]
- Damodaran, S.; O’Sullivan, C.C.; Elkhanany, A.; Anderson, I.C.; Barve, M.; Blau, S.; Cherian, M.A.; Peguero, J.A.; Goetz, M.P.; Plourde, P.V.; et al. Open-label, phase II, multicenter study of lasofoxifene plus abemaciclib for treating women with metastatic ER+/HER2− breast cancer and an ESR1 mutation after disease progression on prior therapies: ELAINE 2. Ann. Oncol. 2023, 34, 1131–1140. [Google Scholar] [CrossRef] [PubMed]
- Stanowicka-Grada, M.; Senkus, E. Anti-HER2 Drugs for the Treatment of Advanced HER2 Positive Breast Cancer. Curr. Treat. Options Oncol. 2023, 24, 1633–1650. [Google Scholar] [CrossRef] [PubMed]
- Coombes, R.C.; Badman, P.D.; Lozano-Kuehne, J.P.; Liu, X.; Macpherson, I.R.; Zubairi, I.; Baird, R.D.; Rosenfeld, N.; Garcia-Corbacho, J.; Cresti, N.; et al. Results of the phase IIa RADICAL trial of the FGFR inhibitor AZD4547 in endocrine resistant breast cancer. Nat. Commun. 2022, 13, 3246. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Chen, C.; Liu, S.; Ji, J.; Wu, D.; Huang, P.; Wei, D.; Fan, Z.; Ren, L. Identification of a five genes prognosis signature for triple-negative breast cancer using multi-omics methods and bioinformatics analysis. Cancer Gene Ther. 2022, 29, 1578–1589. [Google Scholar] [CrossRef] [PubMed]
- Kim, C.M.; Park, K.H.; Yu, Y.S.; Kim, J.W.; Park, J.Y.; Park, K.; Yu, J.H.; Lee, J.E.; Sim, S.H.; Seo, B.K.; et al. A 10-Gene Signature to Predict the Prognosis of Early-Stage Triple-Negative Breast Cancer. Cancer Res. Treat. 2024, in press. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Xu, K.; Gao, F.; Huang, J.; Guan, X. Clinical considerations of CDK4/6 inhibitors in triple-negative breast cancer. Biochim. Biophys. Acta Rev. Cancer 2021, 1876, 188590. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Zhang, L.; Guan, T.; Huang, L.; Zhu, Y.; Wen, Y.; Ma, X.; Yang, X.; Wan, R.; Chen, J.; et al. Energy stress-activated AMPK phosphorylates Snail1 and suppresses its stability and oncogenic function. Cancer Lett. 2024, 595, 216987. [Google Scholar] [CrossRef] [PubMed]
- Merikhian, P.; Eisavand, M.R.; Farahmand, L. Triple-negative breast cancer: Understanding Wnt signaling in drug resistance. Cancer Cell Int. 2021, 21, 419. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Zhao, R.; Wang, Q.; Zhang, Y.J.; Yang, L.; Yuan, Z.J.; Yang, J.; Wang, Q.J.; Yao, L. An EMT-Related Gene Signature to Predict the Prognosis of Triple-Negative Breast Cancer. Adv. Ther. 2023, 40, 4339–4357. [Google Scholar] [CrossRef]
- Ha, S.M.; Chae, E.Y.; Cha, J.H.; Kim, H.H.; Shin, H.J.; Choi, W.J. Association of BRCA Mutation Types, Imaging Features, and Pathologic Findings in Patients With Breast Cancer With BRCA1 and BRCA2 Mutations. AJR Am. J. Roentgenol. 2017, 209, 920–928. [Google Scholar] [CrossRef]
- Meric-Bernstam, F.; Brusco, L.; Daniels, M.; Wathoo, C.; Bailey, A.M.; Strong, L.; Shaw, K.; Lu, K.; Qi, Y.; Zhao, H.; et al. Incidental germline variants in 1000 advanced cancers on a prospective somatic genomic profiling protocol. Ann. Oncol. 2016, 27, 795–800. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.L.; Maio, A.; Kemel, Y.; Salo-Mullen, E.E.; Sheehan, M.; Tejada, P.R.; Trottier, M.; Arnold, A.G.; Fleischut, M.H.; Latham, A.; et al. Disparities in cancer genetics care by race/ethnicity among pan-cancer patients with pathogenic germline variants. Cancer 2022, 128, 3870–3879. [Google Scholar] [CrossRef] [PubMed]
- Puccini, A.; Battaglin, F.; Iaia, M.L.; Lenz, H.J.; Salem, M.E. Overcoming resistance to anti-PD1 and anti-PD-L1 treatment in gastrointestinal malignancies. J. Immunother. Cancer 2020, 8, e000404. [Google Scholar] [CrossRef] [PubMed]
- Halford, S.E.R.; Sawyer, E.J.; Lambros, M.B.; Gorman, P.; Macdonald, N.D.; Talbot, I.C.; Foulkes, W.D.; Gillett, C.E.; Barnes, D.M.; Akslen, L.A.; et al. MSI-low, a real phenomenon which varies in frequency among cancer types. J. Pathol. 2003, 201, 389–394. [Google Scholar] [CrossRef] [PubMed]
- Dudley, J.C.; Lin, M.T.; Le, D.T.; Eshleman, J.R. Microsatellite instability as a biomarker for PD-1 blockade. Clin. Cancer Res. 2016, 22, 813–820. [Google Scholar] [CrossRef] [PubMed]
- Barroso-Sousa, R.; Pacífico, J.P.; Sammons, S.; Tolaney, S.M. Tumor Mutational Burden in Breast Cancer: Current Evidence, Challenges, and Opportunities. Cancers 2023, 15, 3997. [Google Scholar] [CrossRef] [PubMed]
- Mao, Y.; Xie, H.; Lv, M.; Yang, Q.; Shuang, Z.; Gao, F.; Li, S.; Zhu, L.; Wang, W. The landscape of objective response rate of anti-PD-1/L1 monotherapy across 31 types of cancer: A system review and novel biomarker investigating. Cancer Immunol. Immunother. 2023, 72, 2483–2498. [Google Scholar] [CrossRef] [PubMed]
- Arora, S.; Velichinskii, R.; Lesh, R.W.; Ali, U.; Kubiak, M.; Bansal, P.; Borghaei, H.; Edelman, M.J.; Boumber, Y. Existing and Emerging Biomarkers for Immune Checkpoint Immunotherapy in Solid Tumors. Adv. Ther. 2019, 36, 2638–2678. [Google Scholar] [CrossRef]
- Arimura, A.; Sakai, K.; Kaneshiro, K.; Morisaki, T.; Hayashi, S.; Mizoguchi, K.; Yamada, M.; Kai, M.; Ono, M.; Nishio, K.; et al. TP53 and/or BRCA1 Mutations Based on CtDNA Analysis as Prognostic Biomarkers for Primary Triple-Negative Breast Cancer. Cancers 2024, 16, 1184. [Google Scholar] [CrossRef]
- Wang, L.; Zhai, Q.; Lu, Q.; Lee, K.; Zheng, Q.; Hong, R.; Wang, S. Clinical genomic profiling to identify actionable alterations for very early relapsed triple-negative breast cancer patients in the Chinese population. Ann. Med. 2021, 53, 1358–1369. [Google Scholar] [CrossRef]
- Bowers, L.W.; Rossi, E.L.; McDonell, S.B.; Doerstling, S.S.; Khatib, S.A.; Lineberger, C.G.; Albright, J.E.; Tang, X.; A deGraffenried, L.; Hursting, S.D. Leptin Signaling Mediates Obesity-Associated CSC Enrichment and EMT in Preclinical TNBC Models. Mol. Cancer Res. 2018, 16, 869–879. [Google Scholar] [CrossRef] [PubMed]
- Song, J.; Du, J.; Han, L.; Lin, X.; Fan, C.; Chen, G. The Effect of Metformin on Triple-Negative Breast Cancer Cells and Nude Mice. Altern. Ther. Health Med. 2023, 29, 389–395. [Google Scholar] [PubMed]
All Cases (n = 3326) | TNBC (n = 1114) | HR+/HER2− (n = 1787) | HR+/HER2+ (n = 260) | HR−/HER2+ (n = 165) | p-Value |
---|---|---|---|---|---|
Age | <0.001 | ||||
<40 (n = 258) | n = 131 (11.8%) | n = 94 (5.3%) | n = 21 (8.1%) | n = 12 (7.3%) | |
≥40 (n = 3068) | n = 983 (88.2%) | n = 1693 (94.7%) | n = 239 (91.9%) | n = 153 (92.7%) | |
ECOG-PS | 0.347 | ||||
PS0, PS1 (n = 3192) | n = 1077 (96.7%) | n = 1707 (95.5%) | n = 250 (96.2%) | n = 158 (95.8%) | |
PS2, PS3, PS4 (n = 102) | n = 25 (2.2%) | n = 61 (3.4%) | n = 9 (3.5%) | n = 7 (4.2%) | |
Unknown (n = 32) | n = 12 (1.1%) | n = 19 (1.1%) | n = 1 (0.4%) | n = 0 (0%) | |
Materials | <0.001 | ||||
Tissue (n = 2781) | n = 1022 (91.7%) | n = 1400 (78.3%) | n = 217 (83.5%) | n = 142 (86.1%) | |
Blood (n = 545) | n = 92 (8.3%) | n = 387 (21.7%) | n = 43 (16.5%) | n = 23 (13.9%) | |
Smoking | 0.235 | ||||
Smoking (n = 627) | n = 223 (20.0%) | n = 311 (17.4%) | n = 62 (23.8%) | n = 31 (18.8%) | |
No Smoking (n = 2548) | n = 844 (75.8%) | n = 1391 (77.8%) | n = 186 (71.5%) | n = 127 (77.0%) | |
Unknown (n = 151) | n = 47 (4.2%) | n = 85 (4.8%) | n = 12 (4.6%) | n = 7 (4.2%) | |
Alcohol | 0.513 | ||||
Heavy alcohol (n = 150) | n = 47 (4.2%) | n = 83 (4.6%) | n = 12 (4.6%) | n = 8 (4.8%) | |
No heavy alcohol (n = 2862) | n = 972 (87.3%) | n = 1519 (85.0%) | n = 230 (88.5%) | n = 141 (85.5%) | |
Unknown (n = 314) | n = 95 (8.5%) | n = 185 (10.4%) | n = 18 (6.9%) | n = 16 (9.7%) |
Drug Treatment (n = 328) | TNBC (n = 77) | HR+/HER2− (n = 190) | HR+/HER2+ (n = 40) | HR−/HER2+ (n = 21) | p-Value |
---|---|---|---|---|---|
Treatment policy | |||||
Insurance medical treatment (n = 283) | n = 61 (79.2%) | n = 165 (86.8%) | n = 38 (95.0%) | n = 19 (90.5%) | |
Corporate clinical trial (n = 29) | n = 8 (10.4%) | n = 17 (8.9%) | n = 2 (5.0%) | n = 2 (9.5%) | |
Physician-initiated trial (n = 7) | n = 4 (5.2%) | n = 3 (1.6%) | n = 0 (0%) | n = 0 (0%) | |
Others (n = 9) | n = 4 (5.2%) | n = 5 (2.6%) | n = 0 (0%) | n = 0 (0%) | |
Treatment line | |||||
1st, 2nd (n = 32) | n = 7 (9.1%) | n = 19 (10.0%) | n = 4 (10.0%) | n = 2 (9.5%) | |
3rd, 4th (n = 48) | n = 26 (33.8%) | n = 15 (7.9%) | n = 4 (10.0%) | n = 3 (14.3%) | |
5th≤ (n = 237) | n = 40 (51.9%) | n = 150 (78.9%) | n = 31 (77.5%) | n = 16 (76.2%) | |
Unknown (n = 11) | n = 4 (5.2%) | n = 6 (3.2%) | n = 1 (2.5%) | n = 0 (0%) | |
Therapeutic response | |||||
CR (n = 1) | n = 0 (0%) | n = 1 (0.5%) | n = 0 (0%) | n = 0 (0%) | |
PR (n = 48) | n = 9 (11.7%) | n = 27 (14.2%) | n = 6 (15.0%) | n = 6 (28.6%) | |
SD (n = 74) | n = 10 (13.0%) | n = 43 (22.6%) | n = 13 (32.5%) | n = 8 (38.1%) | |
PD (n = 79) | n = 24 (31.2%) | n = 45 (23.7%) | n = 7 (17.5%) | n = 3 (14.3%) | |
NE (n = 126) | n = 34 (44.2%) | n = 74 (38.9%) | n = 14 (35.0%) | n = 4 (19.0%) | |
Response efficacy rate | |||||
CR, PR, SD (n = 123) | n = 19 (24.7%) | n = 71 (37.4%) | n = 19 (47.5%) | n = 14 (66.7%) | |
PD, NE (n = 205) | n = 58 (75.3%) | n = 119 (62.6%) | n = 21 (52.5%) | n = 7 (33.3%) | <0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kawabata, K.; Nishikubo, H.; Kanei, S.; Aoyama, R.; Tsukada, Y.; Sano, T.; Imanishi, D.; Sakuma, T.; Maruo, K.; Yamamoto, Y.; et al. Significance of Multi-Cancer Genome Profiling Testing for Breast Cancer: A Retrospective Analysis of 3326 Cases from Japan’s National Database. Genes 2024, 15, 792. https://doi.org/10.3390/genes15060792
Kawabata K, Nishikubo H, Kanei S, Aoyama R, Tsukada Y, Sano T, Imanishi D, Sakuma T, Maruo K, Yamamoto Y, et al. Significance of Multi-Cancer Genome Profiling Testing for Breast Cancer: A Retrospective Analysis of 3326 Cases from Japan’s National Database. Genes. 2024; 15(6):792. https://doi.org/10.3390/genes15060792
Chicago/Turabian StyleKawabata, Kyoka, Hinano Nishikubo, Saki Kanei, Rika Aoyama, Yuki Tsukada, Tomoya Sano, Daiki Imanishi, Takashi Sakuma, Koji Maruo, Yurie Yamamoto, and et al. 2024. "Significance of Multi-Cancer Genome Profiling Testing for Breast Cancer: A Retrospective Analysis of 3326 Cases from Japan’s National Database" Genes 15, no. 6: 792. https://doi.org/10.3390/genes15060792
APA StyleKawabata, K., Nishikubo, H., Kanei, S., Aoyama, R., Tsukada, Y., Sano, T., Imanishi, D., Sakuma, T., Maruo, K., Yamamoto, Y., Wang, Q., Zhu, Z., Fan, C., & Yashiro, M. (2024). Significance of Multi-Cancer Genome Profiling Testing for Breast Cancer: A Retrospective Analysis of 3326 Cases from Japan’s National Database. Genes, 15(6), 792. https://doi.org/10.3390/genes15060792