Integrating ATAC-Seq and RNA-Seq Reveals the Signal Regulation Involved in the Artemia Embryonic Reactivation Process
Abstract
:1. Introduction
2. Methods
2.1. Identification and Analysis of DEGs
2.2. Integration Analysis of ATAC-Seq and RNA-Seq
2.3. Structure Analysis of Candidate GPCR Proteins
2.4. Artemia Hatching and Culture
2.5. Verification of Changes in Genes Expression for Candidate GPCRs
3. Results
3.1. DEG Analysis of Genes from ATAC-Seq
3.2. DEG Analysis of Genes from RNA-Seq
3.3. Integration Analysis of DEGs from ATAC-Seq and RNA-Seq
3.4. Structure Analysis of the Candidate GPCR Genes
3.5. Verification of Changes in Gene Expression for Candidate GPCRs
3.6. Comparison with Interim Results
4. Discussion
4.1. Signal Regulation of Embryonic Reactivation Process
4.2. Other Pathways Involved in Embryonic Reactivation
4.3. GPCRs Participating in Artemia Embryonic Reactivation Process
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
TMH | Trans-membrane helix |
DEGs | Differentially expressed genes |
GPCR | G-protein-coupled receptor |
TSS | Downstream gene start site |
References
- Renfree, M.B.; Shaw, G. Diapause. Annu. Rev. Physiol. 2000, 62, 353–375. [Google Scholar] [CrossRef]
- Murphy, B.D. Under Arrest: The Embryo in Diapause. Dev. Cell 2020, 52, 139–140. [Google Scholar] [CrossRef]
- MacRae, T.H. Gene expression, metabolic regulation and stress tolerance during diapause. Cell. Mol. Life Sci. CMLS 2010, 67, 2405–2424. [Google Scholar] [CrossRef]
- Kostal, V. Eco-physiological phases of insect diapause. J. Insect Physiol. 2006, 52, 113–127. [Google Scholar] [CrossRef]
- Robbins, H.M.; Van Stappen, G.; Sorgeloos, P.; Sung, Y.Y.; MacRae, T.H.; Bossier, P. Diapause termination and development of encysted Artemia embryos: Roles for nitric oxide and hydrogen peroxide. J. Exp. Biol. 2010, 213 Pt 9, 1464–1470. [Google Scholar] [CrossRef] [PubMed]
- MacRae, T.H. Stress tolerance during diapause and quiescence of the brine shrimp, Artemia. Cell Stress Chaperones 2016, 21, 9–18. [Google Scholar] [CrossRef]
- Liu, Y.-L.; Zhao, Y.; Dai, Z.-M.; Chen, H.-M.; Yang, W.-J. Formation of Diapause Cyst Shell in Brine Shrimp, Artemia parthenogenetica, and Its Resistance Role in Environmental Stresses. J. Biol. Chem. 2009, 284, 16931–16938. [Google Scholar] [CrossRef]
- Qiu, Z.; MacRae, T.H. A Molecular Overview of Diapause in Embryos of the Crustacean, Artemia franciscana; Dormancy and Resistance in Harsh Environments. Topics in Current Genetics; Lubzens, E., Cerda, J., Clark, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2010; Volume 21. [Google Scholar]
- Clegg, J. Embryos of Artemia franciscana survive four years of continuous anoxia: The case for complete metabolic rate depression. J. Exp. Biol. 1997, 200 Pt 3, 467–475. [Google Scholar] [CrossRef]
- Warner, A.H.; Clegg, J.S. Diguanosine nucleotide metabolism and the survival of artemia embryos during years of continuous anoxia. Eur. J. Biochem. 2001, 268, 1568–1576. [Google Scholar] [CrossRef]
- Dai, Z.M.; Li, R.; Dai, L.; Yang, J.S.; Chen, S.; Zeng, Q.G.; Yang, F.; Yang, W.J. Determination in oocytes of the reproductive modes for the brine shrimp Artemia parthenogenetica. Biosci. Rep. 2011, 31, 17–30. [Google Scholar] [CrossRef]
- Yang, F.; Jia, S.N.; Yu, Y.Q.; Ye, X.; Liu, J.; Qian, Y.Q.; Yang, W.J. Deubiquitinating enzyme BAP1 is involved in the formation and maintenance of the diapause embryos of Artemia. Cell Stress Chaperones 2012, 17, 577–587. [Google Scholar] [CrossRef]
- Ma, W.M.; Li, H.W.; Dai, Z.M.; Yang, J.S.; Yang, F.; Yang, W.J. Chitin-binding proteins of Artemia diapause cysts participate in formation of the embryonic cuticle layer of cyst shells. Biochem. J. 2013, 449, 285–294. [Google Scholar] [CrossRef] [PubMed]
- Yan, Z.J.; Wu, W.T.; Xu, L.Y.; Bi, N.; Yang, F.; Yang, W.J.; Yang, J.S. Downregulation of a CT10 regulator of kinase (Crk) promotes the formation of diapause embryos in the brine shrimp Artemia. Gene 2023, 866, 147349. [Google Scholar] [CrossRef] [PubMed]
- Zhou, R.; Sun, Y.X.; Yang, W.J.; Yang, F. Identification and characterization of a Ste20-like kinase in Artemia and its role in the developmental regulation and resistance to environmental stress. PLoS ONE 2014, 9, e92234. [Google Scholar] [CrossRef] [PubMed]
- Qiu, Z.; MacRae, T.H. Developmentally regulated synthesis of p8, a stress-associated transcription cofactor, in diapause-destined embryos of Artemia franciscana. Cell Stress Chaperones 2007, 12, 255–264. [Google Scholar] [CrossRef]
- King, A.M.; MacRae, T.H. The small heat shock protein p26 aids development of encysting Artemia embryos, prevents spontaneous diapause termination and protects against stress. PLoS ONE 2012, 7, e43723. [Google Scholar] [CrossRef] [PubMed]
- Qiu, Z.; Macrae, T.H. ArHsp21, a developmentally regulated small heat-shock protein synthesized in diapausing embryos of Artemia franciscana. Biochem. J. 2008, 411, 605–611. [Google Scholar] [CrossRef] [PubMed]
- King, A.M.; Toxopeus, J.; MacRae, T.H. Functional differentiation of small heat shock proteins in diapause-destined Artemia embryos. FEBS J. 2013, 280, 4761–4772. [Google Scholar] [CrossRef]
- Qiu, Z.; MacRae, T.H. ArHsp22, a developmentally regulated small heat shock protein produced in diapause-destined Artemia embryos, is stress inducible in adults. FEBS J. 2008, 275, 3556–3566. [Google Scholar] [CrossRef]
- Rowarth, N.M.; MacRae, T.H. Post-diapause synthesis of ArHsp40-2, a type 2 J-domain protein from Artemia franciscana, is developmentally regulated and induced by stress. PLoS ONE 2018, 13, e0201477. [Google Scholar] [CrossRef]
- King, A.M.; Toxopeus, J.; MacRae, T.H. Artemin, a diapause-specific chaperone, contributes to the stress tolerance of Artemia franciscana cysts and influences their release from females. J. Exp. Biol. 2014, 217 Pt 10, 1719–1724. [Google Scholar] [CrossRef] [PubMed]
- Tan, J.; MacRae, T.H. Stress tolerance in diapausing embryos of Artemia franciscana is dependent on heat shock factor 1 (Hsf1). PLoS ONE 2018, 13, e0200153. [Google Scholar] [CrossRef]
- Tan, J.; MacRae, T.H. The synthesis of diapause-specific molecular chaperones in embryos of Artemia franciscana is determined by the quantity and location of heat shock factor 1 (Hsf1). Cell Stress Chaperones 2019, 24, 385–392. [Google Scholar] [CrossRef]
- Chen, W.H.; Ge, X.; Wang, W.; Yu, J.; Hu, S. A gene catalogue for post-diapause development of an anhydrobiotic arthropod Artemia franciscana. BMC Genom. 2009, 10, 52. [Google Scholar] [CrossRef]
- Wang, W.; Meng, B.; Chen, W.; Ge, X.; Yu, J. A proteomic study on postdiapaused embryonic development of brine shrimp (Artemia franciscana). Proteomics 2007, 7, 3580–3591. [Google Scholar] [CrossRef]
- Jia, W.H.; Li, A.Q.; Feng, J.Y.; Ding, Y.F.; Ye, S.; Yang, J.S.; Yang, W.J. DEK terminates diapause by activation of quiescent cells in the crustacean Artemia. Biochem. J. 2019, 476, 1753–1769. [Google Scholar] [CrossRef]
- Quinlan, A.R.; Hall, I.M. BEDTools: A flexible suite of utilities for comparing genomic features. Bioinformatics 2010, 26, 841–842. [Google Scholar] [CrossRef]
- Love, M.I.; Huber, W.; Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014, 15, 550. [Google Scholar] [CrossRef]
- Young, M.D.; Wakefield, M.J.; Smyth, G.K.; Oshlack, A. Gene ontology analysis for RNA-seq: Accounting for selection bias. Genome Biol. 2010, 11, R14. [Google Scholar] [CrossRef] [PubMed]
- Mao, X.; Cai, T.; Olyarchuk, J.G.; Wei, L. Automated genome annotation and pathway identification using the KEGG Orthology (KO) as a controlled vocabulary. Bioinformatics 2005, 21, 3787–3793. [Google Scholar] [CrossRef] [PubMed]
- Krogh, A.; Larsson, B.; von Heijne, G.; Sonnhammer, E.L. Predicting transmembrane protein topology with a hidden Markov model: Application to complete genomes. J. Mol. Biol. 2001, 305, 567–580. [Google Scholar] [CrossRef]
- Bernhofer, M.; Dallago, C.; Karl, T.; Satagopam, V.; Heinzinger, M.; Littmann, M.; Olenyi, T.; Qiu, J.; Schutze, K.; Yachdav, G.; et al. PredictProtein—Predicting Protein Structure and Function for 29 Years. Nucleic Acids Res. 2021, 49, W535–W540. [Google Scholar] [CrossRef]
- Waterhouse, A.; Bertoni, M.; Bienert, S.; Studer, G.; Tauriello, G.; Gumienny, R.; Heer, F.T.; de Beer, T.A.P.; Rempfer, C.; Bordoli, L.; et al. SWISS-MODEL: Homology modelling of protein structures and complexes. Nucleic Acids Res. 2018, 46, W296–W303. [Google Scholar] [CrossRef]
- Koehl, A.; Hu, H.; Feng, D.; Sun, B.; Zhang, Y.; Robertson, M.J.; Chu, M.; Kobilka, T.S.; Laeremans, T.; Steyaert, J.; et al. Structural insights into the activation of metabotropic glutamate receptors. Nature 2019, 566, 79–84. [Google Scholar] [CrossRef]
- Hao, T.; Song, Z.; Zhang, M.; Zhang, L. Signaling Transduction Pathways and G-Protein-Coupled Receptors in Different Stages of the Embryonic Diapause Termination Process in Artemia. Curr. Issues Mol. Biol. 2024, 46, 3676–3693. [Google Scholar] [CrossRef]
- Fenelon, J.C.; Renfree, M.B. The history of the discovery of embryonic diapause in mammals. Biol. Reprod. 2018, 99, 242–251. [Google Scholar] [CrossRef]
- Fenelon, J.C.; Banerjee, A.; Murphy, B.D. Embryonic diapause: Development on hold. Int. J. Dev. Biol. 2014, 58, 163–174. [Google Scholar] [CrossRef]
- Renfree, M.B.; Fenelon, J.C. The enigma of embryonic diapause. Development 2017, 144, 3199–3210. [Google Scholar] [CrossRef]
- Hussein, A.M.; Balachandar, N.; Mathieu, J.; Ruohola-Baker, H. Molecular Regulators of Embryonic Diapause and Cancer Diapause-like State. Cells 2022, 11, 2929. [Google Scholar] [CrossRef]
- Wang, J.; Ran, L.-L.; Li, Y.; Liu, Y.-H. Comparative proteomics provides insights into diapause program of Bactrocera minax (Diptera: Tephritidae). PLoS ONE 2020, 15, e0244493. [Google Scholar] [CrossRef]
- Borggrefe, T.; Oswald, F. The Notch signaling pathway: Transcriptional regulation at Notch target genes. Cell. Mol. Life Sci. 2009, 66, 1631–1646. [Google Scholar] [CrossRef]
- Ouellet, J.; Li, S.; Roy, R. Notch signalling is required for both dauer maintenance and recovery in C. elegans. Development 2008, 135, 2583–2592. [Google Scholar] [CrossRef]
- Zhang, D.W.; Xiao, Z.J.; Zeng, B.P.; Li, K.; Tang, Y.L. Insect behavior and physiological adaptation mechanisms under starvation stress. Front Physiol. 2019, 10, 163. [Google Scholar] [CrossRef]
- Lin, C.; Jia, S.N.; Yang, F.; Jia, W.H.; Yu, X.J.; Yang, J.S.; Yang, W.J. The transcription factor p8 regulates autophagy during diapause embryo formation in Artemia parthenogenetica. Cell Stress Chaperones 2016, 21, 665–675. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Kundu, M.; Viollet, B.; Guan, K.L. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat. Cell Biol. 2011, 13, 132–141. [Google Scholar] [CrossRef]
- Fredriksson, R.; Lagerstrom, M.C.; Lundin, L.G.; Schioth, H.B. The G-protein-coupled receptors in the human genome form five main families. Phylogenetic analysis, paralogon groups, and fingerprints. Mol. Pharmacol. 2003, 63, 1256–1272. [Google Scholar] [CrossRef]
- Gloriam, D.E.; Fredriksson, R.; Schioth, H.B. The G protein-coupled receptor subset of the rat genome. BMC Genom. 2007, 8, 338. [Google Scholar] [CrossRef]
- Sarkar, A.; Kumar, S.; Sundar, D. The G protein-coupled receptors in the pufferfish Takifugu rubripes. BMC Bioinform. 2011, 12 (Suppl. 1), S3. [Google Scholar] [CrossRef] [PubMed]
- Nusawardani, T.; Kroemer, J.A.; Choi, M.Y.; Jurenka, R.A. Identification and characterization of the pyrokinin/pheromone biosynthesis activating neuropeptide family of G protein-coupled receptors from Ostrinia nubilalis. Insect Mol. Biol. 2013, 22, 331–340. [Google Scholar] [CrossRef] [PubMed]
- Homma, T.; Watanabe, K.; Tsurumaru, S.; Kataoka, H.; Imai, K.; Kamba, M.; Niimi, T.; Yamashita, O.; Yaginuma, T. G protein-coupled receptor for diapause hormone, an inducer of Bombyx embryonic diapause. Biochem. Biophys. Res. Commun. 2006, 344, 386–393. [Google Scholar] [CrossRef]
Subject | Up-Regulated | Down-Regulated | Total |
---|---|---|---|
ATAC-seq | 7124 | 5399 | 9159 |
RNA-seq | 3608 | 3251 | 6859 |
Integrated DEGs | 2005 | 1111 | 3116 |
Candidate GPCR Genes | Gene Name | TMHMM | PredictProtein | SWISS-MODEL |
---|---|---|---|---|
evm.TU.ctg485.29 | ADGRE5 | 7 | 7 | 7 |
evm.TU.ctg1078.1 | AR | 7 | 7 | 7 |
evm.TU.ctg530.1 | ADRB3 | 7 | 7 | 7 |
evm.TU.ctg71.25 | GRM5 | 7 | 7 | 7 |
evm.TU.ctg179.30 | UVOP | 6 | 7 | 7 |
evm.TU.ctg441.12 | RYa-R | 7 | 7 | 7 |
evm.TU.ctg428.23 | HRH1 | 7 | 7 | 7 |
evm.TU.ctg201.8 | Adgrl1 | 7 | 7 | 7 |
evm.TU.ctg54.13 | NPFR | 7 | 7 | 6 |
evm.TU.ctg310.11 | Gabbr1 | 7 | 6 | 7 × 2 |
evm.TU.ctg394.6 | Dop1R2 | 6 | 7 | 7 |
evm.TU.ctg3.36 | gar-2 | 6 | 6 | 5 |
evm.TU.ctg92.26 | CCAP-R | 5 | 6 | 5 |
evm.TU.ctg150.6 | stan | 5 | 6 | 0 |
evm.TU.ctg288.3 | Cirl | 5 | 5 | 5 |
evm.TU.ctg73.14 | QRFPR | 5 | 5 | 6 |
evm.TU.ctg640.11 | SCOP1 | 4 | 5 | 5 |
evm.TU.ctg195.9 | CCKAR | 4 | 4 | 5 |
evm.TU.ctg275.30 | TkR86C | 4 | 4 | 4 |
evm.TU.ctg889.7 | moody | 4 | 4 | 2 |
evm.TU.ctg116.37 | mth2 | 3 | 3 | 4 |
evm.TU.ctg155.21 | HRH1 | 3 | 3 | 3 |
evm.TU.ctg16.15 | 7tm_1 | 3 | 3 | 3 |
evm.TU.ctg397.21 | Svep1 | 2 | 1 | 0 |
evm.TU.ctg88.22 | mAChR-A | 1 | 1 | 1 |
evm.TU.ctg469.18 | NA | 1 | 1 | 0 |
evm.TU.ctg25.48 | Pep-like | 0 | 0 | 0 |
evm.TU.ctg212.15 | SCAF8 | 0 | 0 | 0 |
evm.TU.ctg115.32 | FKBP4 | 0 | 0 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, A.; Song, Z.; Zhang, M.; Duan, H.; Sui, L.; Wang, B.; Hao, T. Integrating ATAC-Seq and RNA-Seq Reveals the Signal Regulation Involved in the Artemia Embryonic Reactivation Process. Genes 2024, 15, 1083. https://doi.org/10.3390/genes15081083
Li A, Song Z, Zhang M, Duan H, Sui L, Wang B, Hao T. Integrating ATAC-Seq and RNA-Seq Reveals the Signal Regulation Involved in the Artemia Embryonic Reactivation Process. Genes. 2024; 15(8):1083. https://doi.org/10.3390/genes15081083
Chicago/Turabian StyleLi, Anqi, Zhentao Song, Mingzhi Zhang, Hu Duan, Liying Sui, Bin Wang, and Tong Hao. 2024. "Integrating ATAC-Seq and RNA-Seq Reveals the Signal Regulation Involved in the Artemia Embryonic Reactivation Process" Genes 15, no. 8: 1083. https://doi.org/10.3390/genes15081083
APA StyleLi, A., Song, Z., Zhang, M., Duan, H., Sui, L., Wang, B., & Hao, T. (2024). Integrating ATAC-Seq and RNA-Seq Reveals the Signal Regulation Involved in the Artemia Embryonic Reactivation Process. Genes, 15(8), 1083. https://doi.org/10.3390/genes15081083