Genome-Wide Characterization of Somatic Mutation Patterns in Cloned Dogs Reveals Implications for Neuronal Function, Tumorigenesis, and Aging
Abstract
:1. Introduction
2. Results and Discussion
2.1. Cloned Dog Data for Somatic Mutation Filtering
2.2. The Mutational Signature of Cloned Dog-Specific Somatic Mutations
2.3. Molecular Mechanisms Underlying Cloned Dog-Specific Mutations
2.4. Genes with the Highest Somatic Mutation Rates Are Linked to Tumorigenesis
2.5. Limitations of the Study
3. Conclusions
4. Materials and Methods
4.1. Sample Data
4.2. Candidate Somatic Mutation Identification
4.3. Gene Set Enrichment Analysis
4.4. Mutation Rate
4.5. Aging-Related Gene Database
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Keefer, C.L. Artificial cloning of domestic animals. Proc. Natl. Acad. Sci. USA 2015, 112, 8874–8878. [Google Scholar] [CrossRef] [PubMed]
- Hill, J.R. Incidence of Abnormal Offspring from Cloning and Other Assisted Reproductive Technologies. Annu. Rev. Anim. Biosci. 2014, 2, 307–321. [Google Scholar] [CrossRef] [PubMed]
- Cibelli, J.B.; Campbell, K.H.; Seidel, G.E.; West, M.D.; Lanza, R.P. The health profile of cloned animals. Nat. Biotechnol. 2002, 20, 13–14. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.M.; Kang, Y.K.; Koo, D.B.; Lee, K.K. Nuclear reprogramming of cloned embryos produced in vitro. Theriogenology 2003, 59, 33–44. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Jia, Q.; Zhao, J.; Li, X.; Yu, M.; Samuel, M.S.; Zhao, S.; Prather, R.S.; Li, C. Dysregulation of genome-wide gene expression and DNA methylation in abnormal cloned piglets. BMC Genom. 2014, 15, 811. [Google Scholar] [CrossRef] [PubMed]
- Jang, G.; Hong, S.; Oh, H.; Kim, M.; Park, J.; Kim, H.; Kim, D.; Lee, B. A cloned toy poodle produced from somatic cells derived from an aged female dog. Theriogenology 2008, 69, 556–563. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.-M.; Cho, Y.S.; Kim, H.; Jho, S.; Son, B.; Choi, J.Y.; Kim, S.; Lee, B.C.; Bhak, J.; Jang, G. Whole genome comparison of donor and cloned dogs. Sci. Rep. 2013, 3, 2998. [Google Scholar] [CrossRef]
- Vijg, J.; Schumacher, B.; Abakir, A.; Antonov, M.; Bradley, C.; Cagan, A.; Church, G.; Gladyshev, V.N.; Gorbunova, V.; Maslov, A.Y.; et al. Mitigating age-related somatic mutation burden. Trends Mol. Med. 2023, 29, 530–540. [Google Scholar] [CrossRef] [PubMed]
- Crowley, C.; Curtis, H.J. The Development of Somatic Mutations in Mice with Age. Proc. Natl. Acad. Sci. USA 1963, 49, 626–628. [Google Scholar] [CrossRef]
- Zhang, L.; Vijg, J. Somatic Mutagenesis in Mammals and Its Implications for Human Disease and Aging. Annu. Rev. Genet. 2018, 52, 397–419. [Google Scholar] [CrossRef]
- Vijg, J. Somatic mutations, genome mosaicism, cancer and aging. Curr. Opin. Genet. Dev. 2014, 26, 141–149. [Google Scholar] [CrossRef]
- Vijg, J. Somatic mutations and aging: A re-evaluation. Mutat. Res. Fundam. Mol. Mech. Mutagen. 2000, 447, 117–135. [Google Scholar] [CrossRef] [PubMed]
- Verheijen, B.M.; Vermulst, M.; Van Leeuwen, F.W. Somatic mutations in neurons during aging and neurodegeneration. Acta Neuropathol. 2018, 135, 811–826. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.-C.; Chang, C.-M.; Chi, C.-W. Somatic mutations of mitochondrial DNA in aging and cancer progression. Ageing Res. Rev. 2010, 9, S47–S58. [Google Scholar] [CrossRef]
- Miller, M.B.; Reed, H.C.; Walsh, C.A. Brain Somatic Mutation in Aging and Alzheimer’s Disease. Annu. Rev. Genom. Hum. Genet. 2021, 22, 239–256. [Google Scholar] [CrossRef] [PubMed]
- Burgstaller, J.P.; Brem, G. Aging of Cloned Animals: A Mini-Review. Gerontology 2017, 63, 417–425. [Google Scholar] [CrossRef] [PubMed]
- Choe, Y.-H.; Hur, T.-Y.; Lee, S.-L.; Lee, S.; Lim, D.; Choi, B.-H.; Jeong, H.; No, J.-G.; Ock, S.A. Brachygnathia Inferior in Cloned Dogs Is Possibly Correlated with Variants of Wnt Signaling Pathway Initiators. Int. J. Mol. Sci. 2022, 23, 475. [Google Scholar] [CrossRef]
- Cibulskis, K.; Lawrence, M.S.; Carter, S.L.; Sivachenko, A.; Jaffe, D.; Sougnez, C.; Gabriel, S.; Meyerson, M.; Lander, E.S.; Getz, G. Sensitive detection of somatic point mutations in impure and heterogeneous cancer samples. Nat. Biotechnol. 2013, 31, 213–219. [Google Scholar] [CrossRef] [PubMed]
- Cingolani, P.; Platts, A.; Wang, L.L.; Coon, M.; Nguyen, T.; Wang, L.; Land, S.J.; Lu, X.; Ruden, D.M. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff. Fly 2012, 6, 80–92. [Google Scholar] [CrossRef]
- Plassais, J.; Kim, J.; Davis, B.W.; Karyadi, D.M.; Hogan, A.N.; Harris, A.C.; Decker, B.; Parker, H.G.; Ostrander, E.A. Whole genome sequencing of canids reveals genomic regions under selection and variants influencing morphology. Nat. Commun. 2019, 10, 1489. [Google Scholar] [CrossRef]
- Alexandrov, L.B.; Kim, J.; Haradhvala, N.J.; Huang, M.N.; Tian Ng, A.W.; Wu, Y.; Boot, A.; Covington, K.R.; Gordenin, D.A.; Bergstrom, E.N.; et al. The repertoire of mutational signatures in human cancer. Nature 2020, 578, 94–101. [Google Scholar] [CrossRef] [PubMed]
- Alexandrov, L.B.; Nik-Zainal, S.; Wedge, D.C.; Aparicio, S.A.J.R.; Behjati, S.; Biankin, A.V.; Bignell, G.R.; Bolli, N.; Borg, A.; Børresen-Dale, A.-L.; et al. Signatures of mutational processes in human cancer. Nature 2013, 500, 415–421. [Google Scholar] [CrossRef] [PubMed]
- Alexandrov, L.B.; Jones, P.H.; Wedge, D.C.; Sale, J.E.; Campbell, P.J.; Nik-Zainal, S.; Stratton, M.R. Clock-like mutational processes in human somatic cells. Nat. Genet. 2015, 47, 1402–1407. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.-A.; Leiserson, M.D.M.; Moorjani, P.; Sharan, R.; Wojtowicz, D.; Przytycka, T.M. Mutational Signatures: From Methods to Mechanisms. Annu. Rev. Biomed. Data Sci. 2021, 4, 189–206. [Google Scholar] [CrossRef] [PubMed]
- Phillips, D.H. Mutational spectra and mutational signatures: Insights into cancer aetiology and mechanisms of DNA damage and repair. DNA Repair 2018, 71, 6–11. [Google Scholar] [CrossRef] [PubMed]
- Blokzijl, F.; De Ligt, J.; Jager, M.; Sasselli, V.; Roerink, S.; Sasaki, N.; Huch, M.; Boymans, S.; Kuijk, E.; Prins, P. Tissue-specific mutation accumulation in human adult stem cells during life. Nature 2016, 538, 260–264. [Google Scholar] [CrossRef] [PubMed]
- Decker, B.; Davis, B.W.; Rimbault, M.; Long, A.H.; Karlins, E.; Jagannathan, V.; Reiman, R.; Parker, H.G.; Drögemüller, C.; Corneveaux, J.J.; et al. Comparison against 186 canid whole-genome sequences reveals survival strategies of an ancient clonally transmissible canine tumor. Genome Res. 2015, 25, 1646–1655. [Google Scholar] [CrossRef]
- de Magalhães, J.P.; Abidi, Z.; Dos Santos, G.A.; Avelar, R.A.; Barardo, D.; Chatsirisupachai, K.; Clark, P.; De-Souza, E.A.; Johnson, E.J.; Lopes, I. Human Ageing Genomic Resources: Updates on key databases in ageing research. Nucleic Acids Res. 2024, 52, D900–D908. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, K.; Taskesen, E.; Van Bochoven, A.; Posthuma, D. Functional mapping and annotation of genetic associations with FUMA. Nat. Commun. 2017, 8, 1826. [Google Scholar] [CrossRef]
- Didikoglu, A.; Maharani, A.; Payton, A.; Pendleton, N.; Canal, M.M. Longitudinal change of sleep timing: Association between chronotype and longevity in older adults. Chronobiol. Int. 2019, 36, 1285–1300. [Google Scholar] [CrossRef]
- Maierova, L.; Borisuit, A.; Scartezzini, J.L.; Jaeggi, S.M.; Schmidt, C.; Münch, M. Diurnal variations of hormonal secretion, alertness and cognition in extreme chronotypes under different lighting conditions. Sci. Rep. 2016, 6, 33591. [Google Scholar] [CrossRef]
- Kalmbach, D.A.; Schneider, L.D.; Cheung, J.; Bertrand, S.J.; Kariharan, T.; Pack, A.I.; Gehrman, P.R. Genetic basis of chronotype in humans: Insights from three landmark GWAS. Sleep 2017, 40, zsw048. [Google Scholar] [CrossRef]
- Jones, S.E.; Lane, J.M.; Wood, A.R.; Van Hees, V.T.; Tyrrell, J.; Beaumont, R.N.; Jeffries, A.R.; Dashti, H.S.; Hillsdon, M.; Ruth, K.S.; et al. Genome-wide association analyses of chronotype in 697,828 individuals provides insights into circadian rhythms. Nat. Commun. 2019, 10, 343. [Google Scholar] [CrossRef]
- Lane, J.M.; Vlasac, I.; Anderson, S.G.; Kyle, S.D.; Dixon, W.G.; Bechtold, D.A.; Gill, S.; Little, M.A.; Luik, A.; Loudon, A.; et al. Genome-wide association analysis identifies novel loci for chronotype in 100,420 individuals from the UK Biobank. Nat. Commun. 2016, 7, 10889. [Google Scholar] [CrossRef]
- Fischer, D.; Lombardi, D.A.; Marucci-Wellman, H.; Roenneberg, T. Chronotypes in the US—Influence of age and sex. PLoS ONE 2017, 12, e0178782. [Google Scholar] [CrossRef]
- Roenneberg, T.; Kuehnle, T.; Pramstaller, P.P.; Ricken, J.; Havel, M.; Guth, A.; Merrow, M. A marker for the end of adolescence. Curr. Biol. 2004, 14, R1038–R1039. [Google Scholar] [CrossRef]
- Saari, A.; Sankilampi, U.; Hannila, M.-L.; Kiviniemi, V.; Kesseli, K.; Dunkel, L. New Finnish growth references for children and adolescents aged 0 to 20 years: Length/height-for-age, weight-for-length/height, and body mass index-for-age. Ann. Med. 2011, 43, 235–248. [Google Scholar] [CrossRef]
- Marshall, W.A.; Tanner, J.M. Growth and Physiological Development During Adolescence. Annu. Rev. Med. 1968, 19, 283–300. [Google Scholar] [CrossRef]
- Hawthorne, A.J.; Booles, D.; Nugent, P.A.; Gettinby, G.; Wilkinson, J. Body-weight changes during growth in puppies of different breeds. J. Nutr. 2004, 134, 2027S–2030S. [Google Scholar] [CrossRef]
- Salt, C.; Morris, P.J.; German, A.J.; Wilson, D.; Lund, E.M.; Cole, T.J.; Butterwick, R.F. Growth standard charts for monitoring bodyweight in dogs of different sizes. PLoS ONE 2017, 12, e0182064. [Google Scholar] [CrossRef]
- Olsson, P.O.; Jeong, Y.W.; Jeong, Y.; Kang, M.; Park, G.B.; Choi, E.; Kim, S.; Hossein, M.S.; Son, Y.-B.; Hwang, W.S. Insights from one thousand cloned dogs. Sci. Rep. 2022, 12, 11209. [Google Scholar] [CrossRef] [PubMed]
- Nava-Trujillo, H.; Rivera, R.M. Large offspring syndrome in ruminants: Current status and prediction during pregnancy. Animal 2023, 17, 100740. [Google Scholar] [CrossRef]
- Blagosklonny, M.V.; Hall, M.N. Growth and aging: A common molecular mechanism. Aging 2009, 1, 357–362. [Google Scholar] [CrossRef] [PubMed]
- Kenyon, C.J. The genetics of ageing. Nature 2010, 464, 504–512. [Google Scholar] [CrossRef] [PubMed]
- Kirkwood, T.B.L. Understanding the Odd Science of Aging. Cell 2005, 120, 437–447. [Google Scholar] [CrossRef] [PubMed]
- Rogol, A.D.; Roemmich, J.N.; Clark, P.A. Growth at puberty. J. Adolesc. Health 2002, 31, 192–200. [Google Scholar] [CrossRef]
- Bartke, A. Growth hormone and aging: Updated review. World J. Men Health 2019, 37, 19. [Google Scholar] [CrossRef]
- Samaras, T.T. Height, body size, and longevity: Is smaller better for the human body? West. J. Med. 2002, 176, 206–208. [Google Scholar] [CrossRef]
- Eyre, H.; Kahn, R.; Robertson, R.M.; Committee, A.A.A.C.W.; Members, A.A.A.C.W.C.; Clark, N.G.; Doyle, C.; Hong, Y.; Gansler, T.; Glynn, T. Preventing cancer, cardiovascular disease, and diabetes: A common agenda for the American Cancer Society, the American Diabetes Association, and the American Heart Association. Circulation 2004, 109, 3244–3255. [Google Scholar] [CrossRef]
- Frasca, D.; Blomberg, B.B.; Paganelli, R. Aging, Obesity, and Inflammatory Age-Related Diseases. Front. Immunol. 2017, 8, 1745. [Google Scholar] [CrossRef]
- Salvestrini, V.; Sell, C.; Lorenzini, A. Obesity May Accelerate the Aging Process. Front. Endocrinol. 2019, 10, 266. [Google Scholar] [CrossRef] [PubMed]
- Villareal, D.T.; Apovian, C.M.; Kushner, R.F.; Klein, S. Obesity in older adults: Technical review and position statement of the American Society for Nutrition and NAASO, The Obesity Society. Am. J. Clin. Nutr. 2005, 82, 923–934. [Google Scholar] [CrossRef]
- Thomas, E.T.; Guppy, M.; Straus, S.E.; Bell, K.J.L.; Glasziou, P. Rate of normal lung function decline in ageing adults: A systematic review of prospective cohort studies. BMJ Open 2019, 9, e028150. [Google Scholar] [CrossRef]
- Easter, M.; Bollenbecker, S.; Barnes, J.W.; Krick, S. Targeting Aging Pathways in Chronic Obstructive Pulmonary Disease. Int. J. Mol. Sci. 2020, 21, 6924. [Google Scholar] [CrossRef]
- Head, T.; Daunert, S.; Goldschmidt-Clermont, P.J. The Aging Risk and Atherosclerosis: A Fresh Look at Arterial Homeostasis. Front. Genet. 2017, 8, 216. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.-L. Arterial stiffness and hypertension. Clin. Hypertens. 2023, 29, 31. [Google Scholar] [CrossRef]
- Salthouse, T.A. When does age-related cognitive decline begin? Neurobiol. Aging 2009, 30, 507–514. [Google Scholar] [CrossRef]
- Gonzales, M.M.; Garbarino, V.R.; Pollet, E.; Palavicini, J.P.; Kellogg, D.L.; Kraig, E.; Orr, M.E. Biological aging processes underlying cognitive decline and neurodegenerative disease. J. Clin. Investig. 2022, 132, e158453. [Google Scholar] [CrossRef] [PubMed]
- Bulik, C.M. Eating disorders in adolescents and young adults. Child Adolesc. Psychiatr. Clin. 2002, 11, 201–218. [Google Scholar] [CrossRef]
- Lapid, M.I.; Prom, M.C.; Burton, M.C.; McAlpine, D.E.; Sutor, B.; Rummans, T.A. Eating disorders in the elderly. Int. Psychogeriatr. 2010, 22, 523–536. [Google Scholar] [CrossRef]
- Wang, Z.; Rafaï, I.; Willinger, M. Does age affect the relation between risk and time preferences? Evidence from a representative sample. South. Econ. J. 2023, 90, 341–368. [Google Scholar] [CrossRef]
- Neher, E.; Sakaba, T. Multiple roles of calcium ions in the regulation of neurotransmitter release. Neuron 2008, 59, 861–872. [Google Scholar] [CrossRef] [PubMed]
- Tong, B.C.-K.; Wu, A.J.; Li, M.; Cheung, K.-H. Calcium signaling in Alzheimer’s disease & therapies. Biochim. Biophys. Acta BBA Mol. Cell Res. 2018, 1865, 1745–1760. [Google Scholar]
- Nikoletopoulou, V.; Tavernarakis, N. Calcium homeostasis in aging neurons. Front. Genet. 2012, 3, 200. [Google Scholar] [CrossRef] [PubMed]
- Teleanu, R.I.; Niculescu, A.-G.; Roza, E.; Vladâcenco, O.; Grumezescu, A.M.; Teleanu, D.M. Neurotransmitters—Key factors in neurological and neurodegenerative disorders of the central nervous system. Int. J. Mol. Sci. 2022, 23, 5954. [Google Scholar] [CrossRef] [PubMed]
- Taoufik, E.; Kouroupi, G.; Zygogianni, O.; Matsas, R. Synaptic dysfunction in neurodegenerative and neurodevelopmental diseases: An overview of induced pluripotent stem-cell-based disease models. Open Biol. 2018, 8, 180138. [Google Scholar] [CrossRef]
- Bae, J.R.; Kim, S.H. Synapses in neurodegenerative diseases. BMB Rep. 2017, 50, 237–246. [Google Scholar] [CrossRef] [PubMed]
- Wong, R.C.-B.; Ibrahim, A.; Fong, H.; Thompson, N.; Lock, L.F.; Donovan, P.J. L1TD1 Is a Marker for Undifferentiated Human Embryonic Stem Cells. PLoS ONE 2011, 6, e19355. [Google Scholar] [CrossRef]
- Närvä, E.; Rahkonen, N.; Emani, M.R.; Lund, R.; Pursiheimo, J.P.; Nästi, J.; Autio, R.; Rasool, O.; Denessiouk, K.; Lähdesmäki, H.; et al. RNA-Binding Protein L1TD1 Interacts with LIN28 via RNA and is Required for Human Embryonic Stem Cell Self-Renewal and Cancer Cell Proliferation. Stem Cells 2012, 30, 452–460. [Google Scholar] [CrossRef]
- Maheswara; Närvä, E.; Stubb, A.; Chakroborty, D.; Viitala, M.; Rokka, A.; Rahkonen, N.; Moulder, R.; Denessiouk, K.; Trokovic, R.; et al. The L1TD1 Protein Interactome Reveals the Importance of Post-transcriptional Regulation in Human Pluripotency. Stem Cell Rep. 2015, 4, 519–528. [Google Scholar] [CrossRef]
- Chakroborty, D.; Emani, M.R.; Klén, R.; Böckelman, C.; Hagström, J.; Haglund, C.; Ristimäki, A.; Lahesmaa, R.; Elo, L.L. L1TD1-a prognostic marker for colon cancer. BMC Cancer 2019, 19, 727. [Google Scholar] [CrossRef] [PubMed]
- Bao, S.; Wang, X.; Li, M.; Gao, Z.; Zheng, D.; Shen, D.; Liu, L. Potential of mitochondrial ribosomal genes as cancer biomarkers demonstrated by bioinformatics results. Front. Oncol. 2022, 12, 835549. [Google Scholar] [CrossRef]
- Kim, H.-J.; Maiti, P.; Barrientos, A. Mitochondrial ribosomes in cancer. Semin. Cancer Biol. 2017, 47, 67–81. [Google Scholar] [CrossRef] [PubMed]
- Ma, T.; Huang, Y.-B.; Chen, J.; Zhang, L.; Liu, Y.-H.; Lu, C.-H. MRPL21 promotes HCC proliferation through TP53 mutation-induced apoptotic resistance. Tissue Cell 2024, 86, 102298. [Google Scholar] [CrossRef] [PubMed]
- Klaiman, G.; Champagne, N.; LeBlanc, A.C. Self-activation of Caspase-6 in vitro and in vivo: Caspase-6 activation does not induce cell death in HEK293T cells. Biochim. Biophys. Acta BBA Mol. Cell Res. 2009, 1793, 592–601. [Google Scholar] [CrossRef] [PubMed]
- Man, S.M.; Kanneganti, T.-D. Converging roles of caspases in inflammasome activation, cell death and innate immunity. Nat. Rev. Immunol. 2016, 16, 7–21. [Google Scholar] [CrossRef] [PubMed]
- Graham, R.K.; Ehrnhoefer, D.E.; Hayden, M.R. Caspase-6 and neurodegeneration. Trends Neurosci. 2011, 34, 646–656. [Google Scholar] [CrossRef]
- Dagbay, K.B.; Hill, M.E.; Barrett, E.; Hardy, J.A. Tumor-Associated Mutations in Caspase-6 Negatively Impact Catalytic Efficiency. Biochemistry 2017, 56, 4568–4577. [Google Scholar] [CrossRef] [PubMed]
- Yakirevich, E.; Resnick, M.B.; Mangray, S.; Wheeler, M.; Jackson, C.L.; Lombardo, K.A.; Lee, J.; Kim, K.-M.; Gill, A.J.; Wang, K.; et al. Oncogenic ALK Fusion in Rare and Aggressive Subtype of Colorectal Adenocarcinoma as a Potential Therapeutic Target. Clin. Cancer Res. 2016, 22, 3831–3840. [Google Scholar] [CrossRef]
- Sobecki, M.; Mrouj, K.; Colinge, J.; Gerbe, F.; Jay, P.; Krasinska, L.; Dulic, V.; Fisher, D. Cell-Cycle Regulation Accounts for Variability in Ki-67 Expression Levels. Cancer Res. 2017, 77, 2722–2734. [Google Scholar] [CrossRef]
- Andrés-Sánchez, N.; Fisher, D.; Krasinska, L. Physiological functions and roles in cancer of the proliferation marker Ki-67. J. Cell Sci. 2022, 135, jcs258932. [Google Scholar] [CrossRef]
- Mrouj, K.; Andrés-Sánchez, N.; Dubra, G.; Singh, P.; Sobecki, M.; Chahar, D.; Al Ghoul, E.; Aznar, A.B.; Prieto, S.; Pirot, N.; et al. Ki-67 regulates global gene expression and promotes sequential stages of carcinogenesis. Proc. Natl. Acad. Sci. USA 2021, 118, e2026507118. [Google Scholar] [CrossRef] [PubMed]
- Briknarová, K.; Atwater, D.Z.; Glicken, J.M.; Maynard, S.J.; Ness, T.E. The PR/SET domain in PRDM4 is preceded by a zinc knuckle. Proteins Struct. Funct. Bioinf. 2011, 79, 2341–2345. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.-H.; Huang, S. PFM1 (PRDM4), a new member of the PR-domain family, maps to a tumor suppressor locus on human chromosome 12q23–q24. 1. Genomics 1999, 61, 319–325. [Google Scholar] [CrossRef]
- Tominaga, M.; Tominaga, T. Structure and function of TRPV1. Pflügers Arch. Eur. J. Physiol. 2005, 451, 143–150. [Google Scholar] [CrossRef] [PubMed]
- Omari, S.A.; Adams, M.J.; Geraghty, D.P. TRPV1 channels in immune cells and hematological malignancies. Adv. Pharmacol. 2017, 79, 173–198. [Google Scholar] [PubMed]
- Erin, N.; Szallasi, A. Carcinogenesis and metastasis: Focus on TRPV1-positive neurons and immune cells. Biomolecules 2023, 13, 983. [Google Scholar] [CrossRef] [PubMed]
- Asa, S.L.; Ramyar, L.; Murphy, P.R.; Li, A.W.; Ezzat, S. The endogenous fibroblast growth factor-2 antisense gene product regulates pituitary cell growth and hormone production. Mol. Endocrinol. 2001, 15, 589–599. [Google Scholar] [CrossRef]
- Li, A.W.; Murphy, P.R. Expression of alternatively spliced FGF-2 antisense RNA transcripts in the central nervous system: Regulation of FGF-2 mRNA translation. Mol. Cell. Endocrinol. 2000, 162, 69–78. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wan, F.; Chang, K.; Lu, X.; Dai, B.; Ye, D. NUDT expression is predictive of prognosis in patients with clear cell renal cell carcinoma. Oncol. Lett. 2017, 14, 6121–6128. [Google Scholar] [CrossRef]
- Abu-Rahmah, R.; Nechushtan, H.; Hidmi, S.; Meirovitz, A.; Razin, E.; Peretz, T. The functional role of Nudt2 in human triple negative breast cancer. Front. Oncol. 2024, 14, 1364663. [Google Scholar] [CrossRef] [PubMed]
- Wright, R.H.G.; Beato, M. Role of the NUDT Enzymes in Breast Cancer. Int. J. Mol. Sci. 2021, 22, 2267. [Google Scholar] [CrossRef] [PubMed]
- Meng, Y.; Wang, L.; Chen, D.; Chang, Y.; Zhang, M.; Xu, J.; Zhou, R.; Zhang, Q. LAPTM4B: An oncogene in various solid tumors and its functions. Oncogene 2016, 35, 6359–6365. [Google Scholar] [CrossRef]
- Liu, X.; Xiong, F.; Wei, X.; Yang, H.; Zhou, R. LAPTM4B-35, a novel tetratransmembrane protein and its PPRP motif play critical roles in proliferation and metastatic potential of hepatocellular carcinoma cells. Cancer Sci. 2009, 100, 2335–2340. [Google Scholar] [CrossRef]
- Berben, L.; Floris, G.; Wildiers, H.; Hatse, S. Cancer and aging: Two tightly interconnected biological processes. Cancers 2021, 13, 1400. [Google Scholar] [CrossRef]
- Aunan, J.R.; Cho, W.C.; Søreide, K. The biology of aging and cancer: A brief overview of shared and divergent molecular hallmarks. Aging Dis. 2017, 8, 628. [Google Scholar] [CrossRef] [PubMed]
- Hoeppner, M.P.; Lundquist, A.; Pirun, M.; Meadows, J.R.S.; Zamani, N.; Johnson, J.; Sundström, G.; Cook, A.; Fitzgerald, M.G.; Swofford, R.; et al. An Improved Canine Genome and a Comprehensive Catalogue of Coding Genes and Non-Coding Transcripts. PLoS ONE 2014, 9, e91172. [Google Scholar] [CrossRef]
- Langmead, B.; Salzberg, S.L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 2012, 9, 357–359. [Google Scholar] [CrossRef]
- Li, H.; Handsaker, B.; Wysoker, A.; Fennell, T.; Ruan, J.; Homer, N.; Marth, G.; Abecasis, G.; Durbin, R. The Sequence Alignment/Map format and SAMtools. Bioinformatics 2009, 25, 2078–2079. [Google Scholar] [CrossRef]
- Ge, S.X.; Jung, D.; Yao, R. ShinyGO: A graphical gene-set enrichment tool for animals and plants. Bioinformatics 2020, 36, 2628–2629. [Google Scholar] [CrossRef]
- Stelzer, G.; Rosen, N.; Plaschkes, I.; Zimmerman, S.; Twik, M.; Fishilevich, S.; Stein, T.I.; Nudel, R.; Lieder, I.; Mazor, Y. The GeneCards suite: From gene data mining to disease genome sequence analyses. Curr. Protoc. Bioinf. 2016, 54, 1.30.1–1.30.33. [Google Scholar] [CrossRef] [PubMed]
- UniProt: The universal protein knowledgebase in 2023. Nucleic Acids Res. 2023, 51, D523–D531. [CrossRef] [PubMed]
Gene | Chr | Length | Count | Frequency |
---|---|---|---|---|
OR51F23 | 2 | 930 | 3 | 3.23 × 10−3 |
L1TD1 | 5 | 5205 | 2 | 3.84 × 10−4 |
MRPL21 | 1 | 13,363 | 4 | 2.99 × 10−4 |
CASP6 | 3 | 13,647 | 4 | 2.93 × 10−4 |
ZNF777 | 1 | 22,897 | 6 | 2.62 × 10−4 |
WDCP | 1 | 19,464 | 5 | 2.57 × 10−4 |
DLA-79 | 1 | 27,794 | 6 | 2.16 × 10−4 |
GALC | 8 | 57,150 | 9 | 1.57 × 10−4 |
MKI67 | 2 | 26,464 | 4 | 1.51 × 10−4 |
NIPSNAP2 | 6 | 33,134 | 5 | 1.51 × 10−4 |
ACTR10 | 8 | 31,824 | 4 | 1.26 × 10−4 |
CISD2 | 3 | 16,071 | 2 | 1.24 × 10−4 |
GCM1 | 1 | 16,477 | 2 | 1.21 × 10−4 |
CKLF | 5 | 16,928 | 2 | 1.18 × 10−4 |
FAM98B | 3 | 34,924 | 4 | 1.15 × 10−4 |
PRDM4 | 1 | 26,340 | 3 | 1.14 × 10−4 |
OR6C53 | 3 | 17,700 | 2 | 1.13 × 10−4 |
TRPV1 | 9 | 26,955 | 3 | 1.11 × 10−4 |
NUDT6 | 1 | 31,071 | 3 | 9.66 × 10−5 |
LAPTM4B | 1 | 86,062 | 8 | 9.30 × 10−5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Woo, S.-W.; Kim, M.; Kang, D.; Choe, Y.-h.; Oh, S.-J.; You, A.-S.; Lee, S.-L.; Kim, J. Genome-Wide Characterization of Somatic Mutation Patterns in Cloned Dogs Reveals Implications for Neuronal Function, Tumorigenesis, and Aging. Genes 2024, 15, 801. https://doi.org/10.3390/genes15060801
Woo S-W, Kim M, Kang D, Choe Y-h, Oh S-J, You A-S, Lee S-L, Kim J. Genome-Wide Characterization of Somatic Mutation Patterns in Cloned Dogs Reveals Implications for Neuronal Function, Tumorigenesis, and Aging. Genes. 2024; 15(6):801. https://doi.org/10.3390/genes15060801
Chicago/Turabian StyleWoo, Seung-Wan, Miju Kim, Dayeon Kang, Yong-ho Choe, Seong-Ju Oh, Are-Sun You, Sung-Lim Lee, and Jaemin Kim. 2024. "Genome-Wide Characterization of Somatic Mutation Patterns in Cloned Dogs Reveals Implications for Neuronal Function, Tumorigenesis, and Aging" Genes 15, no. 6: 801. https://doi.org/10.3390/genes15060801
APA StyleWoo, S. -W., Kim, M., Kang, D., Choe, Y. -h., Oh, S. -J., You, A. -S., Lee, S. -L., & Kim, J. (2024). Genome-Wide Characterization of Somatic Mutation Patterns in Cloned Dogs Reveals Implications for Neuronal Function, Tumorigenesis, and Aging. Genes, 15(6), 801. https://doi.org/10.3390/genes15060801