Circulating miRNA Signaling for Fatty Acid Metabolism in Response to a Maximum Endurance Test in Elite Long-Distance Runners
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Molecular Analysis
2.3. Statistical Analysis
2.4. Functional Bioinformatic Analysis
3. Results
3.1. Physical Performance-Related Variables
3.2. miRNA Profile in Response to Acute Exercise
3.3. miRNA Profile Related to Each Group’s Performance
3.4. Functional Bioinformatic Analysis
4. Discussion
4.1. miRNAs and Elite Endurance Athletes
4.2. Endurance Adaptation, Functional Analysis, and Fatty Acid-Related Pathways
Other Associated Pathways
4.3. Multifactorial Traits Challenge
4.4. Perspectives
5. Conclusions
6. Limitations
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bassett, D.R.J.; Howley, E.T. Limiting Factors for Maximum Oxygen Uptake and Determinants of Endurance Performance. Med. Sci. Sports Exerc. 2000, 32, 70–84. [Google Scholar] [CrossRef] [PubMed]
- Hawley, J.A.; Lundby, C.; Cotter, J.D.; Burke, L.M. Maximizing Cellular Adaptation to Endurance Exercise in Skeletal Muscle. Cell Metab. 2018, 27, 962–976. [Google Scholar] [CrossRef]
- Bouchard, C.; An, P.; Rice, T.; Skinner, J.S.; Wilmore, J.H.; Gagnon, J.; Pérusse, L.; Leon, A.S.; Rao, D.C. Familial aggregation of VO(2max) response to exercise training: Results from the HERITAGE Family Study. J. Appl. Physiol. 1999, 87, 1003–1008. [Google Scholar] [CrossRef]
- Bouchard, C. Genomic predictors of trainability. Exp. Physiol. 2012, 97, 347–352. [Google Scholar] [CrossRef]
- Faraldi, M.; Gomarasca, M.; Sansoni, V.; Perego, S.; Banfi, G.; Lombardi, G. Normalization strategies differently affect circulating miRNA profile associated with the training status. Sci. Rep. 2019, 9, 1584. [Google Scholar] [CrossRef]
- Kozomara, A.; Birgaoanu, M.; Griffiths-Jones, S. miRBase: From microRNA sequences to function. Nucleic Acids Res. 2019, 47, D155–D162. [Google Scholar] [CrossRef]
- Barber, J.L.; Zellars, K.N.; Barringhaus, K.G.; Bouchard, C.; Spinale, F.G.; Sarzynski, M.A. The Effects of Regular Exercise on Circulating Cardiovascular-related MicroRNAs. Sci. Rep. 2019, 9, 7527. [Google Scholar] [CrossRef] [PubMed]
- Denham, J.; Prestes, P.R. Muscle-Enriched MicroRNAs Isolated from Whole Blood Are Regulated by Exercise and Are Potential Biomarkers of Cardiorespiratory Fitness. Front. Genet. 2016, 7, 196. [Google Scholar] [CrossRef]
- Kern, F.; Ludwig, N.; Backes, C.; Maldener, E.; Fehlmann, T.; Suleymanov, A.; Meese, E.; Hecksteden, A.; Keller, A.; Meyer, T. Systematic Assessment of Blood-Borne MicroRNAs Highlights Molecular Profiles of Endurance Sport and Carbohydrate Uptake. Cells 2019, 8, 1045. [Google Scholar] [CrossRef] [PubMed]
- Ogasawara, R.; Akimoto, T.; Umeno, T.; Sawada, S.; Hamaoka, T.; Fujita, S. MicroRNA expression profiling in skeletal muscle reveals different regulatory patterns in high and low responders to resistance training. Physiol. Genom. 2016, 48, 320–324. [Google Scholar] [CrossRef]
- Widmann, M.; Maturana, F.M.; Burgstahler, C.; Erz, G.; Schellhorn, P.; Fragasso, A.; Schmitt, A.; Nieß, A.M.; Munz, B. miRNAs as markers for the development of individualized training regimens: A pilot study. Physiol. Rep. 2022, 10, e15217. [Google Scholar] [CrossRef] [PubMed]
- Geiger, J.; Dalgaard, L.T. Interplay of mitochondrial metabolism and microRNAs. Cell. Mol. Life Sci. 2017, 74, 631–646. [Google Scholar] [CrossRef] [PubMed]
- O’Brien, J.; Hayder, H.; Zayed, Y.; Peng, C. Overview of MicroRNA Biogenesis, Mechanisms of Actions, and Circulation. Front. Endocrinol. 2018, 9, 402. [Google Scholar] [CrossRef] [PubMed]
- Soci, U.P.R.; Fernandes, T.; Hashimoto, N.Y.; Mota, G.F.; Amadeu, M.A.; Rosa, K.T.; Irigoyen, M.C.; Phillips, M.I.; Oliveira, E.M. MicroRNAs 29 are involved in the improvement of ventricular compliance promoted by aerobic exercise training in rats. Physiol. Genom. 2011, 43, 665–673. [Google Scholar] [CrossRef] [PubMed]
- Brooks, G.A.; Mercier, J. Balance of carbohydrate and lipid utilization during exercise: The “crossover” concept. J. Appl. Physiol. 1994, 76, 2253–2261. [Google Scholar] [CrossRef]
- Bustin, S.A.; Benes, V.; Garson, J.A.; Hellemans, J.; Huggett, J.; Kubista, M.; Mueller, R.; Nolan, T.; Pfaffl, M.W.; Shipley, G.L.; et al. The MIQE Guidelines: Minimum Information for Publication of Quantitative Real-Time PCR Experiments. Clin. Chem. 2009, 55, 611–622. [Google Scholar] [CrossRef] [PubMed]
- Vlachos, I.S.; Zagganas, K.; Paraskevopoulou, M.D.; Georgakilas, G.; Karagkouni, D.; Vergoulis, T.; Dalamagas, T.; Hatzigeorgiou, A.G. DIANA-miRPath v3.0: Deciphering microRNA function with experimental support. Nucleic Acids Res. 2015, 43, W460–W466. [Google Scholar] [CrossRef] [PubMed]
- Hecksteden, A.; Leidinger, P.; Backes, C.; Rheinheimer, S.; Pfeiffer, M.; Ferrauti, A.; Kellmann, M.; Sedaghat, F.; Meder, B.; Meese, E.; et al. miRNAs and sports: Tracking training status and potentially confounding diagnoses. J. Transl. Med. 2016, 14, 219. [Google Scholar] [CrossRef]
- Wang, K.; Yuan, Y.; Cho, J.-H.; McClarty, S.; Baxter, D.; Galas, D.J. Comparing the MicroRNA Spectrum between Serum and Plasma. PLoS ONE 2012, 7, e41561. [Google Scholar] [CrossRef]
- Egan, B.; Zierath, J.R. Exercise Metabolism and the Molecular Regulation of Skeletal Muscle Adaptation. Cell Metab. 2013, 17, 162–184. [Google Scholar] [CrossRef]
- Ismaeel, A.; Van Pelt, D.W.; Hettinger, Z.R.; Fu, X.; Richards, C.I.; Butterfield, T.A.; Petrocelli, J.J.; Vechetti, I.J.; Confides, A.L.; Drummond, M.J.; et al. Extracellular vesicle distribution and localization in skeletal muscle at rest and following disuse atrophy. Skelet. Muscle 2023, 13, 6. [Google Scholar] [CrossRef] [PubMed]
- Marabita, F.; de Candia, P.; Torri, A.; Tegnér, J.; Abrignani, S.; Rossi, R.L. Normalization of circulating microRNA expression data obtained by quantitative real-time RT-PCR. Briefings Bioinform. 2016, 17, 204–212. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, S.; Sudo, Y.; Makino, T.; Kimura, S.; Tomita, K.; Noguchi, M.; Sakurai, H.; Shimizu, M.; Takahashi, Y.; Sato, R.; et al. Skeletal muscle releases extracellular vesicles with distinct protein and microRNA signatures that function in the muscle microenvironment. PNAS Nexus 2022, 1, pgac173. [Google Scholar] [CrossRef] [PubMed]
- Karvinen, S.; Sievänen, T.; Karppinen, J.E.; Hautasaari, P.; Bart, G.; Samoylenko, A.; Vainio, S.J.; Ahtiainen, J.P.; Laakkonen, E.K.; Kujala, U.M. MicroRNAs in Extracellular Vesicles in Sweat Change in Response to Endurance Exercise. Front. Physiol. 2020, 11, 676. [Google Scholar] [CrossRef] [PubMed]
- Umu, S.U.; Langseth, H.; Bucher-Johannessen, C.; Fromm, B.; Keller, A.; Meese, E.; Lauritzen, M.; Leithaug, M.; Lyle, R.; Rounge, T.B. A comprehensive profile of circulating RNAs in human serum. RNA Biol. 2018, 15, 242–250. [Google Scholar] [CrossRef] [PubMed]
- de Gonzalo-Calvo, D.; Dávalos, A.; Montero, A.; García-González, A.; Tyshkovska, I.; González-Medina, A.; Soares, S.M.A.; Martínez-Camblor, P.; Casas-Agustench, P.; Rabadán, M.; et al. Circulating inflammatory miRNA signature in response to different doses of aerobic exercise. J. Appl. Physiol. 2015, 119, 124–134. [Google Scholar] [CrossRef] [PubMed]
- Fukuoka, M.; Fujita, H.; Numao, K.; Nakamura, Y.; Shimizu, H.; Sekiguchi, M.; Hohjoh, H. MiR-199-3p enhances muscle regeneration and ameliorates aged muscle and muscular dystrophy. Commun. Biol. 2021, 4, 427. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Yang, M.; Zhou, P.; Yan, H.; Zhang, Z.; Zhang, H.; Qi, R.; Liu, J. β-Hydroxy-β-methylbutyrate-Induced Upregulation of miR-199a-3p Contributes to Slow-To-Fast Muscle Fiber Type Conversion in Mice and C2C12 Cells. J. Agric. Food Chem. 2020, 68, 530–540. [Google Scholar] [CrossRef] [PubMed]
- Jia, L.; Li, Y.-F.; Wu, G.-F.; Song, Z.-Y.; Lu, H.-Z.; Song, C.-C.; Zhang, Q.-L.; Zhu, J.-Y.; Yang, G.-S.; Shi, X.-E. MiRNA-199a-3p Regulates C2C12 Myoblast Differentiation through IGF-1/AKT/mTOR Signal Pathway. Int. J. Mol. Sci. 2014, 15, 296–308. [Google Scholar] [CrossRef]
- Fernandes, T.; Baraúna, V.G.; Negrão, C.E.; Phillips, M.I.; Oliveira, E.M. Aerobic exercise training promotes physiological cardiac remodeling involving a set of microRNAs. Am. J. Physiol. Circ. Physiol. 2015, 309, H543–H552. [Google Scholar] [CrossRef]
- Lewis, G.D.; Farrell, L.; Wood, M.J.; Martinovic, M.; Arany, Z.; Rowe, G.C.; Souza, A.; Cheng, S.; McCabe, E.L.; Yang, E.; et al. Metabolic Signatures of Exercise in Human Plasma. Sci. Transl. Med. 2010, 2, 33–37. [Google Scholar] [CrossRef]
- Aoi, W.; Ichikawa, H.; Mune, K.; Tanimura, Y.; Mizushima, K.; Naito, Y.; Yoshikawa, T. Muscle-enriched microRNA miR-486 decreases in circulation in response to exercise in young men. Front. Physiol. 2013, 4, 80. [Google Scholar] [CrossRef] [PubMed]
- Sieland, J.; Niederer, D.; Engeroff, T.; Vogt, L.; Troidl, C.; Schmitz-Rixen, T.; Banzer, W.; Troidl, K. Effects of single bouts of different endurance exercises with different intensities on microRNA biomarkers with and without blood flow restriction: A three-arm, randomized crossover trial. Eur. J. Appl. Physiol. 2021, 121, 3243–3255. [Google Scholar] [CrossRef] [PubMed]
- Fan, W.; Waizenegger, W.; Lin, C.S.; Sorrentino, V.; He, M.-X.; Wall, C.E.; Li, H.; Liddle, C.; Yu, R.T.; Atkins, A.R.; et al. PPARδ Promotes Running Endurance by Preserving Glucose. Cell Metab. 2017, 25, 1186–1193. [Google Scholar] [CrossRef]
- Furrer, R.; Hawley, J.A.; Handschin, C. The molecular athlete: Exercise physiology from mechanisms to medals. Physiol. Rev. 2023, 103, 1693–1787. [Google Scholar] [CrossRef]
- Zani, A.L.S.; Gouveia, M.H.; Aquino, M.M.; Quevedo, R.; Menezes, R.L.; Rotimi, C.; Lwande, G.O.; Ouma, C.; Mekonnen, E.; Fagundes, N.J.R. Genetic differentiation in East African ethnicities and its relationship with endurance running success. PLoS ONE 2022, 17, e0265625. [Google Scholar] [CrossRef] [PubMed]
- Onywera, V.O. East African Runners: Their Genetics, Lifestyle and Athletic Prowess. Med. Sport Sci. 2009, 54, 102–109. [Google Scholar]
- Saltin, B.; Kim, C.K.; Terrados, N.; Larsen, H.; Svedenhag, J.; Rolf, C.J. Morphology, enzyme activities and buffer capacity in leg muscles of Kenyan and Scandinavian runners. Scand. J. Med. Sci. Sports 1995, 5, 222–230. [Google Scholar] [CrossRef]
- Chen, H.; Chen, C.; Spanos, M.; Li, G.; Lu, R.; Bei, Y.; Xiao, J. Exercise training maintains cardiovascular health: Signaling pathways involved and potential therapeutics. Signal Transduct. Target. Ther. 2022, 7, 306. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Zhou, R.; Feng, Y.; Cheng, L. Molecular mechanisms of exercise contributing to tissue regeneration. Signal Transduct. Target. Ther. 2022, 7, 383. [Google Scholar] [CrossRef]
- Gholipour, M.; Tabrizi, A. The role of Hippo signaling pathway in physiological cardiac hypertrophy. BioImpacts 2020, 10, 250–256. [Google Scholar] [CrossRef] [PubMed]
- Gabriel, B.M.; Hamilton, D.L.; Tremblay, A.M.; Wackerhage, H. The Hippo signal transduction network for exercise physiologists. J. Appl. Physiol. 2016, 120, 1105–1117. [Google Scholar] [CrossRef] [PubMed]
- Watt, K.I.; Goodman, C.A.; Hornberger, T.A.; Gregorevic, P. The Hippo Signaling Pathway in the Regulation of Skeletal Muscle Mass and Function. Exerc. Sport Sci. Rev. 2018, 46, 92–96. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, S.; Åkerström, T.; Rinnov, A.; Yfanti, C.; Scheele, C.; Pedersen, B.K.; Laye, M.J. The miRNA Plasma Signature in Response to Acute Aerobic Exercise and Endurance Training. PLoS ONE 2014, 9, e87308. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, C.; Weigert, C. Skeletal Muscle as an Endocrine Organ: The Role of Myokines in Exercise Adaptations. Cold Spring Harb. Perspect. Med. 2017, 7, a029793. [Google Scholar] [CrossRef] [PubMed]
- Keller, P.; Vollaard, N.B.J.; Gustafsson, T.; Gallagher, I.J.; Sundberg, C.J.; Rankinen, T.; Britton, S.L.; Bouchard, C.; Koch, L.G.; Timmons, J.A. A transcriptional map of the impact of endurance exercise training on skeletal muscle phenotype. J. Appl. Physiol. 2011, 110, 46–59. [Google Scholar] [CrossRef] [PubMed]
- Pillon, N.J.; Gabriel, B.M.; Dollet, L.; Smith, J.A.B.; Puig, L.S.; Botella, J.; Bishop, D.J.; Krook, A.; Zierath, J.R. Transcriptomic profiling of skeletal muscle adaptations to exercise and inactivity. Nat. Commun. 2020, 11, 470. [Google Scholar] [CrossRef] [PubMed]
- Robbins, J.M.; Rao, P.; Deng, S.; Keyes, M.J.; Tahir, U.A.; Katz, D.H.; Beltran, P.M.J.; Marchildon, F.; Barber, J.L.; Peterson, B.; et al. Plasma proteomic changes in response to exercise training are associated with cardiorespiratory fitness adaptations. J. Clin. Investig. 2023, 8, e165867. [Google Scholar] [CrossRef]
- Hjorth, M.; Norheim, F.; Meen, A.J.; Pourteymour, S.; Lee, S.; Holen, T.; Jensen, J.; Birkeland, K.I.; Martinov, V.N.; Langleite, T.M.; et al. The effect of acute and long-term physical activity on extracellular matrix and serglycin in human skeletal muscle. Physiol. Rep. 2015, 3, e12473. [Google Scholar] [CrossRef] [PubMed]
- Santos, C.G.M.; Pimentel-Coelho, P.M.; Budowle, B.; de Moura-Neto, R.S.; Dornelas-Ribeiro, M.; Pompeu, F.A.M.S.; Silva, R. The heritable path of human physical performance: From single polymorphisms to the “next generation”. Scand. J. Med. Sci. Sports 2016, 26, 600–612. [Google Scholar] [CrossRef]
Physical-Related Variables | n = 6 | p-Value | |
---|---|---|---|
HVO2 (n = 3) | LVO2 (n = 3) | ||
Age (years) | 21.3 ± 3.5 | 26.6 ± 7.6 | 0.334 |
Weight (kg) | 57.3 ± 1.5 | 66.8 ± 5.1 | 0.073 |
Height (cm) | 175.3 ± 4.2 | 180.2 ± 3.0 | 0.172 |
Fat percentage | 4.5 ± 0.3 | 5.9 ± 1.9 | 0.296 |
VO2max (mL.kg−1.min−1) | 75.4 ± 0.9 | 60.1 ± 5.0 | 0.007 ** |
Weekly training volume (km) | 130.0 ± 26.5 | 130.0 ± 26.5 | 0.999 |
Training experience (years) | 5.0 ± 2.6 | 6.0 ± 6.9 | 0.827 |
IAAF points | 725 ± 163 | 606 ± 101 | 0.340 |
miRNA | all_ PRE_vs_POST | Group Comparisons | |||
---|---|---|---|---|---|
HVO2 (PRE_vs_POST) | LVO2 (PRE_vs_POST) | PRE (HVO2_vs_LVO2) | POST (HVO2_vs_LVO2) | ||
miR-1281 | x | x | x | x | |
miR-150-5p | x | x | x | x | |
miR-26a-5p | x | x | x | x | |
miR-4290 | x | x | x | x | |
miR-1308 | x | x | x | ||
miR-154-5p | x | x | x | ||
miR-199b-3p | x | x | x | ||
miR-135b-5p | x | x | x | ||
miR-432-5p | x | x | x | ||
miR-219a-1-3p | x | x | x | ||
miR-126-3p | x | x | |||
miR-3181 | x | x | |||
miR-382-5p | x | x | |||
miR-486-5p | x | x | |||
miR-499a-3p | x | x | |||
miR-512-3p | x | x | |||
miR-92a-3p | x | x | |||
miR-10b-5p | x | ||||
miR-1183 | x | ||||
miR-1260a | x | ||||
miR-1273d | x | ||||
miR-1292-5p | x | ||||
miR-135a-5p | x | ||||
miR-18b-5p | x | ||||
miR-197-3p | x | ||||
miR-1975 | x | ||||
miR-2110 | x | ||||
miR-223-3p | x | ||||
miR-30d-5p | x | ||||
miR-362-5p | x | ||||
miR-4270 | x | ||||
miR-4286 | x | ||||
miR-4313 | x | ||||
miR-483-3p | x | ||||
miR-500a-5p | x | ||||
miR-548 | x | ||||
miR-571 | x | ||||
miR-766-3p | x | ||||
miR-1826 | x | x | x | ||
miR-151a-5p | x | x | |||
miR-191-5p | x | x | |||
miR-23a-3p | x | x | |||
miR-92b-3p | x | x | |||
miR-1280 | x | ||||
miR-151-3p | x | ||||
miR-1825 | x | ||||
miR-3138 | x | ||||
miR-3172 | x | ||||
miR-320a-3p | x | ||||
miR-320e | x | ||||
miR-323b-5p | x | ||||
miR-449b-3p | x | ||||
miR-572 | x | ||||
miR-320b | x | x | |||
miR-132-3p | x | ||||
miR-185-3p | x | ||||
miR-494-3p | x | ||||
miR-628-3p | x | ||||
miR-1290 | x | ||||
miR-149-5p | x | ||||
miR-195-5p | x | ||||
miR-222-3p | x | ||||
miR-1207-5p | x | ||||
miR-1229-3p | x | ||||
miR-125a-5p | x | ||||
miR-1538 | x | ||||
miR-15a-5p | x | ||||
miR-1913 | x | ||||
miR-1973 | x | ||||
miR-370-3p | x | ||||
miR-612 | x | ||||
miR-937-3p | x |
all_PRE_vs_POST | LVO2_PRE_vs_POST | HVO2_PRE_vs_POST | |||||||||||
KEGG Pathway | p-Value | miRNAs | Genes | KEGG Pathway | p-Value | miRNAs | Genes | KEGG Pathway | p-Value | miRNAs | Genes | ||
Prion diseases | <1 × 10−325 | 1 | 1 | Fatty acid biosynthesis | <1 × 10−325 | 2 | 1 | Prion diseases | <1 × 10−325 | 2 | 9 | ||
ECM-receptor interaction | <1 × 10−325 | 3 | 11 | ECM-receptor interaction | <1 × 10−325 | 2 | 6 | ECM-receptor interaction | <1 × 10−325 | 3 | 11 | ||
Fatty acid biosynthesis | <1 × 10−325 | 4 | 4 | Fatty acid metabolism | 3.02 × 10−7 | 2 | 1 | Lysine degradation | 1.71 × 10−5 | 3 | 14 | ||
Fatty acid metabolism | <1 × 10−325 | 4 | 8 | Hippo signaling pathway | 1.85 × 10−4 | 3 | 41 | Proteoglycans in cancer | 1.55 × 10−4 | 4 | 59 | ||
TGF-beta signal pathway | 9.93 × 10−4 | 4 | 33 | Fatty acid biosynthesis | 3.68 × 10−3 | 1 | 1 | ||||||
Adherens junction | 6.66 × 10−6 | 5 | 34 | ||||||||||
PRE_HVO2_vs_LVO2 | POST_HVO2_vs_LVO2 | all_4_groups | |||||||||||
KEGG Pathway | p-Value | miRNAs | Genes | KEGG Pathway | p-Value | miRNAs | Genes | KEGG Pathway | p-Value | miRNAs | Genes | ||
ECM-receptor interaction | <1 × 10−325 | 1 | 7 | Fatty acid biosynthesis | <1 × 10−325 | 2 | 4 | Fatty acid biosynthesis | <1 × 10−325 | 3 | 4 | ||
Prion diseases | <1 × 10−325 | 2 | 9 | Hippo signaling pathway | 1.26 × 10−12 | 4 | 50 | Fatty acid metabolism | <1 × 10−325 | 4 | 15 | ||
Proteoglycans in cancer | 3.35 × 10−8 | 4 | 77 | Fatty acid metabolism | 9.50 × 10−11 | 2 | 15 | ECM-receptor interaction | <1 × 10−325 | 3 | 11 | ||
Fatty acid biosynthesis | 7.78 × 10−5 | 1 | 1 | Adherens junction | 1.24 × 10−6 | 5 | 36 | Prion diseases | <1 × 10−325 | 1 | 1 | ||
Adherens junction | 8.03 × 10−5 | 6 | 43 | Viral carcinogenesis | 7.91 × 10−6 | 3 | 70 | Lysine degradation | 1.09 × 10−7 | 3 | 18 | ||
Lysine degradation | 1.38 × 10−4 | 3 | 12 | Adherens junction | 1.98 × 10−3 | 6 | 38 | ||||||
Arrhythmogenic right ventricular | 6.42 × 10−3 | 2 | 8 | Proteoglycans in cancer | 5.03 × 10−3 | 4 | 57 | ||||||
Hippo signaling pathway | 7.88 × 10−3 | 2 | 43 | Viral carcinogenesis | 3.35 × 10−2 | 4 | 78 | ||||||
Prot process in endop. reticulum | 9.08 × 10−3 | 3 | 59 | ||||||||||
TGF-beta signal pathway | 1.13 × 10−2 | 4 | 34 | ||||||||||
Viral carcinogenesis | 1.68 × 10−2 | 3 | 71 | ||||||||||
Pathways in cancer | 3.20 × 10−2 | 3 | 131 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paulucio, D.; Ramirez-Sanchez, C.; Velasque, R.; Xavier, R.; Monnerat, G.; Dill, A.; Silveira, J.; Andrade, G.M.; Meirelles, F.; Dornelas-Ribeiro, M.; et al. Circulating miRNA Signaling for Fatty Acid Metabolism in Response to a Maximum Endurance Test in Elite Long-Distance Runners. Genes 2024, 15, 1088. https://doi.org/10.3390/genes15081088
Paulucio D, Ramirez-Sanchez C, Velasque R, Xavier R, Monnerat G, Dill A, Silveira J, Andrade GM, Meirelles F, Dornelas-Ribeiro M, et al. Circulating miRNA Signaling for Fatty Acid Metabolism in Response to a Maximum Endurance Test in Elite Long-Distance Runners. Genes. 2024; 15(8):1088. https://doi.org/10.3390/genes15081088
Chicago/Turabian StylePaulucio, Dailson, Carlos Ramirez-Sanchez, Rodolfo Velasque, Raphael Xavier, Gustavo Monnerat, Adrieli Dill, Juliano Silveira, Gabriella M. Andrade, Flavio Meirelles, Marcos Dornelas-Ribeiro, and et al. 2024. "Circulating miRNA Signaling for Fatty Acid Metabolism in Response to a Maximum Endurance Test in Elite Long-Distance Runners" Genes 15, no. 8: 1088. https://doi.org/10.3390/genes15081088
APA StylePaulucio, D., Ramirez-Sanchez, C., Velasque, R., Xavier, R., Monnerat, G., Dill, A., Silveira, J., Andrade, G. M., Meirelles, F., Dornelas-Ribeiro, M., Kirchner, B., Pfaffl, M. W., Pompeu, F., & Santos, C. G. M. (2024). Circulating miRNA Signaling for Fatty Acid Metabolism in Response to a Maximum Endurance Test in Elite Long-Distance Runners. Genes, 15(8), 1088. https://doi.org/10.3390/genes15081088