Structural Differences between the Genomes of Deinococcus radiodurans Strains from Different Laboratories
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Battista, J.R. Against All Odds: The survival strategies of Deinococcus radiodurans. Annu. Rev. Microbiol. 1997, 51, 203–224. [Google Scholar] [CrossRef] [PubMed]
- Cox, M.M.; Battista, J.R. Deinococcus radiodurans—The consummate survivor. Nat. Rev. Microbiol. 2005, 3, 882–892. [Google Scholar] [CrossRef] [PubMed]
- Slade, D.; Radman, M. Oxidative stress resistance in Deinococcus radiodurans. Microbiol. Mol. Biol. Rev. 2011, 75, 133–191. [Google Scholar] [CrossRef] [PubMed]
- Daly, M.J. The scientific revolution that unraveled the astonishing DNA repair capacity of the Deinococcaceae: 40 years on. Can. J. Microbiol. 2023, 69, 369–386. [Google Scholar] [CrossRef] [PubMed]
- Repar, J.; Supek, F.; Klanjscek, T.; Warnecke, T.; Zahradka, K.; Zahradka, D. Elevated rate of genome rearrangements in radiation-resistant bacteria. Genetics 2017, 205, 1677–1689. [Google Scholar] [CrossRef] [PubMed]
- Repar, J.; Cvjetan, S.; Slade, D.; Radman, M.; Zahradka, D.; Zahradka, K. RecA Protein assures fidelity of DNA repair and genome stability in Deinococcus radiodurans. DNA Repair 2010, 9, 1151–1161. [Google Scholar] [CrossRef] [PubMed]
- Shen, P.; Huang, H.V. Homologous recombination in Escherichia coli: Dependence on substrate length and homology. Genetics 1986, 112, 441–457. [Google Scholar] [CrossRef] [PubMed]
- Kowalczykowski, S.C.; Dixon, D.A.; Eggleston, A.K.; Lauder, S.D.; Rehrauer, W.M. Biochemistry of homologous recombination in Escherichia coli. Microbiol. Rev. 1994, 58, 401–465. [Google Scholar] [CrossRef] [PubMed]
- Makarova, K.S.; Wolf, Y.I.; White, O.; Minton, K.; Daly, M.J. Short repeats and IS elements in the extremely radiation-resistant bacterium Deinococcus radiodurans and comparison to other bacterial species. Res. Microbiol. 1999, 150, 711–724. [Google Scholar] [CrossRef]
- Makarova, K.S.; Aravind, L.; Wolf, Y.I.; Tatusov, R.L.; Minton, K.W.; Koonin, E.V.; Daly, M.J. Genome of the extremely radiation-resistant bacterium Deinococcus radiodurans viewed from the perspective of comparative genomics. Microbiol. Mol. Biol. Rev. 2001, 65, 44–79. [Google Scholar] [CrossRef]
- Mattimore, V.; Battista, J.R. Radioresistance of Deinococcus radiodurans: Functions necessary to survive ionizing radiation are also necessary to survive prolonged desiccation. J. Bacteriol. 1996, 178, 633–637. [Google Scholar] [CrossRef] [PubMed]
- Repar, J.; Zahradka, D.; Zahradka, K. Accuracy of genome reassembly in γ-irradiated Escherichia coli. Food Technol. Biotechnol. 2013, 51, 327–337. [Google Scholar]
- Zahradka, K.; Slade, D.; Bailone, A.; Sommer, S.; Averbeck, D.; Petranovic, M.; Lindner, A.B.; Radman, M. Reassembly of shattered chromosomes in Deinococcus radiodurans. Nature 2006, 443, 569–573. [Google Scholar] [CrossRef] [PubMed]
- Daly, M.J.; Minton, K.W. An alternative pathway of recombination of chromosomal fragments precedes RecA-dependent recombination in the radioresistant bacterium Deinococcus radiodurans. J. Bacteriol. 1996, 178, 4461–4471. [Google Scholar] [CrossRef] [PubMed]
- Xu, G.; Lu, H.; Wang, L.; Chen, H.; Xu, Z.; Hu, Y.; Tian, B.; Hua, Y. DdrB stimulates single-stranded DNA annealing and facilitates RecA-independent DNA repair in Deinococcus radiodurans. DNA Repair 2010, 9, 805–812. [Google Scholar] [CrossRef]
- Ithurbide, S.; Bentchikou, E.; Coste, G.; Bost, B.; Servant, P.; Sommer, S. Single strand annealing plays a major role in RecA-independent recombination between repeated sequences in the radioresistant Deinococcus radiodurans bacterium. PLoS Genet. 2015, 11, e1005636. [Google Scholar] [CrossRef]
- Repar, J.; Zahradka, D.; Sović, I.; Zahradka, K. Characterization of gross genome rearrangements in Deinococcus radiodurans recA Mutants. Sci. Rep. 2021, 11, 10939. [Google Scholar] [CrossRef]
- McVey, M.; Lee, S.E. MMEJ repair of double-strand breaks (director’s cut): Deleted sequences and alternative endings. Trends Genet. TIG 2008, 24, 529–538. [Google Scholar] [CrossRef] [PubMed]
- Sfeir, A.; Symington, L.S. Microhomology-mediated end joining: A back-up survival mechanism or dedicated pathway? Trends Biochem. Sci. 2015, 40, 701–714. [Google Scholar] [CrossRef]
- Bhargava, R.; Onyango, D.O.; Stark, J.M. Regulation of single-strand annealing and its role in genome maintenance. Trends Genet. TIG 2016, 32, 566–575. [Google Scholar] [CrossRef]
- Sallmyr, A.; Tomkinson, A.E. Repair of DNA double-strand breaks by mammalian alternative end-joining pathways. J. Biol. Chem. 2018, 293, 10536–10546. [Google Scholar] [CrossRef] [PubMed]
- Mei, Q.; Fitzgerald, D.M.; Liu, J.; Xia, J.; Pribis, J.P.; Zhai, Y.; Nehring, R.B.; Paiano, J.; Li, H.; Nussenzweig, A.; et al. Two mechanisms of chromosome fragility at replication-termination sites in bacteria. Sci. Adv. 2021, 7, eabe2846. [Google Scholar] [CrossRef] [PubMed]
- Mehta, A.; Haber, J.E. Sources of DNA double-strand breaks and models of recombinational DNA repair. Cold Spring Harb. Perspect. Biol. 2014, 6, a016428. [Google Scholar] [CrossRef]
- Sinha, A.K.; Possoz, C.; Leach, D.R.F. The roles of bacterial DNA double-strand break repair proteins in chromosomal DNA replication. FEMS Microbiol. Rev. 2020, 44, 351–368. [Google Scholar] [CrossRef] [PubMed]
- Desroches, M.; Royer, G.; Roche, D.; Mercier-Darty, M.; Vallenet, D.; Médigue, C.; Bastard, K.; Rodriguez, C.; Clermont, O.; Denamur, E.; et al. The odyssey of the ancestral Escherich strain through culture collections: An example of allopatric diversification. mSphere 2018, 3, e00553-17. [Google Scholar] [CrossRef] [PubMed]
- Dorman, M.J.; Thomson, N.R. “Community evolution”—Laboratory strains and pedigrees in the age of genomics. Microbiol. Read. Engl. 2020, 166, 233–238. [Google Scholar] [CrossRef] [PubMed]
- Bleibtreu, A.; Clermont, O.; Darlu, P.; Glodt, J.; Branger, C.; Picard, B.; Denamur, E. The rpoS gene is predominantly inactivated during laboratory storage and undergoes source-sink evolution in Escherichia coli species. J. Bacteriol. 2014, 196, 4276–4284. [Google Scholar] [CrossRef] [PubMed]
- Anderson, A.W.; Nordan, H.C.; Cain, R.; Parrish, G.; Duggan, D.; Anderson, A.O.; Nordan, H.; Parish, G.; Cullum-Dugan, D. Studies on a radio-resistant micrococcus. I, Isolation, morphology, cultural characteristics, and resistance to gamma radiation. Food Technol. 1956, 10, 575–578. [Google Scholar]
- White, O.; Eisen, J.A.; Heidelberg, J.F.; Hickey, E.K.; Peterson, J.D.; Dodson, R.J.; Haft, D.H.; Gwinn, M.L.; Nelson, W.C.; Richardson, D.L.; et al. Genome sequence of the radioresistant bacterium Deinococcus radiodurans R1. Science 1999, 286, 1571–1577. [Google Scholar] [CrossRef]
- Hua, X.; Hua, Y. Improved complete genome sequence of the extremely radioresistant bacterium Deinococcus radiodurans R1 obtained using PacBio single-molecule sequencing. Genome Announc. 2016, 4, e00886-16. [Google Scholar] [CrossRef]
- Haubold, B.; Klötzl, F.; Pfaffelhuber, P. Andi: Fast and accurate estimation of evolutionary distances between closely related genomes. Bioinformatics 2015, 31, 1169–1175. [Google Scholar] [CrossRef] [PubMed]
- Tamura, K.; Stecher, G.; Kumar, S. MEGA11: Molecular evolutionary genetics analysis version 11. Mol. Biol. Evol. 2021, 38, 3022–3027. [Google Scholar] [CrossRef] [PubMed]
- Marçais, G.; Delcher, A.L.; Phillippy, A.M.; Coston, R.; Salzberg, S.L.; Zimin, A. MUMmer4: A fast and versatile genome alignment system. PLoS Comput. Biol. 2018, 14, e1005944. [Google Scholar] [CrossRef] [PubMed]
- Siguier, P.; Perochon, J.; Lestrade, L.; Mahillon, J.; Chandler, M. ISfinder: The reference centre for bacterial insertion sequences. Nucleic Acids Res. 2006, 34, D32–D36. [Google Scholar] [CrossRef] [PubMed]
- Camacho, C.; Coulouris, G.; Avagyan, V.; Ma, N.; Papadopoulos, J.; Bealer, K.; Madden, T. BLAST+: Architecture and applications. BMC Bioinform. 2009, 10, 421. [Google Scholar] [CrossRef]
- Benson, G. Tandem Repeats Finder: A program to analyze DNA sequences. Nucleic Acids Res. 1999, 27, 573–580. [Google Scholar] [CrossRef] [PubMed]
- Warburton, P.E.; Giordano, J.; Cheung, F.; Gelfand, Y.; Benson, G. Inverted repeat structure of the human genome: The X-chromosome contains a preponderance of large, highly homologous inverted repeats that contain testes genes. Genome Res. 2004, 14, 1861–1869. [Google Scholar] [CrossRef]
- Mennecier, S.; Servant, P.; Coste, G.; Bailone, A.; Sommer, S. Mutagenesis via IS transposition in Deinococcus radiodurans. Mol. Microbiol. 2006, 59, 317–325. [Google Scholar] [CrossRef]
- Long, H.; Kucukyildirim, S.; Sung, W.; Williams, E.; Lee, H.; Ackerman, M.; Doak, T.G.; Tang, H.; Lynch, M. Background mutational features of the radiation-resistant bacterium Deinococcus radiodurans. Mol. Biol. Evol. 2015, 32, 2383–2392. [Google Scholar] [CrossRef]
- Eggington, J.M.; Haruta, N.; Wood, E.A.; Cox, M.M. The single-stranded DNA-binding protein of Deinococcus radiodurans. BMC Microbiol. 2004, 4, 2. [Google Scholar] [CrossRef]
- Lovett, S.T. Encoded errors: Mutations and rearrangements mediated by misalignment at repetitive DNA sequences. Mol. Microbiol. 2004, 52, 1243–1253. [Google Scholar] [CrossRef] [PubMed]
- Siguier, P.; Gourbeyre, E.; Chandler, M. Bacterial insertion sequences: Their genomic impact and diversity. FEMS Microbiol. Rev. 2014, 38, 865–891. [Google Scholar] [CrossRef] [PubMed]
- Islam, S.M.; Hua, Y.; Ohba, H.; Satoh, K.; Kikuchi, M.; Yanagisawa, T.; Narumi, I. Characterization and distribution of IS8301 in the radioresistant bacterium Deinococcus radiodurans. Genes Genet. Syst. 2003, 78, 319–327. [Google Scholar] [CrossRef] [PubMed]
- Hickman, A.B.; James, J.A.; Barabas, O.; Pasternak, C.; Ton-Hoang, B.; Chandler, M.; Sommer, S.; Dyda, F. DNA recognition and the precleavage state during single-stranded DNA transposition in D. radiodurans. EMBO J. 2010, 29, 3840–3852. [Google Scholar] [CrossRef] [PubMed]
- Fang, Z.; Doig, C.; Kenna, D.T.; Smittipat, N.; Palittapongarnpim, P.; Watt, B.; Forbes, K.J. IS6110-mediated deletions of wild-type chromosomes of Mycobacterium tuberculosis. J. Bacteriol. 1999, 181, 1014–1020. [Google Scholar] [CrossRef] [PubMed]
- Rocha, E.P.C. The replication-related organization of bacterial genomes. Microbiology 2004, 150, 1609. [Google Scholar] [CrossRef]
- Harris, D.R.; Pollock, S.V.; Wood, E.A.; Goiffon, R.J.; Klingele, A.J.; Cabot, E.L.; Schackwitz, W.; Martin, J.; Eggington, J.; Durfee, T.J.; et al. Directed evolution of ionizing radiation resistance in Escherichia coli. J. Bacteriol. 2009, 191, 5240–5252. [Google Scholar] [CrossRef]
- Kolter, R.; Siegele, D.A.; Tormo, A. The stationary phase of the bacterial life cycle. Annu. Rev. Microbiol. 1993, 47, 855–874. [Google Scholar] [CrossRef]
IS/ SNR | The Investigated Genome in Which Extra DNA Is Present | Extra DNA Starts at bp: | Genome Element | Extra DNA Overlaps an Annotated Gene at Its Edge (Location and GenBank Annotation *); Genes Are Numbered for Clarity as There Are Instances of Multiple Genes Being Affected. |
---|---|---|---|---|
ISDra3 | genome-1999 | 252969 | Chromosome I | [i]<1..>1070,23S ribosomal RNA, DR_r02 |
ISDra2/ IS8301 | genome-1999 | 674926 | Chromosome I | None |
ISDra6 | genome-2021 | 694904 | Chromosome I | [i]<1..16, E5E91_03580, hypothetical protein |
IS2621 | genome-1999 | 881456 | Chromosome I | [i]<1..31, hypothetical protein, DR_0869 |
SNR4 | genome-2021 | 969707 | Chromosome I | None |
ISDra2/ IS8301 ** | genome-1999 | 994752 | Chromosome I | [i]<1..70, DR_0977, AAF10554.1, phosphoenolpyruvate carboxykinase, [ii]1705..>1743, DR_0980, AAF10557.1, glutamate dehydrogenase, putative, loss of 6 kb DNA |
IS2621 | genome-1999 | 1337894 | Chromosome I | None |
ISDra2/ IS8301 | genome-1999 | 1387636 | Chromosome I | [i]<1..71, DR_1380, AAF10959.1, hypothetical protein |
ISDra2/ IS8301 | genome-1999 | 1611598 | Chromosome I | [i]complement(1675..>1745), DR_1594, AAF11161.1, hypothetical protein |
IS2621 | genome-1999 | 1638129 | Chromosome I | [i]complement(1302..>1322), DR_1619, conserved hypothetical protein |
ISDra3 | genome-2021 | 1745642 | Chromosome I | [i]complement(<1), E5E91_08855, incomplete, partial on complete genome, missing N-terminus, DUF4238 domain-containing protein |
ISDra2/ IS8301 | genome-1999 | 1953199 | Chromosome I | [i]complement(<1..38), DR_1931, conserved hypothetical protein, [ii]complement(1673..>1742), DR 1934, hypothetical protein |
ISDra2/ IS8301 | genome-1999 | 2321426 | Chromosome I | [i] complement(<1..38), DR_2322, serine protease, subtilase family, C-terminal fragment, [ii]complement(1673..>1742), DR_2325, serine protease, subtilase family, N-terminal fragment |
IS2621 | genome-2021 | 374859 | Chromosome II | [i] <1..3, E5E91_15400, incomplete, partial on the complete genome, missing C-terminus, tetratricopeptide repeat protein |
IS | The Investigated Genome in Which Extra DNA Is Present | Extra DNA Starts at bp: | Genome Element | Extra DNA Overlaps an Annotated Gene at Its Edge |
---|---|---|---|---|
ISDra5 | genome-2016 | 656554 | Chromosome I | None |
IS2621 | genome-2016 | 1753516 | Chromosome I | None |
Monomer Size | Copy Number in Genome-1999 | Starting Position (bp) in Genome-1999 | Copy Number in Genome-2021 | Starting Position (bp) in Genome-2021 | Percent Matches, Percent Indels | Genome Element |
---|---|---|---|---|---|---|
24 | 3.1 | 1118441 | 5.1 | 1119952 | 100,0 | Chromosome I |
21 | 1 | 2457333 | 3.9 | 2453220 | 79,9 | Chromosome I |
218 | 2 | 45488 | 1 | 1 | 97,0 | Plasmid CP1 |
Deletion—Length of Unique Sequence Present in Only One Genome (bp) | Genome with Unique Non-Deleted DNA | Genome Element | The Position (bp) at Which Unique Non-Deleted DNA Starts | Repetitive Sequence at Deletion Boundaries (L and R) | Unique Non-Deleted DNA Present in Only One of the Two Investigated Genomes Contains Genes (Location and GenBank Annotations *). Genes Are Numbered for Clarity as There Are Instances of Multiple Genes Being Affected. |
---|---|---|---|---|---|
6065 | genome-2021 | Chromosome I | 991922 | Special case: extra DNA exchanged with one IS sequence (IS2621) (see Section 4) | [i]<1..276, E5E91_05075, phosphoenolpyruvate carboxykinase, [ii] 492..1343, E5E91_05080, hypothetical protein, [iii] 1734..2879, pdhA, E5E91_05085, pyruvate dehydrogenase (acetyl-transferring) E1 component subunit α, [iv] 3132..4157, E5E91_05090, α-ketoacid dehydrogenase subunit β, [v] 4404..5663, E5E91..05095, Glu/Leu/Phe/Val dehydrogenase, [vi] 5728..>6065, E5E91_05100, Glu/Leu/Phe/Val dehydrogenase |
24 | genome-1999 | Chromosome I | 1960529 | 526 bp | [i]complement(<1..>24), DR_1939, putative; polyphosphate kinase, authentic frameshift |
917 | genome-1999 | Chromosome II | 288082 | 600 bp | [i]complement(<1..331), DR_A0268, adenine deaminase-related protein, [ii]complement(524..880), DR_A0269, hypothetical protein |
48 | genome-1999 | Megaplasmid | 96697 | 59 bp | [i]complement(32..>48), DR_B0078, this region contains authentic frameshift |
Deletion—Length of Unique Sequence (bp) | Unique Non-Deleted DNA in Strain | Genome Element Identity | The Position (bp) at Which Unique Non-Deleted DNA Starts | Repetitive Sequence at Deletion Boundaries (L and R) | Unique Non-Deleted DNA Present in Only One of the Two Investigated Genomes Contains Genes (Location and GenBank Annotations *). Genes Are Numbered for Clarity as There Are Instances of Multiple Genes Being Affected. |
---|---|---|---|---|---|
1900 | genome-1999 | Chromosome I | 1230616 | CGGC | [i]288..1043, E5E91_06355, “regulator”, [ii]1040..>1900, E5E91_06360, EamA family transporter |
147 | genome-1999 | Chromosome I | 1234925 | CAGGCGGCGC | [i]<1..>147, E5E91..06375, glycosyltransferase |
1178 | genome-1999 | Chromosome I | 1819776 | ACCCAGCGGG | [i]74..922, E5E91_09235, hypothetical protein |
Annotation of the Gene with the SNP/Indel | Number of Positions Affected by SNP/Indel in Genome-1999 Compared to Genome-2021 | Number of Positions Affected by SNP/Indel in Genome-1999 Compared to Genome-2016 |
---|---|---|
Hypothetical protein | 147 | 190 |
Conserved hypothetical protein | 33 | 42 |
Transposase (putative) | 49 | 49 |
DNA-binding response regulator | 3 | 2 |
Intergenic SNPs | 189 | 240 |
DNA topoisomerase I | 1 | 1 |
FtsE | 3 | 3 |
Elongation factor TU | 1 | 0 |
DNA polymerase III, β subunit | 1 | 1 |
Cell division protein FtsK (putative) | 5 | 5 |
Single-stranded DNA-binding protein | 1 | 1 |
Exonuclease SbcC | 11 | 11 |
Other | 114 | 135 |
Total | 558 | 680 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zahradka, K.; Zahradka, D.; Repar, J. Structural Differences between the Genomes of Deinococcus radiodurans Strains from Different Laboratories. Genes 2024, 15, 847. https://doi.org/10.3390/genes15070847
Zahradka K, Zahradka D, Repar J. Structural Differences between the Genomes of Deinococcus radiodurans Strains from Different Laboratories. Genes. 2024; 15(7):847. https://doi.org/10.3390/genes15070847
Chicago/Turabian StyleZahradka, Ksenija, Davor Zahradka, and Jelena Repar. 2024. "Structural Differences between the Genomes of Deinococcus radiodurans Strains from Different Laboratories" Genes 15, no. 7: 847. https://doi.org/10.3390/genes15070847
APA StyleZahradka, K., Zahradka, D., & Repar, J. (2024). Structural Differences between the Genomes of Deinococcus radiodurans Strains from Different Laboratories. Genes, 15(7), 847. https://doi.org/10.3390/genes15070847