Pediatric Hemispheric High-Grade Gliomas and H3.3-G34 Mutation: A Review of the Literature on Biological Features and New Therapeutic Strategies
Abstract
:1. Introduction
2. Brain Cancer Biology: Genetic and Epigenetic Features
The Tumor Microenvironment in pHGG
3. Blood–Brain Barrier: Its Function and Role in the Setting of Pediatric Glioma
3.1. Function and Anatomy of the Blood–Brain Barrier
3.2. Transport across the Blood–Brain Barrier
3.2.1. Passive Diffusion
3.2.2. Active Efflux
3.2.3. Carrier-Mediated Transport (CMT)
3.2.4. Receptor-Mediated Transport (RMT)
3.3. Neurofluids and Brain Tumor
3.4. The Blood–Brain Tumor Barrier
3.5. Blood–Brain Barrier in the Pediatric Age
3.6. Blood–Brain Barrier Heterogeneity in Pediatric Brain Tumors
4. Immunotherapy and Targeted Therapies: New Therapeutic Strategies in pHGGs
4.1. Methods to Study and Develop New Therapies
4.2. Targeted Therapies
4.2.1. PDGFRA Mutation
4.2.2. IDH Mutation
4.2.3. BRAF Mutation
4.2.4. NF1 Loss
4.2.5. EGFR Amplification
4.2.6. HDAC Inhibition
4.2.7. AURKA Inhibition
4.3. Immune System Considerations
4.4. Immunotherapeutic Strategies
4.4.1. Immune Checkpoint Inhibitors (ICIs)
4.4.2. Antibody-Mediated Immunotherapy
4.4.3. Cancer Vaccines
4.4.4. Adoptive T-Cells and Dendritic Cells
4.4.5. CAR-T Cells
4.4.6. IDO Inhibitors
4.4.7. Targeting the Immune Microenvironment
4.5. Convection-Enhanced Delivery (CED)
4.6. Immunotherapy and Corticosteroids
4.7. Focus on H3.3-G34 Mutants
4.8. Combination with Temozolomide
4.9. Limitations and Future Perspectives
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ostrom, Q.T.; Price, M.; Neff, C.; Cioffi, G.; Waite, K.A.; Kruchko, C.; Barnholtz-Sloan, J.S. CBTRUS Statistical Report: Primary Brain and Other Central Nervous System Tumors Diagnosed in the United States in 2016–2020. Neuro-Oncology 2023, 25, iv1–iv99. [Google Scholar] [CrossRef]
- Sturm, D.; Pfister, S.M.; Jones, D.T.W. Pediatric Gliomas: Current Concepts on Diagnosis, Biology, and Clinical Management. J. Clin. Oncol. 2017, 35, 2370–2377. [Google Scholar] [CrossRef]
- Ostrom, Q.T.; Cioffi, G.; Waite, K.; Kruchko, C.; Barnholtz-Sloan, J.S. CBTRUS Statistical Report: Primary Brain and Other Central Nervous System Tumors Diagnosed in the United States in 2014–2018. Neuro-Oncology 2021, 23, iii1–iii105. [Google Scholar] [CrossRef]
- Hellendall, R.P.; Schambra, U.B.; Liu, J.P.; Lauder, J.M. Prenatal Expression of 5-HT1C and 5-HT2 Receptors in the Rat Central Nervous System. Exp. Neurol. 1993, 120, 186–201. [Google Scholar] [CrossRef] [PubMed]
- Thorbinson, C.; Kilday, J.-P. Childhood Malignant Brain Tumors: Balancing the Bench and Bedside. Cancers 2021, 13, 6099. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez Castro, L.N.; Liu, I.; Filbin, M. Characterizing the Biology of Primary Brain Tumors and Their Microenvironment via Single-Cell Profiling Methods. Neuro-Oncology 2023, 25, 234–247. [Google Scholar] [CrossRef]
- Wang, L.; Shao, L.; Li, H.; Yao, K.; Duan, Z.; Zhi, C.; Song, S.; Cheng, Y.; Wang, F.; Wang, W.; et al. Histone H3.3 G34-Mutant Diffuse Gliomas in Adults. Am. J. Surg. Pathol. 2022, 46, 249–257. [Google Scholar] [CrossRef] [PubMed]
- Korshunov, A.; Capper, D.; Reuss, D.; Schrimpf, D.; Ryzhova, M.; Hovestadt, V.; Sturm, D.; Meyer, J.; Jones, C.; Zheludkova, O.; et al. Histologically Distinct Neuroepithelial Tumors with Histone 3 G34 Mutation Are Molecularly Similar and Comprise a Single Nosologic Entity. Acta Neuropathol. 2016, 131, 137–146. [Google Scholar] [CrossRef]
- Chen, C.C.L.; Deshmukh, S.; Jessa, S.; Hadjadj, D.; Lisi, V.; Andrade, A.F.; Faury, D.; Jawhar, W.; Dali, R.; Suzuki, H.; et al. Histone H3.3G34-Mutant Interneuron Progenitors Co-Opt PDGFRA for Gliomagenesis. Cell 2020, 183, 1617–1633.e22. [Google Scholar] [CrossRef]
- Andrade, A.F.; Chen, C.C.L.; Jabado, N. Oncohistones in Brain Tumors: The Soil and Seed. Trends Cancer 2023, 9, 444–455. [Google Scholar] [CrossRef]
- Mackay, A.; Burford, A.; Carvalho, D.; Izquierdo, E.; Fazal-Salom, J.; Taylor, K.R.; Bjerke, L.; Clarke, M.; Vinci, M.; Nandhabalan, M.; et al. Integrated Molecular Meta-Analysis of 1,000 Pediatric High-Grade and Diffuse Intrinsic Pontine Glioma. Cancer Cell 2017, 32, 520–537.e5. [Google Scholar] [CrossRef] [PubMed]
- Louis, D.N.; Perry, A.; Wesseling, P.; Brat, D.J.; Cree, I.A.; Figarella-Branger, D.; Hawkins, C.; Ng, H.K.; Pfister, S.M.; Reifenberger, G.; et al. The 2021 WHO Classification of Tumors of the Central Nervous System: A Summary. Neuro-Oncology 2021, 23, 1231–1251. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Mattar, P.; Dixit, R.; Lawn, S.O.; Wilkinson, G.; Kinch, C.; Eisenstat, D.; Kurrasch, D.M.; Chan, J.A.; Schuurmans, C. RAS/ERK Signaling Controls Proneural Genetic Programs in Cortical Development and Gliomagenesis. J. Neurosci. 2014, 34, 2169–2190. [Google Scholar] [CrossRef] [PubMed]
- Bressan, R.B.; Southgate, B.; Ferguson, K.M.; Blin, C.; Grant, V.; Alfazema, N.; Wills, J.C.; Marques-Torrejon, M.A.; Morrison, G.M.; Ashmore, J.; et al. Regional Identity of Human Neural Stem Cells Determines Oncogenic Responses to Histone H3.3 Mutants. Cell Stem Cell 2021, 28, 877–893.e9. [Google Scholar] [CrossRef] [PubMed]
- Jain, S.U.; Khazaei, S.; Marchione, D.M.; Lundgren, S.M.; Wang, X.; Weinberg, D.N.; Deshmukh, S.; Juretic, N.; Lu, C.; Allis, C.D.; et al. Histone H3.3 G34 Mutations Promote Aberrant PRC2 Activity and Drive Tumor Progression. Proc. Natl. Acad. Sci. USA 2020, 117, 27354–27364. [Google Scholar] [CrossRef] [PubMed]
- Bjerke, L.; Mackay, A.; Nandhabalan, M.; Burford, A.; Jury, A.; Popov, S.; Bax, D.A.; Carvalho, D.; Taylor, K.R.; Vinci, M.; et al. Histone H3.3. Mutations Drive Pediatric Glioblastoma through Upregulation of MYCN. Cancer Discov. 2013, 3, 512–519. [Google Scholar] [CrossRef] [PubMed]
- Huchedé, P.; Leblond, P.; Castets, M. The Intricate Epigenetic and Transcriptional Alterations in Pediatric High-Grade Gliomas: Targeting the Crosstalk as the Oncogenic Achilles’ Heel. Biomedicines 2022, 10, 1311. [Google Scholar] [CrossRef] [PubMed]
- Funato, K.; Smith, R.C.; Saito, Y.; Tabar, V. Dissecting the Impact of Regional Identity and the Oncogenic Role of Human-Specific NOTCH2NL in an hESC Model of H3.3G34R-Mutant Glioma. Cell Stem Cell 2021, 28, 894–905.e7. [Google Scholar] [CrossRef] [PubMed]
- Campos, E.I.; Reinberg, D. Histones: Annotating Chromatin. Annu. Rev. Genet. 2009, 43, 559–599. [Google Scholar] [CrossRef]
- Mohammad, F.; Weissmann, S.; Leblanc, B.; Pandey, D.P.; Højfeldt, J.W.; Comet, I.; Zheng, C.; Johansen, J.V.; Rapin, N.; Porse, B.T.; et al. EZH2 Is a Potential Therapeutic Target for H3K27M-Mutant Pediatric Gliomas. Nat. Med. 2017, 23, 483–492. [Google Scholar] [CrossRef]
- Garcia-Fabiani, M.B.; Haase, S.; Banerjee, K.; McClellan, B.; Zhu, Z.; Mujeeb, A.; Li, Y.; Yu, J.; Kadiyala, P.; Taher, A.; et al. H3.3-G34R Mutation-Mediated Epigenetic Reprogramming Leads to Enhanced Efficacy of Immune Stimulatory Gene Therapy in Pediatric High-Grade Gliomas. bioRxiv 2023. [Google Scholar] [CrossRef]
- Deshmukh, S.; Ptack, A.; Krug, B.; Jabado, N. Oncohistones: A Roadmap to Stalled Development. FEBS J. 2022, 289, 1315–1328. [Google Scholar] [CrossRef] [PubMed]
- Grassl, N.; Poschke, I.; Lindner, K.; Bunse, L.; Mildenberger, I.; Boschert, T.; Jähne, K.; Green, E.W.; Hülsmeyer, I.; Jünger, S.; et al. A H3K27M-Targeted Vaccine in Adults with Diffuse Midline Glioma. Nat. Med. 2023, 29, 2586–2592. [Google Scholar] [CrossRef] [PubMed]
- Iadecola, C. The Neurovascular Unit Coming of Age: A Journey through Neurovascular Coupling in Health and Disease. Neuron 2017, 96, 17–42. [Google Scholar] [CrossRef] [PubMed]
- Sweeney, M.D.; Zhao, Z.; Montagne, A.; Nelson, A.R.; Zlokovic, B.V. Blood-Brain Barrier: From Physiology to Disease and Back. Physiol. Rev. 2019, 99, 21–78. [Google Scholar] [CrossRef] [PubMed]
- Wolburg, H.; Noell, S.; Mack, A.; Wolburg-Buchholz, K.; Fallier-Becker, P. Brain Endothelial Cells and the Glio-Vascular Complex. Cell Tissue Res. 2009, 335, 75–96. [Google Scholar] [CrossRef]
- Abbott, N.J.; Patabendige, A.A.K.; Dolman, D.E.M.; Yusof, S.R.; Begley, D.J. Structure and Function of the Blood-Brain Barrier. Neurobiol. Dis. 2010, 37, 13–25. [Google Scholar] [CrossRef]
- Rasmussen, M.K.; Mestre, H.; Nedergaard, M. Fluid Transport in the Brain. Physiol. Rev. 2022, 102, 1025–1151. [Google Scholar] [CrossRef]
- Wu, D.; Chen, Q.; Chen, X.; Han, F.; Chen, Z.; Wang, Y. The Blood-Brain Barrier: Structure, Regulation, and Drug Delivery. Signal Transduct. Target Ther. 2023, 8, 217. [Google Scholar] [CrossRef]
- Begley, D.J. The Blood-Brain Barrier: Principles for Targeting Peptides and Drugs to the Central Nervous System. J. Pharm. Pharmacol. 1996, 48, 136–146. [Google Scholar] [CrossRef]
- Kadry, H.; Noorani, B.; Cucullo, L. A Blood-Brain Barrier Overview on Structure, Function, Impairment, and Biomarkers of Integrity. Fluids Barriers CNS 2020, 17, 69. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Tu, M.; Kelly, R.S.; Chen, C.; Smith, B.J. Development of a Computational Approach to Predict Blood-Brain Barrier Permeability. Drug Metab. Dispos. 2004, 32, 132–139. [Google Scholar] [CrossRef] [PubMed]
- Marrink, S.J.; Jähnig, F.; Berendsen, H.J. Proton Transport across Transient Single-File Water Pores in a Lipid Membrane Studied by Molecular Dynamics Simulations. Biophys. J. 1996, 71, 632–647. [Google Scholar] [CrossRef] [PubMed]
- Träuble, H. The Movement of Molecules across Lipid Membranes: A Molecular Theory. J. Membr. Biol. 1971, 4, 193–208. [Google Scholar] [CrossRef] [PubMed]
- Fischer, H.; Gottschlich, R.; Seelig, A. Blood-Brain Barrier Permeation: Molecular Parameters Governing Passive Diffusion. J. Membr. Biol. 1998, 165, 201–211. [Google Scholar] [CrossRef] [PubMed]
- Pardridge, W.M.; Mietus, L.J. Transport of Steroid Hormones through the Rat Blood-Brain Barrier. J. Clin. Investig. 1979, 64, 145–154. [Google Scholar] [CrossRef] [PubMed]
- Miller, D.S. Regulation of ABC Transporters Blood-Brain Barrier: The Good, the Bad, and the Ugly. Adv. Cancer Res. 2015, 125, 43–70. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, A. Intracranial Trigeminal Schwannoma. Neuroradiol. J. 2015, 28, 35–41. [Google Scholar] [CrossRef] [PubMed]
- Cirrito, J.R. P-Glycoprotein Deficiency at the Blood-Brain Barrier Increases Amyloid- Deposition in an Alzheimer Disease Mouse Model. J. Clin. Investig. 2005, 115, 3285–3290. [Google Scholar] [CrossRef]
- Roberts, L.M.; Black, D.S.; Raman, C.; Woodford, K.; Zhou, M.; Haggerty, J.E.; Yan, A.T.; Cwirla, S.E.; Grindstaff, K.K. Subcellular Localization of Transporters along the Rat Blood–Brain Barrier and Blood–Cerebral-Spinal Fluid Barrier by in Vivo Biotinylation. Neuroscience 2008, 155, 423–438. [Google Scholar] [CrossRef]
- Lin, F.; De Gooijer, M.C.; Hanekamp, D.; Brandsma, D.; Beijnen, J.H.; Van Tellingen, O. Targeting Core (Mutated) Pathways of High-Grade Gliomas: Challenges of Intrinsic Resistance and Drug Efflux. CNS Oncol. 2013, 2, 271–288. [Google Scholar] [CrossRef] [PubMed]
- Lin, L.; Yee, S.W.; Kim, R.B.; Giacomini, K.M. SLC Transporters as Therapeutic Targets: Emerging Opportunities. Nat. Rev. Drug Discov. 2015, 14, 543–560. [Google Scholar] [CrossRef] [PubMed]
- Zlokovic, B.V.; Begley, D.J.; Chain-Eliash, D.G. Blood-Brain Barrier Permeability to Leucine-Enkephalin, D-Alanine2-D-Leucine5-Enkephalin and Their N-Terminal Amino Acid (Tyrosine). Brain Res. 1985, 336, 125–132. [Google Scholar] [CrossRef] [PubMed]
- Zlokovic, B.V. The Blood-Brain Barrier in Health and Chronic Neurodegenerative Disorders. Neuron 2008, 57, 178–201. [Google Scholar] [CrossRef] [PubMed]
- Pardridge, W.M. Delivery of Biologics across the Blood–Brain Barrier with Molecular Trojan Horse Technology. BioDrugs 2017, 31, 503–519. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, N.; Lewis, L.D.; Hirschler, L.; Rivera, L.R.; Naganawa, S.; Levendovszky, S.R.; Ringstad, G.; Klarica, M.; Wardlaw, J.; Iadecola, C.; et al. Current Understanding of the Anatomy, Physiology, and Magnetic Resonance Imaging of Neurofluids: Update from the 2022 “ ISMRM Imaging Neurofluids Study Group” Workshop in Rome. Magn. Reson. Imaging 2024, 59, 431–449. [Google Scholar] [CrossRef] [PubMed]
- Wilson, M.H. Monro-Kellie 2.0: The Dynamic Vascular and Venous Pathophysiological Components of Intracranial Pressure. J. Cereb. Blood Flow Metab. 2016, 36, 1338–1350. [Google Scholar] [CrossRef] [PubMed]
- Jin, P.; Munson, J.M. Fluids and Flows in Brain Cancer and Neurological Disorders. WIREs Mech. Dis. 2023, 15, e1582. [Google Scholar] [CrossRef] [PubMed]
- Hladky, S.B.; Barrand, M.A. The Glymphatic Hypothesis: The Theory and the Evidence. Fluids Barriers CNS 2022, 19, 9. [Google Scholar] [CrossRef] [PubMed]
- Toh, C.H.; Siow, T.Y. Factors Associated with Dysfunction of Glymphatic System in Patients with Glioma. Front. Oncol. 2021, 11, 744318. [Google Scholar] [CrossRef]
- Kaur, J.; Ding, G.; Zhang, L.; Lu, Y.; Luo, H.; Li, L.; Boyd, E.; Li, Q.; Wei, M.; Zhang, Z.; et al. Imaging Glymphatic Response to Glioblastoma. Cancer Imaging 2023, 23, 107. [Google Scholar] [CrossRef] [PubMed]
- Portela, M.; Venkataramani, V.; Fahey-Lozano, N.; Seco, E.; Losada-Perez, M.; Winkler, F.; Casas-Tintó, S. Glioblastoma Cells Vampirize WNT from Neurons and Trigger a JNK/MMP Signaling Loop That Enhances Glioblastoma Progression and Neurodegeneration. PLoS Biol. 2019, 17, e3000545. [Google Scholar] [CrossRef] [PubMed]
- Mogensen, F.L.-H.; Delle, C.; Nedergaard, M. The Glymphatic System (En)during Inflammation. Int. J. Mol. Sci. 2021, 22, 7491. [Google Scholar] [CrossRef] [PubMed]
- Licastro, E.; Pignataro, G.; Iliff, J.J.; Xiang, Y.; Lo, E.H.; Hayakawa, K.; Esposito, E. Glymphatic and Lymphatic Communication with Systemic Responses during Physiological and Pathological Conditions in the Central Nervous System. Commun. Biol. 2024, 7, 229. [Google Scholar] [CrossRef] [PubMed]
- Song, E.; Mao, T.; Dong, H.; Boisserand, L.S.B.; Antila, S.; Bosenberg, M.; Alitalo, K.; Thomas, J.-L.; Iwasaki, A. VEGF-C-Driven Lymphatic Drainage Enables Immunosurveillance of Brain Tumours. Nature 2020, 577, 689–694. [Google Scholar] [CrossRef] [PubMed]
- Daneman, R.; Prat, A. The Blood-Brain Barrier. Cold Spring Harb. Perspect. Biol. 2015, 7, a020412. [Google Scholar] [CrossRef] [PubMed]
- Pollack, I.F.; Agnihotri, S.; Broniscer, A. Childhood Brain Tumors: Current Management, Biological Insights, and Future Directions. J. Neurosurg. Pediatr. 2019, 23, 261–273. [Google Scholar] [CrossRef]
- Steeg, P.S. The Blood-Tumour Barrier in Cancer Biology and Therapy. Nat. Rev. Clin. Oncol. 2021, 18, 696–714. [Google Scholar] [CrossRef] [PubMed]
- Arvanitis, C.D.; Ferraro, G.B.; Jain, R.K. The Blood-Brain Barrier and Blood-Tumour Barrier in Brain Tumours and Metastases. Nat. Rev. Cancer 2020, 20, 26–41. [Google Scholar] [CrossRef]
- Long, D.M. Capillary Ultrastructure and the Blood-Brain Barrier in Human Malignant Brain Tumors. J. Neurosurg. 1970, 32, 127–144. [Google Scholar] [CrossRef]
- de Vries, H.E.; Blom-Roosemalen, M.C.; van Oosten, M.; de Boer, A.G.; van Berkel, T.J.; Breimer, D.D.; Kuiper, J. The Influence of Cytokines on the Integrity of the Blood-Brain Barrier in Vitro. J. Neuroimmunol. 1996, 64, 37–43. [Google Scholar] [CrossRef] [PubMed]
- Liebner, S.; Fischmann, A.; Rascher, G.; Duffner, F.; Grote, E.-H.; Kalbacher, H.; Wolburg, H. Claudin-1 and Claudin-5 Expression and Tight Junction Morphology Are Altered in Blood Vessels of Human Glioblastoma Multiforme. Acta Neuropathol. 2000, 100, 323–331. [Google Scholar] [CrossRef] [PubMed]
- Papadopoulos, M.C.; Saadoun, S.; Woodrow, C.J.; Davies, D.C.; Costa-Martins, P.; Moss, R.F.; Krishna, S.; Bell, B.A. Occludin Expression in Microvessels of Neoplastic and Non-neoplastic Human Brain. Neuropathol. Appl. Neurobiol. 2001, 27, 384–395. [Google Scholar] [CrossRef] [PubMed]
- Saadoun, S. Aquaporin-4 Expression Is Increased in Oedematous Human Brain Tumours. J. Neurol. Neurosurg. Psychiatry 2002, 72, 262–265. [Google Scholar] [CrossRef] [PubMed]
- Morris, E.K.; Daignault-Mill, S.; Stehbens, S.J.; Genovesi, L.A.; Lagendijk, A.K. Addressing Blood-Brain-Tumor-Barrier Heterogeneity in Pediatric Brain Tumors with Innovative Preclinical Models. Front. Oncol. 2023, 13, 1101522. [Google Scholar] [CrossRef] [PubMed]
- Cha, S. Neuroimaging in Neuro-Oncology. Neurotherapeutics 2009, 6, 465–477. [Google Scholar] [CrossRef] [PubMed]
- Schmitt, G.; Parrott, N.; Prinssen, E.; Barrow, P. The Great Barrier Belief: The Blood–Brain Barrier and Considerations for Juvenile Toxicity Studies. Reprod. Toxicol. 2017, 72, 129–135. [Google Scholar] [CrossRef]
- Bauer, H.-C.; Krizbai, I.A.; Bauer, H.; Traweger, A. “You Shall Not Pass”-Tight Junctions of the Blood Brain Barrier. Front. Neurosci. 2014, 8, 392. [Google Scholar] [CrossRef]
- Goasdoué, K.; Miller, S.M.; Colditz, P.B.; Björkman, S.T. Review: The Blood-Brain Barrier; Protecting the Developing Fetal Brain. Placenta 2017, 54, 111–116. [Google Scholar] [CrossRef]
- Bjornsson, C.S.; Apostolopoulou, M.; Tian, Y.; Temple, S. It Takes a Village: Constructing the Neurogenic Niche. Dev. Cell 2015, 32, 435–446. [Google Scholar] [CrossRef]
- Braun, L.D.; Cornford, E.M.; Oldendorf, W.H. Newborn Rabbit Blood-Brain Barrier Is Selectively Permeable and Differs Substantially from the Adult. J. Neurochem. 1980, 34, 147–152. [Google Scholar] [CrossRef]
- Salloum, R.; McConechy, M.K.; Mikael, L.G.; Fuller, C.; Drissi, R.; DeWire, M.; Nikbakht, H.; De Jay, N.; Yang, X.; Boue, D.; et al. Characterizing Temporal Genomic Heterogeneity in Pediatric High-Grade Gliomas. Acta Neuropathol. Commun. 2017, 5, 78. [Google Scholar] [CrossRef]
- He, C.; Xu, K.; Zhu, X.; Dunphy, P.S.; Gudenas, B.; Lin, W.; Twarog, N.; Hover, L.D.; Kwon, C.-H.; Kasper, L.H.; et al. Patient-Derived Models Recapitulate Heterogeneity of Molecular Signatures and Drug Response in Pediatric High-Grade Glioma. Nat. Commun. 2021, 12, 4089. [Google Scholar] [CrossRef] [PubMed]
- Hoffman, M.; Gillmor, A.H.; Kunz, D.J.; Johnston, M.J.; Nikolic, A.; Narta, K.; Zarrei, M.; King, J.; Ellestad, K.; Dang, N.H.; et al. Intratumoral Genetic and Functional Heterogeneity in Pediatric Glioblastoma. Cancer Res. 2019, 79, 2111–2123. [Google Scholar] [CrossRef]
- Genovesi, L.A.; Puttick, S.; Millar, A.; Kojic, M.; Ji, P.; Lagendijk, A.K.; Brighi, C.; Bonder, C.S.; Adolphe, C.; Wainwright, B.J. Patient-Derived Orthotopic Xenograft Models of Medulloblastoma Lack a Functional Blood-Brain Barrier. Neuro-Oncology 2021, 23, 732–742. [Google Scholar] [CrossRef]
- Hong, C.S.; Ho, W.; Piazza, M.G.; Ray-Chaudhury, A.; Zhuang, Z.; Heiss, J.D. Characterization of the Blood Brain Barrier in Pediatric Central Nervous System Neoplasms. J. Interdiscip. Histopathol. 2016, 4, 29–33. [Google Scholar] [CrossRef]
- Northcott, P.A.; Robinson, G.W.; Kratz, C.P.; Mabbott, D.J.; Pomeroy, S.L.; Clifford, S.C.; Rutkowski, S.; Ellison, D.W.; Malkin, D.; Taylor, M.D.; et al. Medulloblastoma. Nat. Rev. Dis. Prim. 2019, 5, 11. [Google Scholar] [CrossRef] [PubMed]
- Łastowska, M.; Jurkiewicz, E.; Trubicka, J.; Daszkiewicz, P.; Drogosiewicz, M.; Malczyk, K.; Grajkowska, W.; Matyja, E.; Cukrowska, B.; Pronicki, M.; et al. Contrast Enhancement Pattern Predicts Poor Survival for Patients with Non-WNT/SHH Medulloblastoma Tumours. J. Neurooncol. 2015, 123, 65–73. [Google Scholar] [CrossRef]
- Yeom, K.W.; Mobley, B.C.; Lober, R.M.; Andre, J.B.; Partap, S.; Vogel, H.; Barnes, P.D. Distinctive MRI Features of Pediatric Medulloblastoma Subtypes. AJR Am. J. Roentgenol. 2013, 200, 895–903. [Google Scholar] [CrossRef] [PubMed]
- Perreault, S.; Ramaswamy, V.; Achrol, A.S.; Chao, K.; Liu, T.T.; Shih, D.; Remke, M.; Schubert, S.; Bouffet, E.; Fisher, P.G.; et al. MRI Surrogates for Molecular Subgroups of Medulloblastoma. AJNR Am. J. Neuroradiol. 2014, 35, 1263–1269. [Google Scholar] [CrossRef]
- Warren, K.E. Diffuse Intrinsic Pontine Glioma: Poised for Progress. Front. Oncol. 2012, 2, 205. [Google Scholar] [CrossRef] [PubMed]
- Hennika, T.; Becher, O.J. Diffuse Intrinsic Pontine Glioma: Time for Cautious Optimism. J. Child. Neurol. 2016, 31, 1377–1385. [Google Scholar] [CrossRef] [PubMed]
- Jones, C.; Karajannis, M.A.; Jones, D.T.W.; Kieran, M.W.; Monje, M.; Baker, S.J.; Becher, O.J.; Cho, Y.-J.; Gupta, N.; Hawkins, C.; et al. Pediatric High-Grade Glioma: Biologically and Clinically in Need of New Thinking. Neuro-Oncology 2017, 19, 153–161. [Google Scholar] [CrossRef] [PubMed]
- Hoffman, L.M.; Veldhuijzen van Zanten, S.E.M.; Colditz, N.; Baugh, J.; Chaney, B.; Hoffmann, M.; Lane, A.; Fuller, C.; Miles, L.; Hawkins, C.; et al. Clinical, Radiologic, Pathologic, and Molecular Characteristics of Long-Term Survivors of Diffuse Intrinsic Pontine Glioma (DIPG): A Collaborative Report from the International and European Society for Pediatric Oncology DIPG Registries. J. Clin. Oncol. 2018, 36, 1963–1972. [Google Scholar] [CrossRef] [PubMed]
- Warren, K.E. Beyond the Blood:Brain Barrier: The Importance of Central Nervous System (CNS) Pharmacokinetics for the Treatment of CNS Tumors, Including Diffuse Intrinsic Pontine Glioma. Front. Oncol. 2018, 8, 239. [Google Scholar] [CrossRef] [PubMed]
- Brighi, C.; Reid, L.; White, A.L.; Genovesi, L.A.; Kojic, M.; Millar, A.; Bruce, Z.; Day, B.W.; Rose, S.; Whittaker, A.K.; et al. MR-Guided Focused Ultrasound Increases Antibody Delivery to Nonenhancing High-Grade Glioma. Neurooncol. Adv. 2020, 2, vdaa030. [Google Scholar] [CrossRef] [PubMed]
- Anastasiadis, P.; Gandhi, D.; Guo, Y.; Ahmed, A.-K.; Bentzen, S.M.; Arvanitis, C.; Woodworth, G.F. Localized Blood-Brain Barrier Opening in Infiltrating Gliomas with MRI-Guided Acoustic Emissions-Controlled Focused Ultrasound. Proc. Natl. Acad. Sci. USA 2021, 118, e2103280118. [Google Scholar] [CrossRef] [PubMed]
- Haase, S.; Nuñez, F.M.; Gauss, J.C.; Thompson, S.; Brumley, E.; Lowenstein, P.; Castro, M.G. Hemispherical Pediatric High-Grade Glioma: Molecular Basis and Therapeutic Opportunities. Int. J. Mol. Sci. 2020, 21, 9654. [Google Scholar] [CrossRef] [PubMed]
- Shamay, Y.; Elkabets, M.; Li, H.; Shah, J.; Brook, S.; Wang, F.; Adler, K.; Baut, E.; Scaltriti, M.; Jena, P.V.; et al. P-Selectin Is a Nanotherapeutic Delivery Target in the Tumor Microenvironment. Sci. Transl. Med. 2016, 8, 345ra87. [Google Scholar] [CrossRef]
- Mizrachi, A.; Shamay, Y.; Shah, J.; Brook, S.; Soong, J.; Rajasekhar, V.K.; Humm, J.L.; Healey, J.H.; Powell, S.N.; Baselga, J.; et al. Tumour-Specific PI3K Inhibition via Nanoparticle-Targeted Delivery in Head and Neck Squamous Cell Carcinoma. Nat. Commun. 2017, 8, 14292. [Google Scholar] [CrossRef]
- Tylawsky, D.E.; Kiguchi, H.; Vaynshteyn, J.; Gerwin, J.; Shah, J.; Islam, T.; Boyer, J.A.; Boué, D.R.; Snuderl, M.; Greenblatt, M.B.; et al. P-Selectin-Targeted Nanocarriers Induce Active Crossing of the Blood-Brain Barrier via Caveolin-1-Dependent Transcytosis. Nat. Mater. 2023, 22, 391–399. [Google Scholar] [CrossRef] [PubMed]
- Martinez, P.; Nault, G.; Steiner, J.; Wempe, M.F.; Pierce, A.; Brunt, B.; Slade, M.; Song, J.J.; Mongin, A.; Song, K.-H.; et al. MRI-Guided Focused Ultrasound Blood–Brain Barrier Opening Increases Drug Delivery and Efficacy in a Diffuse Midline Glioma Mouse Model. Neuro-Oncol. Adv. 2023, 5, vdad111. [Google Scholar] [CrossRef] [PubMed]
- Rallis, K.S.; George, A.M.; Wozniak, A.M.; Bigogno, C.M.; Chow, B.; Hanrahan, J.G.; Sideris, M. Molecular Genetics and Targeted Therapies for Paediatric High-Grade Glioma. Cancer Genom. Proteom. 2022, 19, 390–414. [Google Scholar] [CrossRef] [PubMed]
- Fangusaro, J. Pediatric High Grade Glioma: A Review and Update on Tumor Clinical Characteristics and Biology. Front. Oncol. 2012, 2, 105. [Google Scholar] [CrossRef] [PubMed]
- Broniscer, A.; Gajjar, A. Supratentorial High-Grade Astrocytoma and Diffuse Brainstem Glioma: Two Challenges for the Pediatric Oncologist. Oncologist 2004, 9, 197–206. [Google Scholar] [CrossRef] [PubMed]
- Study Details|REGN2810 in Pediatric Patients with Relapsed, Refractory Solid, or Central Nervous System (CNS) Tumors and Safety and Efficacy of REGN2810 in Combination with Radiotherapy in Pediatric Patients with Newly Diagnosed or Recurrent Glioma|ClinicalTrials.Gov. Available online: https://clinicaltrials.gov/study/NCT03690869 (accessed on 3 August 2024).
- Demaria, S.; Formenti, S.C. Radiation as an Immunological Adjuvant: Current Evidence on Dose and Fractionation. Front. Oncol. 2012, 2, 153. [Google Scholar] [CrossRef] [PubMed]
- Crotty, E.; Downey, K.; Ferrerosa, L.; Flores, C.; Hegde, B.; Raskin, S.; Hwang, E.; Vitanza, N.; Okada, H. Considerations When Treating High-Grade Pediatric Glioma Patients with Immunotherapy. Expert Rev. Neurother. 2021, 21, 205–219. [Google Scholar] [CrossRef]
- Golden, E.B.; Frances, D.; Pellicciotta, I.; Demaria, S.; Helen Barcellos-Hoff, M.; Formenti, S.C. Radiation Fosters Dose-Dependent and Chemotherapy-Induced Immunogenic Cell Death. Oncoimmunology 2014, 3, e28518. [Google Scholar] [CrossRef] [PubMed]
- Hashizume, R.; Smirnov, I.; Liu, S.; Phillips, J.J.; Hyer, J.; McKnight, T.R.; Wendland, M.; Prados, M.; Banerjee, A.; Nicolaides, T.; et al. Characterization of a Diffuse Intrinsic Pontine Glioma Cell Line: Implications for Future Investigations and Treatment. J. Neurooncol. 2012, 110, 305–313. [Google Scholar] [CrossRef]
- Welby, J.P.; Kaptzan, T.; Wohl, A.; Peterson, T.E.; Raghunathan, A.; Brown, D.A.; Gupta, S.K.; Zhang, L.; Daniels, D.J. Current Murine Models and New Developments in H3K27M Diffuse Midline Gliomas. Front. Oncol. 2019, 9, 92. [Google Scholar] [CrossRef]
- Seligman, A.M.; Shear, M.J.; Alexander, L. Studies in Carcinogenesis: VIII. Experimental Production of Brain Tumors in Mice with Methylcholanthrene. Am. J. Cancer 1939, 37, 364–395. [Google Scholar]
- Sakamoto, K.; Hoshino, H.; Kiuchi, Y.; Nakano, G.; Nagamachi, Y. Potential Usefulness of a Cultured Glioma Cell Line Induced by Rous Sarcoma Virus in B10.A Mouse as an Immunotherapy Model. Jpn. J. Exp. Med. 1989, 59, 173–180. [Google Scholar]
- Miyai, M.; Tomita, H.; Soeda, A.; Yano, H.; Iwama, T.; Hara, A. Current Trends in Mouse Models of Glioblastoma. J. Neurooncol. 2017, 135, 423–432. [Google Scholar] [CrossRef] [PubMed]
- Lieberman, N.A.P.; DeGolier, K.; Kovar, H.M.; Davis, A.; Hoglund, V.; Stevens, J.; Winter, C.; Deutsch, G.; Furlan, S.N.; Vitanza, N.A.; et al. Characterization of the Immune Microenvironment of Diffuse Intrinsic Pontine Glioma: Implications for Development of Immunotherapy. Neuro-Oncology 2019, 21, 83–94. [Google Scholar] [CrossRef] [PubMed]
- Slika, H.; Karimov, Z.; Alimonti, P.; Abou-Mrad, T.; De Fazio, E.; Alomari, S.; Tyler, B. Preclinical Models and Technologies in Glioblastoma Research: Evolution, Current State, and Future Avenues. Int. J. Mol. Sci. 2023, 24, 16316. [Google Scholar] [CrossRef] [PubMed]
- Killion, J.J.; Radinsky, R.; Fidler, I.J. Orthotopic Models Are Necessary to Predict Therapy of Transplantable Tumors in Mice. Cancer Metastasis Rev. 1998, 17, 279–284. [Google Scholar] [CrossRef] [PubMed]
- Hashizume, R.; Gupta, N. Patient-Derived Tumor Models for Diffuse Intrinsic Pontine Gliomas. Curr. Neuropharmacol. 2017, 15, 98–103. [Google Scholar] [CrossRef]
- Hoffmann, N.; Fernández, V.; Pereira, R.C.; Rancati, S.; Pelizzoli, R.; De Pietri Tonelli, D. A Xenotransplant Model of Human Brain Tumors in Wild-Type Mice. iScience 2020, 23, 100813. [Google Scholar] [CrossRef]
- Yadavilli, S.; Scafidi, J.; Becher, O.J.; Saratsis, A.M.; Hiner, R.L.; Kambhampati, M.; Mariarita, S.; MacDonald, T.J.; Codispoti, K.-E.; Magge, S.N.; et al. The Emerging Role of NG2 in Pediatric Diffuse Intrinsic Pontine Glioma. Oncotarget 2015, 6, 12141–12155. [Google Scholar] [CrossRef]
- Barton, K.L.; Misuraca, K.; Cordero, F.; Dobrikova, E.; Min, H.D.; Gromeier, M.; Kirsch, D.G.; Becher, O.J. PD-0332991, a CDK4/6 Inhibitor, Significantly Prolongs Survival in a Genetically Engineered Mouse Model of Brainstem Glioma. PLoS ONE 2013, 8, e77639. [Google Scholar] [CrossRef]
- Funato, K.; Major, T.; Lewis, P.W.; Allis, C.D.; Tabar, V. Use of Human Embryonic Stem Cells to Model Pediatric Gliomas with H3.3K27M Histone Mutation. Science 2014, 346, 1529–1533. [Google Scholar] [CrossRef]
- Pathania, M.; De Jay, N.; Maestro, N.; Harutyunyan, A.S.; Nitarska, J.; Pahlavan, P.; Henderson, S.; Mikael, L.G.; Richard-Londt, A.; Zhang, Y.; et al. H3.3K27M Cooperates with Trp53 Loss and PDGFRA Gain in Mouse Embryonic Neural Progenitor Cells to Induce Invasive High-Grade Gliomas. Cancer Cell 2017, 32, 684–700.e9. [Google Scholar] [CrossRef]
- McNicholas, M.; De Cola, A.; Bashardanesh, Z.; Foss, A.; Lloyd, C.B.; Hébert, S.; Faury, D.; Andrade, A.F.; Jabado, N.; Kleinman, C.L.; et al. A Compendium of Syngeneic, Transplantable Pediatric High-Grade Glioma Models Reveals Subtype-Specific Therapeutic Vulnerabilities. Cancer Discov. 2023, 13, 1592–1615. [Google Scholar] [CrossRef]
- Chen, F.; LoTurco, J. A Method for Stable Transgenesis of Radial Glia Lineage in Rat Neocortex by piggyBac Mediated Transposition. J. Neurosci. Methods 2012, 207, 172–180. [Google Scholar] [CrossRef] [PubMed]
- Lo, C.-A.; Kays, I.; Emran, F.; Lin, T.-J.; Cvetkovska, V.; Chen, B.E. Quantification of Protein Levels in Single Living Cells. Cell Rep. 2019, 26, 3172. [Google Scholar] [CrossRef]
- Kim, G.B.; Rincon Fernandez Pacheco, D.; Saxon, D.; Yang, A.; Sabet, S.; Dutra-Clarke, M.; Levy, R.; Watkins, A.; Park, H.; Abbasi Akhtar, A.; et al. Rapid Generation of Somatic Mouse Mosaics with Locus-Specific, Stably Integrated Transgenic Elements. Cell 2019, 179, 251–267.e24. [Google Scholar] [CrossRef] [PubMed]
- Sweha, S.R.; Chung, C.; Natarajan, S.K.; Panwalkar, P.; Pun, M.; Ghali, A.; Bayliss, J.; Pratt, D.; Shankar, A.; Ravikumar, V.; et al. Epigenetically Defined Therapeutic Targeting in H3.3G34R/V High-Grade Gliomas. Sci. Transl. Med. 2021, 13, eabf7860. [Google Scholar] [CrossRef]
- Aplenc, R.; Blaney, S.M.; Strauss, L.C.; Balis, F.M.; Shusterman, S.; Ingle, A.M.; Agrawal, S.; Sun, J.; Wright, J.J.; Adamson, P.C. Pediatric Phase I Trial and Pharmacokinetic Study of Dasatinib: A Report from the Children’s Oncology Group Phase I Consortium. J. Clin. Oncol. 2011, 29, 839–844. [Google Scholar] [CrossRef] [PubMed]
- Miklja, Z.; Yadav, V.N.; Cartaxo, R.T.; Siada, R.; Thomas, C.C.; Cummings, J.R.; Mullan, B.; Stallard, S.; Paul, A.; Bruzek, A.K.; et al. Everolimus Improves the Efficacy of Dasatinib in PDGFRα-Driven Glioma. J. Clin. Investig. 2020, 130, 5313–5325. [Google Scholar] [CrossRef]
- Izquierdo, E.; Carvalho, D.M.; Mackay, A.; Temelso, S.; Boult, J.K.R.; Pericoli, G.; Fernandez, E.; Das, M.; Molinari, V.; Grabovska, Y.; et al. DIPG Harbors Alterations Targetable by MEK Inhibitors, with Acquired Resistance Mechanisms Overcome by Combinatorial Inhibition. Cancer Discov. 2022, 12, 712–729. [Google Scholar] [CrossRef]
- Khadka, P.; Reitman, Z.J.; Lu, S.; Buchan, G.; Gionet, G.; Dubois, F.; Carvalho, D.M.; Shih, J.; Zhang, S.; Greenwald, N.F.; et al. PPM1D Mutations Are Oncogenic Drivers of de Novo Diffuse Midline Glioma Formation. Nat. Commun. 2022, 13, 604. [Google Scholar] [CrossRef] [PubMed]
- Fons, N.R.; Sundaram, R.K.; Breuer, G.A.; Peng, S.; McLean, R.L.; Kalathil, A.N.; Schmidt, M.S.; Carvalho, D.M.; Mackay, A.; Jones, C.; et al. PPM1D Mutations Silence NAPRT Gene Expression and Confer NAMPT Inhibitor Sensitivity in Glioma. Nat. Commun. 2019, 10, 3790. [Google Scholar] [CrossRef]
- Anastas, J.N.; Zee, B.M.; Kalin, J.H.; Kim, M.; Guo, R.; Alexandrescu, S.; Blanco, M.A.; Giera, S.; Gillespie, S.M.; Das, J.; et al. Re-Programing Chromatin with a Bifunctional LSD1/HDAC Inhibitor Induces Therapeutic Differentiation in DIPG. Cancer Cell 2019, 36, 528–544.e10. [Google Scholar] [CrossRef]
- Hashizume, R.; Andor, N.; Ihara, Y.; Lerner, R.; Gan, H.; Chen, X.; Fang, D.; Huang, X.; Tom, M.W.; Ngo, V.; et al. Pharmacologic Inhibition of Histone Demethylation as a Therapy for Pediatric Brainstem Glioma. Nat. Med. 2014, 20, 1394–1396. [Google Scholar] [CrossRef] [PubMed]
- Ip, C.K.M.; Ng, P.K.S.; Jeong, K.J.; Shao, S.H.; Ju, Z.; Leonard, P.G.; Hua, X.; Vellano, C.P.; Woessner, R.; Sahni, N.; et al. Neomorphic PDGFRA Extracellular Domain Driver Mutations Are Resistant to PDGFRA Targeted Therapies. Nat. Commun. 2018, 9, 4583. [Google Scholar] [CrossRef]
- Sulkowski, P.L.; Corso, C.D.; Robinson, N.D.; Scanlon, S.E.; Purshouse, K.R.; Bai, H.; Liu, Y.; Sundaram, R.K.; Hegan, D.C.; Fons, N.R.; et al. 2-Hydroxyglutarate Produced by Neomorphic IDH Mutations Suppresses Homologous Recombination and Induces PARP Inhibitor Sensitivity. Sci. Transl. Med. 2017, 9, eaal2463. [Google Scholar] [CrossRef]
- Paugh, B.S.; Qu, C.; Jones, C.; Liu, Z.; Adamowicz-Brice, M.; Zhang, J.; Bax, D.A.; Coyle, B.; Barrow, J.; Hargrave, D.; et al. Integrated Molecular Genetic Profiling of Pediatric High-Grade Gliomas Reveals Key Differences with the Adult Disease. J. Clin. Oncol. 2010, 28, 3061–3068. [Google Scholar] [CrossRef]
- Roux, A.; Pallud, J.; Saffroy, R.; Edjlali-Goujon, M.; Debily, M.-A.; Boddaert, N.; Sanson, M.; Puget, S.; Knafo, S.; Adam, C.; et al. High-Grade Gliomas in Adolescents and Young Adults Highlight Histomolecular Differences from Their Adult and Pediatric Counterparts. Neuro-Oncology 2020, 22, 1190–1202. [Google Scholar] [CrossRef]
- Pollack, I.F.; Hamilton, R.L.; Sobol, R.W.; Nikiforova, M.N.; Lyons-Weiler, M.A.; LaFramboise, W.A.; Burger, P.C.; Brat, D.J.; Rosenblum, M.K.; Holmes, E.J.; et al. IDH1 Mutations Are Common in Malignant Gliomas Arising in Adolescents: A Report from the Children’s Oncology Group. Childs Nerv. Syst. 2011, 27, 87–94. [Google Scholar] [CrossRef]
- Korshunov, A.; Ryzhova, M.; Hovestadt, V.; Bender, S.; Sturm, D.; Capper, D.; Meyer, J.; Schrimpf, D.; Kool, M.; Northcott, P.A.; et al. Integrated Analysis of Pediatric Glioblastoma Reveals a Subset of Biologically Favorable Tumors with Associated Molecular Prognostic Markers. Acta Neuropathol. 2015, 129, 669–678. [Google Scholar] [CrossRef]
- Núñez, F.J.; Mendez, F.M.; Kadiyala, P.; Alghamri, M.S.; Savelieff, M.G.; Garcia-Fabiani, M.B.; Haase, S.; Koschmann, C.; Calinescu, A.-A.; Kamran, N.; et al. IDH1-R132H Acts as a Tumor Suppressor in Glioma via Epigenetic up-Regulation of the DNA Damage Response. Sci. Transl. Med. 2019, 11, eaaq1427. [Google Scholar] [CrossRef]
- Valiakhmetova, A.; Gorelyshev, S.; Konovalov, A.; Trunin, Y.; Savateev, A.; Kram, D.E.; Severson, E.; Hemmerich, A.; Edgerly, C.; Duncan, D.; et al. Treatment of Pediatric Glioblastoma with Combination Olaparib and Temozolomide Demonstrates 2-Year Durable Response. Oncologist 2020, 25, e198–e202. [Google Scholar] [CrossRef] [PubMed]
- Lesueur, P.; Lequesne, J.; Grellard, J.-M.; Dugué, A.; Coquan, E.; Brachet, P.-E.; Geffrelot, J.; Kao, W.; Emery, E.; Berro, D.H.; et al. Phase I/IIa Study of Concomitant Radiotherapy with Olaparib and Temozolomide in Unresectable or Partially Resectable Glioblastoma: OLA-TMZ-RTE-01 Trial Protocol. BMC Cancer 2019, 19, 198. [Google Scholar] [CrossRef]
- Parsons, D.W.; Janeway, K.A.; Patton, D.R.; Winter, C.L.; Coffey, B.; Williams, P.M.; Roy-Chowdhuri, S.; Tsongalis, G.J.; Routbort, M.; Ramirez, N.C.; et al. Actionable Tumor Alterations and Treatment Protocol Enrollment of Pediatric and Young Adult Patients with Refractory Cancers in the National Cancer Institute–Children’s Oncology Group Pediatric MATCH Trial. J. Clin. Oncol. 2022, 40, 2224–2234. [Google Scholar] [CrossRef]
- Glade Bender, J.L.; Pinkney, K.; Williams, P.M.; Roy-Chowdhuri, S.; Patton, D.R.; Coffey, B.D.; Reid, J.M.; Piao, J.; Saguilig, L.; Alonzo, T.A.; et al. Olaparib for Childhood Tumors Harboring Defects in DNA Damage Repair Genes: Arm H of the NCI-COG Pediatric MATCH Trial. Oncologist 2024, 29, 638–e952. [Google Scholar] [CrossRef]
- Kaley, T.; Touat, M.; Subbiah, V.; Hollebecque, A.; Rodon, J.; Lockhart, A.C.; Keedy, V.; Bielle, F.; Hofheinz, R.-D.; Joly, F.; et al. BRAF Inhibition in BRAFV600-Mutant Gliomas: Results from the VE-BASKET Study. J. Clin. Oncol. 2018, 36, 3477–3484. [Google Scholar] [CrossRef]
- Fangusaro, J.; Onar-Thomas, A.; Young Poussaint, T.; Wu, S.; Ligon, A.H.; Lindeman, N.; Banerjee, A.; Packer, R.J.; Kilburn, L.B.; Goldman, S.; et al. Selumetinib in Paediatric Patients with BRAF-Aberrant or Neurofibromatosis Type 1-Associated Recurrent, Refractory, or Progressive Low-Grade Glioma: A Multicentre, Phase 2 Trial. Lancet Oncol. 2019, 20, 1011–1022. [Google Scholar] [CrossRef]
- Perreault, S.; Larouche, V.; Tabori, U.; Hawkin, C.; Lippé, S.; Ellezam, B.; Décarie, J.-C.; Théoret, Y.; Métras, M.-É.; Sultan, S.; et al. A Phase 2 Study of Trametinib for Patients with Pediatric Glioma or Plexiform Neurofibroma with Refractory Tumor and Activation of the MAPK/ERK Pathway: TRAM-01. BMC Cancer 2019, 19, 1250. [Google Scholar] [CrossRef] [PubMed]
- Kondyli, M.; Larouche, V.; Saint-Martin, C.; Ellezam, B.; Pouliot, L.; Sinnett, D.; Legault, G.; Crevier, L.; Weil, A.; Farmer, J.-P.; et al. Trametinib for Progressive Pediatric Low-Grade Gliomas. J. Neurooncol. 2018, 140, 435–444. [Google Scholar] [CrossRef]
- Drobysheva, A.; Klesse, L.J.; Bowers, D.C.; Rajaram, V.; Rakheja, D.; Timmons, C.F.; Wang, J.; Koral, K.; Gargan, L.; Ramos, E.; et al. Targeted MAPK Pathway Inhibitors in Patients with Disseminated Pilocytic Astrocytomas. J. Natl. Compr. Cancer Netw. 2017, 15, 978–982. [Google Scholar] [CrossRef]
- Makhlin, I.; Salinas, R.D.; Zhang, D.; Jacob, F.; Ming, G.-L.; Song, H.; Saxena, D.; Dorsey, J.F.; Nasrallah, M.P.; Morrissette, J.J.; et al. Clinical Activity of the EGFR Tyrosine Kinase Inhibitor Osimertinib in EGFR-Mutant Glioblastoma. CNS Oncol. 2019, 8, CNS43. [Google Scholar] [CrossRef]
- Karmakar, S.; Reilly, K.M. The Role of the Immune System in Neurofibromatosis Type 1-Associated Nervous System Tumors. CNS Oncol. 2017, 6, 45–60. [Google Scholar] [CrossRef]
- Daw, N.C.; Furman, W.L.; Stewart, C.F.; Iacono, L.C.; Krailo, M.; Bernstein, M.L.; Dancey, J.E.; Speights, R.A.; Blaney, S.M.; Croop, J.M.; et al. Phase I and Pharmacokinetic Study of Gefitinib in Children with Refractory Solid Tumors: A Children’s Oncology Group Study. J. Clin. Oncol. 2005, 23, 6172–6180. [Google Scholar] [CrossRef] [PubMed]
- Chakravarti, A.; Wang, M.; Robins, H.I.; Lautenschlaeger, T.; Curran, W.J.; Brachman, D.G.; Schultz, C.J.; Choucair, A.; Dolled-Filhart, M.; Christiansen, J.; et al. RTOG 0211: A Phase 1/2 Study of Radiation Therapy with Concurrent Gefitinib for Newly Diagnosed Glioblastoma Patients. Int. J. Radiat. Oncol. Biol. Phys. 2013, 85, 1206–1211. [Google Scholar] [CrossRef]
- Liu, X.; Chen, X.; Shi, L.; Shan, Q.; Cao, Q.; Yue, C.; Li, H.; Li, S.; Wang, J.; Gao, S.; et al. The Third-Generation EGFR Inhibitor AZD9291 Overcomes Primary Resistance by Continuously Blocking ERK Signaling in Glioblastoma. J. Exp. Clin. Cancer Res. 2019, 38, 219. [Google Scholar] [CrossRef] [PubMed]
- Ocasio, J.K.; Budd, K.M.; Roach, J.T.; Andrews, J.M.; Baker, S.J. Oncohistones and Disrupted Development in Pediatric-Type Diffuse High-Grade Glioma. Cancer Metastasis Rev. 2023, 42, 367–388. [Google Scholar] [CrossRef]
- Williams, M.J.; Singleton, W.G.B.; Lowis, S.P.; Malik, K.; Kurian, K.M. Therapeutic Targeting of Histone Modifications in Adult and Pediatric High-Grade Glioma. Front. Oncol. 2017, 7, 45. [Google Scholar] [CrossRef]
- Wang, Z.; Guo, X.; Gao, L.; Wang, Y.; Guo, Y.; Xing, B.; Ma, W. Classification of Pediatric Gliomas Based on Immunological Profiling: Implications for Immunotherapy Strategies. Mol. Ther. Oncolytics 2021, 20, 34–47. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Mishra, D.; Kumar, S.S.; Mchugh, T.; Lazow, M.; Fouladi, M.; Drissi, R. DIPG-13. Immune Profiling by RNA-Seq Deconvolution and Single-Cell Sequencing Reveal Myeloid Cell Enrichment in DIPG Tumor Microenvironment. Neuro-Oncology 2022, 24, i20. [Google Scholar] [CrossRef]
- Chheda, Z.S.; Kohanbash, G.; Okada, K.; Jahan, N.; Sidney, J.; Pecoraro, M.; Yang, X.; Carrera, D.A.; Downey, K.M.; Shrivastav, S.; et al. Novel and Shared Neoantigen Derived from Histone 3 Variant H3.3K27M Mutation for Glioma T Cell Therapy. J. Exp. Med. 2018, 215, 141–157. [Google Scholar] [CrossRef]
- Zhang, X.; Zhu, L.; Zhang, H.; Chen, S.; Xiao, Y. CAR-T Cell Therapy in Hematological Malignancies: Current Opportunities and Challenges. Front. Immunol. 2022, 13, 927153. [Google Scholar] [CrossRef] [PubMed]
- Nelde, A.; Rammensee, H.-G.; Walz, J.S. The Peptide Vaccine of the Future. Mol. Cell. Proteom. 2021, 20, 100022. [Google Scholar] [CrossRef]
- Gardner, A.; De Mingo Pulido, Á.; Ruffell, B. Dendritic Cells and Their Role in Immunotherapy. Front. Immunol. 2020, 11, 924. [Google Scholar] [CrossRef]
- Malhotra, J.; Kim, E.S. Oncolytic Viruses and Cancer Immunotherapy. Curr. Oncol. Rep 2023, 25, 19–28. [Google Scholar] [CrossRef]
- Wu, S.-Y.; Fu, T.; Jiang, Y.-Z.; Shao, Z.-M. Natural Killer Cells in Cancer Biology and Therapy. Mol. Cancer 2020, 19, 120. [Google Scholar] [CrossRef]
- Watanabe, M.; Nishikawaji, Y.; Kawakami, H.; Kosai, K. Adenovirus Biology, Recombinant Adenovirus, and Adenovirus Usage in Gene Therapy. Viruses 2021, 13, 2502. [Google Scholar] [CrossRef]
- Naimi, A.; Mohammed, R.N.; Raji, A.; Chupradit, S.; Yumashev, A.V.; Suksatan, W.; Shalaby, M.N.; Thangavelu, L.; Kamrava, S.; Shomali, N.; et al. Tumor Immunotherapies by Immune Checkpoint Inhibitors (ICIs); the Pros and Cons. Cell Commun. Signal 2022, 20, 44. [Google Scholar] [CrossRef]
- Ghouzlani, A.; Kandoussi, S.; Tall, M.; Reddy, K.P.; Rafii, S.; Badou, A. Immune Checkpoint Inhibitors in Human Glioma Microenvironment. Front. Immunol. 2021, 12, 679425. [Google Scholar] [CrossRef] [PubMed]
- Ser, M.H.; Webb, M.J.; Sener, U.; Campian, J.L. Immune Checkpoint Inhibitors and Glioblastoma: A Review on Current State and Future Directions. J. Immunother. Precis. Oncol. 2024, 7, 97–110. [Google Scholar] [CrossRef]
- Cacciotti, C.; Choi, J.; Alexandrescu, S.; Zimmerman, M.A.; Cooney, T.M.; Chordas, C.; Clymer, J.; Chi, S.; Yeo, K.K. Immune Checkpoint Inhibition for Pediatric Patients with Recurrent/Refractory CNS Tumors: A Single Institution Experience. J. Neurooncol. 2020, 149, 113–122. [Google Scholar] [CrossRef]
- Majzner, R.G.; Simon, J.S.; Grosso, J.F.; Martinez, D.; Pawel, B.R.; Santi, M.; Merchant, M.S.; Geoerger, B.; Hezam, I.; Marty, V.; et al. Assessment of Programmed Death-Ligand 1 Expression and Tumor-Associated Immune Cells in Pediatric Cancer Tissues. Cancer 2017, 123, 3807–3815. [Google Scholar] [CrossRef] [PubMed]
- Johnson, A.; Severson, E.; Gay, L.; Vergilio, J.-A.; Elvin, J.; Suh, J.; Daniel, S.; Covert, M.; Frampton, G.M.; Hsu, S.; et al. Comprehensive Genomic Profiling of 282 Pediatric Low- and High-Grade Gliomas Reveals Genomic Drivers, Tumor Mutational Burden, and Hypermutation Signatures. Oncologist 2017, 22, 1478–1490. [Google Scholar] [CrossRef] [PubMed]
- Chatwin, H.V.; Cruz Cruz, J.; Green, A.L. Pediatric High-Grade Glioma: Moving toward Subtype-Specific Multimodal Therapy. FEBS J. 2021, 288, 6127–6141. [Google Scholar] [CrossRef] [PubMed]
- Gholamin, S.; Mitra, S.S.; Feroze, A.H.; Liu, J.; Kahn, S.A.; Zhang, M.; Esparza, R.; Richard, C.; Ramaswamy, V.; Remke, M.; et al. Disrupting the CD47-SIRPα Anti-Phagocytic Axis by a Humanized Anti-CD47 Antibody Is an Efficacious Treatment for Malignant Pediatric Brain Tumors. Sci. Transl. Med. 2017, 9, eaaf2968. [Google Scholar] [CrossRef] [PubMed]
- Sikic, B.I.; Lakhani, N.; Patnaik, A.; Shah, S.A.; Chandana, S.R.; Rasco, D.; Colevas, A.D.; O’Rourke, T.; Narayanan, S.; Papadopoulos, K.; et al. First-in-Human, First-in-Class Phase I Trial of the Anti-CD47 Antibody Hu5F9-G4 in Patients with Advanced Cancers. J. Clin. Oncol. 2019, 37, 946–953. [Google Scholar] [CrossRef] [PubMed]
- Wischhusen, J.; Schneider, D.; Mittelbronn, M.; Meyermann, R.; Engelmann, H.; Jung, G.; Wiendl, H.; Weller, M. Death Receptor-Mediated Apoptosis in Human Malignant Glioma Cells: Modulation by the CD40/CD40L System. J. Neuroimmunol. 2005, 162, 28–42. [Google Scholar] [CrossRef] [PubMed]
- Kosaka, A.; Ohkuri, T.; Okada, H. Combination of an Agonistic Anti-CD40 Monoclonal Antibody and the COX-2 Inhibitor Celecoxib Induces Anti-Glioma Effects by Promotion of Type-1 Immunity in Myeloid Cells and T-Cells. Cancer Immunol. Immunother. 2014, 63, 847–857. [Google Scholar] [CrossRef] [PubMed]
- Chonan, M.; Saito, R.; Shoji, T.; Shibahara, I.; Kanamori, M.; Sonoda, Y.; Watanabe, M.; Kikuchi, T.; Ishii, N.; Tominaga, T. CD40/CD40L Expression Correlates with the Survival of Patients with Glioblastomas and an Augmentation in CD40 Signaling Enhances the Efficacy of Vaccinations against Glioma Models. Neuro-Oncology 2015, 17, 1453–1462. [Google Scholar] [CrossRef] [PubMed]
- Okada, K.; Nguyen, A.; Watchmaker, P.; Xu, J.; Ramsdell, F.; Esensten, J.H.; Butterfield, L.H.; Okada, H. Development of a Large-Scale H3.3K27M-Specific TCR-Transduced T Cell Manufacturing Method for Adoptive Cell Therapy in HLA-A2+ Patients with Diffuse Midline Glioma. Cytotherapy 2019, 21, S36. [Google Scholar] [CrossRef]
- Ardon, H.; Van Gool, S.; Lopes, I.S.; Maes, W.; Sciot, R.; Wilms, G.; Demaerel, P.; Bijttebier, P.; Claes, L.; Goffin, J.; et al. Integration of Autologous Dendritic Cell-Based Immunotherapy in the Primary Treatment for Patients with Newly Diagnosed Glioblastoma Multiforme: A Pilot Study. J. Neurooncol. 2010, 99, 261–272. [Google Scholar] [CrossRef]
- De Vleeschouwer, S.; Van Calenbergh, F.; Demaerel, P.; Flamen, P.; Rutkowski, S.; Kaempgen, E.; Wolff, J.E.; Plets, C.; Sciot, R.; Van Gool, S.W. Transient Local Response and Persistent Tumor Control in a Child with Recurrent Malignant Glioma: Treatment with Combination Therapy Including Dendritic Cell Therapy. Case Report. J. Neurosurg. 2004, 100, 492–497. [Google Scholar] [CrossRef]
- Eyrich, M.; Rachor, J.; Schreiber, S.C.; Wölfl, M.; Schlegel, P.G. Dendritic Cell Vaccination in Pediatric Gliomas: Lessons Learnt and Future Perspectives. Front. Pediatr. 2013, 1, 12. [Google Scholar] [CrossRef] [PubMed]
- Ochs, K.; Ott, M.; Bunse, T.; Sahm, F.; Bunse, L.; Deumelandt, K.; Sonner, J.K.; Keil, M.; von Deimling, A.; Wick, W.; et al. K27M-Mutant Histone-3 as a Novel Target for Glioma Immunotherapy. Oncoimmunology 2017, 6, e1328340. [Google Scholar] [CrossRef]
- Mount, C.W.; Majzner, R.G.; Sundaresh, S.; Arnold, E.P.; Kadapakkam, M.; Haile, S.; Labanieh, L.; Hulleman, E.; Woo, P.J.; Rietberg, S.P.; et al. Potent Antitumor Efficacy of Anti-GD2 CAR T Cells in H3-K27M+ Diffuse Midline Gliomas. Nat. Med. 2018, 24, 572–579. [Google Scholar] [CrossRef] [PubMed]
- Majzner, R.G.; Ramakrishna, S.; Yeom, K.W.; Patel, S.; Chinnasamy, H.; Schultz, L.M.; Richards, R.M.; Jiang, L.; Barsan, V.; Mancusi, R.; et al. GD2-CAR T Cell Therapy for H3K27M-Mutated Diffuse Midline Gliomas. Nature 2022, 603, 934–941. [Google Scholar] [CrossRef] [PubMed]
- Wainwright, D.A.; Balyasnikova, I.V.; Chang, A.L.; Ahmed, A.U.; Moon, K.-S.; Auffinger, B.; Tobias, A.L.; Han, Y.; Lesniak, M.S. IDO Expression in Brain Tumors Increases the Recruitment of Regulatory T Cells and Negatively Impacts Survival. Clin. Cancer Res. 2012, 18, 6110–6121. [Google Scholar] [CrossRef]
- Johnson, T.S.; MacDonald, T.J.; Pacholczyk, R.; Aguilera, D.; Al-Basheer, A.; Bajaj, M.; Bandopadhayay, P.; Berrong, Z.; Bouffet, E.; Castellino, R.C.; et al. Indoximod-Based Chemo-Immunotherapy for Pediatric Brain Tumors: A First-in-Children Phase I Trial. Neuro-Oncology 2024, 26, 348–361. [Google Scholar] [CrossRef] [PubMed]
- Grabovska, Y.; Mackay, A.; O’Hare, P.; Crosier, S.; Finetti, M.; Schwalbe, E.C.; Pickles, J.C.; Fairchild, A.R.; Avery, A.; Cockle, J.; et al. Pediatric Pan-Central Nervous System Tumor Analysis of Immune-Cell Infiltration Identifies Correlates of Antitumor Immunity. Nat. Commun. 2020, 11, 4324. [Google Scholar] [CrossRef]
- Ross, J.L.; Chen, Z.; Herting, C.J.; Grabovska, Y.; Szulzewsky, F.; Puigdelloses, M.; Monterroza, L.; Switchenko, J.; Wadhwani, N.R.; Cimino, P.J.; et al. Platelet-Derived Growth Factor Beta Is a Potent Inflammatory Driver in Paediatric High-Grade Glioma. Brain 2021, 144, 53–69. [Google Scholar] [CrossRef]
- Dhar, S.; Gadd, S.; Patel, P.; Vaynshteyn, J.; Raju, G.P.; Hashizume, R.; Brat, D.J.; Becher, O.J. A Tumor Suppressor Role for EZH2 in Diffuse Midline Glioma Pathogenesis. Acta Neuropathol. Commun. 2022, 10, 47. [Google Scholar] [CrossRef]
- Keane, L.; Cheray, M.; Saidi, D.; Kirby, C.; Friess, L.; Gonzalez-Rodriguez, P.; Gerdes, M.E.; Grabert, K.; McColl, B.W.; Joseph, B. Inhibition of Microglial EZH2 Leads to Anti-Tumoral Effects in Pediatric Diffuse Midline Gliomas. Neuro-Oncol. Adv. 2021, 3, vdab096. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.H.; Roberts, C.W.M. Targeting EZH2 in Cancer. Nat. Med. 2016, 22, 128–134. [Google Scholar] [CrossRef] [PubMed]
- Mehta, A.M.; Sonabend, A.M.; Bruce, J.N. Convection-Enhanced Delivery. Neurotherapeutics 2017, 14, 358–371. [Google Scholar] [CrossRef] [PubMed]
- Prabhu, S.S.; Broaddus, W.C.; Gillies, G.T.; Loudon, W.G.; Chen, Z.-J.; Smith, B. Distribution of Macromolecular Dyes in Brain Using Positive Pressure Infusion: A Model for Direct Controlled Delivery of Therapeutic Agents. Surg. Neurol. 1998, 50, 367–375. [Google Scholar] [CrossRef] [PubMed]
- Groothuis, D.R.; Ward, S.; Itskovich, A.C.; Dobrescu, C.; Allen, C.V.; Dills, C.; Levy, R.M. Comparison of 14C-Sucrose Delivery to the Brain by Intravenous, Intraventricular, and Convection-Enhanced Intracerebral Infusion. J. Neurosurg. 1999, 90, 321–331. [Google Scholar] [CrossRef] [PubMed]
- Bobo, R.H.; Laske, D.W.; Akbasak, A.; Morrison, P.F.; Dedrick, R.L.; Oldfield, E.H. Convection-Enhanced Delivery of Macromolecules in the Brain. Proc. Natl. Acad. Sci. USA 1994, 91, 2076–2080. [Google Scholar] [CrossRef] [PubMed]
- Mehta, A.I.; Choi, B.D.; Ajay, D.; Raghavan, R.; Brady, M.; Friedman, A.H.; Pastan, I.; Bigner, D.D.; Sampson, J.H. Convection Enhanced Delivery of Macromolecules for Brain Tumors. Curr. Drug Discov. Technol. 2012, 9, 305–310. [Google Scholar] [CrossRef] [PubMed]
- Nwagwu, C.D.; Immidisetti, A.V.; Bukanowska, G.; Vogelbaum, M.A.; Carbonell, A.-M. Convection-Enhanced Delivery of a First-in-Class Anti-Β1 Integrin Antibody for the Treatment of High-Grade Glioma Utilizing Real-Time Imaging. Pharmaceutics 2020, 13, 40. [Google Scholar] [CrossRef] [PubMed]
- Narsinh, K.H.; Perez, E.; Haddad, A.F.; Young, J.S.; Savastano, L.; Villanueva-Meyer, J.E.; Winkler, E.; De Groot, J. Strategies to Improve Drug Delivery across the Blood–Brain Barrier for Glioblastoma. Curr. Neurol. Neurosci. Rep. 2024, 24, 123–139. [Google Scholar] [CrossRef]
- CED (Convection Enhanced Delivery) in DIPG. Available online: https://dipg.org/treatment/ced/ (accessed on 3 August 2024).
- Mueller, S.; Taitt, J.M.; Villanueva-Meyer, J.E.; Bonner, E.R.; Nejo, T.; Lulla, R.R.; Goldman, S.; Banerjee, A.; Chi, S.N.; Whipple, N.S.; et al. Mass Cytometry Detects H3.3K27M-Specific Vaccine Responses in Diffuse Midline Glioma. J. Clin. Investig. 2022, 132, e162283. [Google Scholar] [CrossRef]
- Min, L.; Hodi, F.S.; Kaiser, U.B. Corticosteroids and Immune Checkpoint Blockade. Aging 2015, 7, 521–522. [Google Scholar] [CrossRef] [PubMed]
- Barone, G.; Maurizi, P.; Tamburrini, G.; Riccardi, R. Role of Temozolomide in Pediatric Brain Tumors. Childs Nerv. Syst. 2006, 22, 652–661. [Google Scholar] [CrossRef] [PubMed]
CAR T | |||||
DEFINITION | PROS | CONS | |||
Chimeric antigen receptor T cells. Composed by an antigen binding domain, a transmembrane portion and an intracellular part. T cells of the patient are collected and engineered via a viral vector t express a receptor for an antigen of interest. Cells are then expanded and infused [152]. |
|
| |||
NCT Number | Focus of the Study | Study Status | Conditions | Interventions | H3G34 inclusion |
NCT05768880 | CAR T Cell Locoregional Immunotherapy targeting B7-H3, EGFR806, HER2, And IL13-Zetakine | RECRUITING | DIPG, DMG, Recurrent CNS Tumor, Refractory Primary Malignant CNS tumor | SC-CAR4BRAIN | Y (non-specific) |
NCT05298995 | GD2-CAR T Cells | RECRUITING | Pediatric Brain Tumor, Medulloblastoma, Embryonal Tumor, HGG, DMG, DIPG, Brain Tumor Adult | GD2-CART01 (iC9-GD2-CAR T-cells) | Y (specific arm for H3G34) |
NCT04510051 | CAR T Cells for IL13Rα2 positive tumors | RECRUITING | Malignant Brain Neoplasm, Recurrent Malignant Brain Neoplasm, Refractory Malignant Brain Neoplasm | Cyclophosphamide, Fludarabine, IL13Ralpha2-specific Hinge-optimized 41BB-co-stimulatory CAR Truncated CD19-expressing Autologous T-Lymphocytes | Y (non-specific) |
NCT04483778 | B7H3 CAR T Cell Immunotherapy | ACTIVE_NOT_RECRUITING | Pediatric Solid Tumor, Germ Cell Tumor, Retinoblastoma, Hepatoblastoma, Wilms Tumor, Rhabdoid Tumor, Carcinoma, Osteosarcoma, Ewing Sarcoma, Rhabdomyosarcoma, Synovial Sarcoma, Clear Cell Sarcoma, Malignant Peripheral Nerve Sheath Tumors, desmoplastic Small Round Cell Tumor, Soft Tissue Sarcoma, Neuroblastoma, Melanoma | Second generation 4-1BBζ B7H3-EGFRt-DHFR, second generation 4-1BBζ B7H3-EGFRt-DHFR (selected) and a second generation 4-1BBζ CD19-Her2tG, Pembrolizumab | N |
NCT04185038 | B7-H3-Specific CAR T Cell Locoregional Immunotherapy | RECRUITING | Central Nervous System Tumor, DIPG, DMG, Ependymoma, Medulloblastoma, Childhood, Germ Cell Tumor, Atypical Teratoid/Rhabdoid Tumor, Primitive Neuroectodermal Tumor, Choroid Plexus Carcinoma, Pineoblastoma, Childhood, Glioma | SCRI-CARB7H3(s), B7H3-specific chimeric antigen receptor (CAR) T cell | Y (non-specific) |
NCT04099797 | C7R-GD2.CAR T Cells for GD2-expressing Brain Tumors (GAIL-B) | RECRUITING | DIPG, HGG, Embryonal Tumor, Ependymal Tumor | C7R-GD2.CART cells, C7R-GD2.CART cells | Y (non-specific) |
NCT03638167 | EGFR806-specific CAR T Cell Locoregional Immunotherapy in EGFR-positive tumors | ACTIVE_NOT_RECRUITING | Pediatric CNS tumors | EGFR806-specific chimeric antigen receptor (CAR) T cell | Y (non-specific) |
NCT03618381 | EGFR806 CAR T Cell Immunotherapy | RECRUITING | Pediatric Solid Tumor | Second generation 4-1BBζ EGFR806-EGFRt, second generation 4-1BBζ EGFR806-EGFRt and a second generation 4 1BBζ CD19-Her2tG | Y (non-specific) |
NCT03500991 | HER2-specific CAR T Cell Locoregional Immunotherapy for HER2-positive tumors | ACTIVE_NOT_RECRUITING | Pediatric CNS tumors, Glioma, Ependymoma, Medulloblastoma, Germ Cell Tumor, Atypical Teratoid/Rhabdoid Tumor, Primitive Neuroectodermal Tumor, Choroid Plexus Carcinoma, Pineoblastoma | HER2-specific chimeric antigen receptor (CAR) T cell | Y (non-specific) |
NCT02442297 | T Cells Expressing HER2-specific Chimeric Antigen Receptors(CAR) | ACTIVE_NOT_RECRUITING | Brain Tumor, Recurrent, Brain Tumor, Refractory | HER2-specific T cells | Y (non-specific) |
PEPTIDE VACCINE | |||||
DEFINITION | PROS | CONS | |||
Vaccine composed by a peptidic tumor antigen, adjuvants and a delivery system. It is aimed at eliciting an immune response against a specific antigen [153]. |
|
| |||
NCT Number | Focus of the Study | Study Status | Conditions | Interventions | H3G34 inclusion |
NCT04808245 | Peptide vaccine | RECRUITING | Newly Diagnosed H3-mutated Glioma | Tecentriq, H3K27M peptide vaccine, Imiquimod | N |
NCT04749641 | Neoantigen Vaccine Therapy | RECRUITING | DIPG | Histone H3.3-K27M Neoantigen Vaccine Therapy | N |
NCT04573140 | RNA-lipid Particle (RNA-LP) Vaccines | RECRUITING | Adult Glioblastoma | Autologous total tumor mRNA and pp65 full length (fl) lysosomal associated membrane protein (LAMP) mRNA loaded DOTAP liposome vaccine | Y (non-specific) |
NCT02358187 | A Vaccine Trial | RECRUITING | Low Grade Glioma | HLA-A2 Restricted Glioma Antigen-Peptides with Poly ICLC | N |
NCT02960230 | H3.3K27M Peptide Vaccine + Nivolumab | COMPLETED | DIPG, DMG, H3 K27M-Mutant | K27M peptide, Nivolumab | N |
NCT01130077 | Glioma Associated Antigen Vaccines in Conjunction With Poly ICLC | ACTIVE_NOT_RECRUITING | Newly Diagnosed Pediatric Pontine Glioma|Newly Diagnosed Pediatric HGG, Recurrent Pediatric High Grade Glioma, Recurrent Pediatric Low Grade Glioma | HLA-A2 restricted glioma antigen peptides vaccine, Poly ICLC | Y (non-specific) |
NCT04943848 | rHSC-DIPGVax + Checkpoint Blockade | RECRUITING | DIPG, DMG,, H3 K27M-Mutant | rHSC-DIPGVax, Balstilimab, Zalifrelimab | N |
NCT03299309 | PEP-CMV | ACTIVE_NOT_RECRUITING | Recurrent Medulloblastoma, Recurrent Brain Tumor, Childhood, Malignant Glioma | PEP-CMV | Y (non-specific) |
NCT05096481 | PEP-CMV Vaccine Targeting CMV Antigen | NOT_YET_RECRUITING | HGG, DIPG, Recurrent Medulloblastoma | PEP-CMV, Temozolomide, Tetanus Diphtheria Vaccine | Y (non-specific) |
DENDRITIC CELLS | |||||
DEFINITION | PROS | CONS | |||
Dendritic cells are antigen presenting cells responsible for the presentation of antigens to T cells and the regulation of the immune response. Cells are collected, exposed to a specific tumor antigen and infused, to elicit an immune response [154]. |
|
| |||
NCT Number | Focus of the Study | Study Status | Conditions | Interventions | H3G34 inclusion |
NCT03396575 | Adoptive Cellular Therapy in Focal Radiotherapy Recovery with without temozolomide | ACTIVE_NOT_RECRUITING | DIPG, Brain Stem Glioma | TTRNA-DC vaccines with GM-CSF, TTRNA-xALT, Cyclophosphamide + Fludarabine Lymphodepletive Conditioning, Dose-Intensified TMZ, Td vaccine, Autologous Hematopoietic Stem Cells (HSC) | N |
NCT03334305 | Adoptive Cellular Therapy | ACTIVE_NOT_RECRUITING | Malignant Glioma, High Grade Glioma | TTRNA-DC vaccines with GM-CSF, Dose-intensified TMZ, Autologous Hematopoietic Stem cells (HSCs), TTRNA-xALT, Td vaccine | Y (non-specific) |
NCT00107185 | Vaccine Therapy | COMPLETED | Brain and Central Nervous System Tumors | Therapeutic autologous dendritic cells | Y (non-specific) |
NCT03615404 | Cytomegalovirus (CMV) RNA-Pulsed Dendritic Cells | COMPLETED | Pediatric Brain Tumor | CMV-DCs with GM-CSF|BIOLOGICAL: Td (tetanus toxoid) | Y (non-specific) |
NCT04911621 | Adjuvant Dendritic Cell Immunotherapy | ACTIVE_NOT_RECRUITING | HGG, DIPG | Dendritic cell vaccination + temozolomide-based chemoradiation Dendritic cell vaccination +/− conventional next-line treatment | Y (non-specific) |
ONCOLYTIC VIRUSES | |||||
DEFINITION | PROS | CONS | |||
genetically engineered or natural viruses to infect and kill cancer cells and to activate an immune response [155]. |
|
| |||
NCT Number | Focus of the Study | Study Status | Conditions | Interventions | H3G34 inclusion |
NCT04482933 | HSV G207 + one-dose radiation | NOT_YET_RECRUITING | Neoplasms, HGG, Glioblastoma Multiforme, Malignant Glioma of Brain, Anaplastic Astrocytoma of Brain, Anaplastic Glioma, Giant Cell Glioblastoma | Biological G207 | Y (non-specific) |
NCT03911388 | HSV G207 | ACTIVE_NOT_RECRUITING | Brain tumors | G207 | Y (non-specific) |
NCT03043391 | PVSRIPO | COMPLETED | Malignant Glioma, Anaplastic Astrocytoma, Anaplastic Oligoastrocytoma, Anaplastic Oligodendroglioma, Glioblastoma, Gliosarcoma, Atypical Teratoid/Rhabdoid Tumor of Brain, Medulloblastoma, Ependymoma, Pleomorphic Xanthoastrocytoma of Brain, Embryonal Tumor of Brain | Polio/Rhinovirus Recombinant (PVSRIPO) | Y (non-specific) |
NCT02457845 | HSV G207 with or without a Single Radiation Dose | COMPLETED | Supratentorial Neoplasms, Malignant, Malignant Glioma, Glioblastoma, Anaplastic Astrocytoma, PNET, Cerebral Primitive Neuroectodermal Tumor, Embryonal Tumor | G207 | Y (non-specific) |
NCT02962167 | Modified Measles Virus (MV-NIS) | COMPLETED | Medulloblastoma, Childhood, Recurrent, Atypical Teratoid/Rhabdoid Tumor, Medulloblastoma Recurrent | Modified Measles Virus, | N |
NATURAL KILLER CELLS | |||||
DEFINITION | PROS | CONS | |||
Immunotherapy based on the use of NK cytotoxic lymphocytes, autologous, allogeneic or engineered to express a chimeric antigen receptor [156]. |
|
| |||
NCT Number | Focus of the Study | Study Status | Conditions | Interventions | H3G34 inclusion |
NCT01875601 | NK White Blood Cells and Interleukin | COMPLETED | Solid Tumors, Brain Tumors, Sarcoma, Pediatric Cancers, Neuroblastoma | Recombinant human interleukin-15 (rhIL-15), NK Cell Infusion | Y (non-specific) |
NCT04730349 | Bempegaldesleukin (BEMPEG: NKTR-214) + Nivolumab | TERMINATED | Ependymoma, Ewing Sarcoma, HGG, Leukemia and Lymphoma, Medulloblastoma, Miscellaneous Brain Tumors and Solid Tumors, Neuroblastoma, Relapsed, Refractory Malignant Neoplasms, Rhabdomyosarcoma | Nivolumab, NKTR-214 | Y (non-specific) |
NCT02100891 | Haploidentical Transplant and Donor Natural Killer Cells for Solid Tumors | COMPLETED | Ewing Sarcoma, Neuroblastoma, Rhabdomyosarcoma, Osteosarcoma, CNS Tumors | Allogeneic HCT, Donor NK Cell Infusion | Y (non-specific) |
ADENOVIRUS GENE THERAPY | |||||
DEFINITION | PROS | CONS | |||
Immunotherapy based on the use adenovirus vector to deliver genes to tumor cells. The aim of the genes delivered can be the suppression tumor growth, the induction of cancer cell death and the initiation of anti-tumor immune response [157]. |
|
| |||
NCT Number | Focus of the Study | Study Status | Conditions | Interventions | H3G34 inclusion |
NCT03330197 | Ad-RTS-hIL-12 + Veledimex i | TERMINATED | Pediatric Brain Tumor, DIPG | Ad-RTS-hIL-12|DRUG: Oral Veledimex—Arm 1 (Pediatric Brain Tumor), Oral Veledimex—Arm 2 (DIPG) | Y (non-specific) |
NCT00634231 | AdV-tk + Prodrug Therapy + Radiation Therapy | COMPLETED | Malignant Glioma|Recurrent Ependymoma | AdV-tk, valacyclovir, Radiation | Y (non-specific) |
IMMUNE CHECKPOINT INHIBITORS | |||||
DEFINITION | PROS | CONS | |||
Immunotherapeutic strategy aiming at blocking immune checkpoints, in order to reactive immune response against the tumor [158]. |
|
| |||
NCT Number | Focus of the Study | Study Status | Conditions | Interventions | H3G34 inclusion |
NCT05106296 | Chemo-immunotherapy: Ibrutinib + Indoximod | RECRUITING | Ependymoma, Medulloblastoma, Glioblastoma, Primary Brain Tumor | Ibrutinib, Indoximod, Cyclophosphamide, Etoposide | Y (non-specific) |
NCT04323046 | Neoadjuvant vs. adjuvant Immunotherapy | RECRUITING | Glioblastoma, Malignant Glioma, Recurrent Glioblastoma, Recurrent Malignant Glioma, Recurrent Grade III Glioma, Grade III Glioma | Nivolumab, Quality-of-Life Assessment | Y (non-specific) |
NCT03690869 | REGN2810 and REGN2810 in + Radiotherapy | TERMINATED | Relapsed/refractory Solid Tumor, Relapsed/refractory Central Nervous System Tumor, DIPG | Cemiplimab, radiation therapy | Y (non-specific) |
NCT03130959 | Nivolumab Monotherapy and Combination With Ipilimumab | COMPLETED | Various Advanced Cancers | Nivolumab, Ipilimumab | Y (non-specific) |
NCT03451825 | Avelumab | COMPLETED | Refractory or Relapsed Solid Tumors, Lymphoma | Avelumab | Y (non-specific) |
NCT02793466 | Durvalumab | COMPLETED | Solid Tumor, Lymphoma, CNS tumors | Durvalumab; MEDI4736 | |
NCT02992964 | Pilot Study of Nivolumab in Pediatric Patients With Hypermutant Cancers | TERMINATED | Refractory or Recurrent Hypermutated Malignancies|Biallelic Mismatch Repair Deficiency (bMMRD) Positive Patients | Nivolumab | Y (non-specific) |
NCT02359565 | Pembrolizumab | RECRUITING | Constitutional Mismatch Repair Deficiency Syndrome, Lynch Syndrome, Malignant Glioma, Recurrent Brain Neoplasm, Recurrent Childhood Ependymoma|Recurrent DIPG, Recurrent Medulloblastoma, Refractory Brain Neoplasm, Refractory DIPG, Refractory Ependymoma, Refractory Medulloblastoma | Pembrolizumab, multiple imaging modalities | Y (non-specific) |
MIXED IMMUNOTHERAPY STRATEGIES | |||||
NCT Number | Focus of the Study | Study Status | Conditions | Interventions | H3G34 inclusion |
NCT04049669 | Indoximod + chemotherapy and radiation | RECRUITING | Glioblastoma, Medulloblastoma, Ependymoma, DIPG | Indoximod, Partial Radiation, Full-dose Radiation, Temozolomide, Cyclophosphamide, Etoposide, Lomustine | Y (non-specific) |
NCT04408092 | GM-CSF effect on Macrophages | COMPLETED | Ependymoma | Granulocyte Macrophage Colony Stimulation Factor | N |
NCT06193759 | Adoptive Cellular Therapy | NOT_YET_RECRUITING | Brain Tumor | Cytotoxic T lymphocytes (TSA-T) directed against proteogenomically determined multi-tumor specific antigens | Y (non-specific) |
NCT03652545 | Multi-antigen T Cell Infusion | RECRUITING | Brain Tumor | TAA-T | Y (non-specific) |
NCT03389802 | APX005M | ACTIVE_NOT_RECRUITING | Glioblastoma Multiforme, High-grade Astrocytoma NOS, CNS Primary Tumor, Nos, Ependymoma, NOS, DIPG, Medulloblastoma | APX005M treatment for recurrent or refractory primary malignant CNS tumor patients APX005M treatment for newly diagnosed DIPG patients | Y (non-specific) |
NCT02813135 | Therapeutic Stratification Trial of Molecular Anomalies in Relapsed or Refractory Tumors | RECRUITING | Pediatric Cancer | Ribociclib, Topotecan, Temozolomide, Everolimus, Adavosertib, Carboplatin, Olaparib, Irinotecan, Vistusertib, Nivolumab, Cyclophosphamide: Selumetinib, Enasidenib, Lirilumab, Fadraciclib, Cytarabine, Dexamethasone, Ceralasertib, Futibatinib, Capmatinib | Y (non-specific) |
OTHER | |||||
NCT Number | Focus of the Study | Study Status | Conditions | Interventions | H3G34 inclusion |
NCT03452774 | Artificial Intelligence trial for Matching and Registry | RECRUITING | All cancer types | Clinical Trial Matching | Y (non-specific) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bonada, M.; Pittarello, M.; De Fazio, E.; Gans, A.; Alimonti, P.; Slika, H.; Legnani, F.; Di Meco, F.; Tyler, B. Pediatric Hemispheric High-Grade Gliomas and H3.3-G34 Mutation: A Review of the Literature on Biological Features and New Therapeutic Strategies. Genes 2024, 15, 1038. https://doi.org/10.3390/genes15081038
Bonada M, Pittarello M, De Fazio E, Gans A, Alimonti P, Slika H, Legnani F, Di Meco F, Tyler B. Pediatric Hemispheric High-Grade Gliomas and H3.3-G34 Mutation: A Review of the Literature on Biological Features and New Therapeutic Strategies. Genes. 2024; 15(8):1038. https://doi.org/10.3390/genes15081038
Chicago/Turabian StyleBonada, Marta, Matilde Pittarello, Emerson De Fazio, Alessandro Gans, Paolo Alimonti, Hasan Slika, Federico Legnani, Francesco Di Meco, and Betty Tyler. 2024. "Pediatric Hemispheric High-Grade Gliomas and H3.3-G34 Mutation: A Review of the Literature on Biological Features and New Therapeutic Strategies" Genes 15, no. 8: 1038. https://doi.org/10.3390/genes15081038
APA StyleBonada, M., Pittarello, M., De Fazio, E., Gans, A., Alimonti, P., Slika, H., Legnani, F., Di Meco, F., & Tyler, B. (2024). Pediatric Hemispheric High-Grade Gliomas and H3.3-G34 Mutation: A Review of the Literature on Biological Features and New Therapeutic Strategies. Genes, 15(8), 1038. https://doi.org/10.3390/genes15081038