Genotype-First Approach Identifies an Association between rs28374544/FOG2S657G and Liver Disease through Alterations in mTORC1 Signaling
Abstract
:1. Introduction
2. Results
2.1. FOG2S657G Is Associated with Liver Injury and Disease in Multiple Biobank Populations
2.2. Genomic Analysis from a Cohort of Induced Pluripotent Stem Cell Lines Differentiated into Hepatocytes Idenfies an Association between FOG2S657G and mTORC1 Pathway
2.3. Functional In Vitro Studies of FOG2S657G Overexpression in Huh7 Cells Confirm Regulation of mTORC1, DNL, and TG Synthesis
2.4. FOG2S657G Cells Have Reduced Oxidative Phosphorylation in iHeps and Huh7 Cells
3. Discussion
4. Methods
4.1. Meta-Analysis of Biobanks
4.2. Plasma Protein Measurements
4.3. Analysis of Published iPSC-Hepatocyte Data
4.4. Huh7 Cell Culture and Transfection
4.5. Gene Expression
Primer | Sequence |
FOG2 F | TGCTGGACTATCACGAGTGC |
FOG2 R | GACATCAGGGCTGTTTCGTT |
FASN F | CTTCCGAGATTCCATCCTACGC |
FASN R | TGGCAGTCAGGCTCACAAACG |
ACACA F | GGAGAGCATGTCCAATGTTCC |
ACACA R | CGTCCTGTTCATTTCGTGCAA |
GPAM F | TCTTTGGGTTTGCGGAATGTT |
GPAM R | ATGCACATCTCGCTCTTGAATAA |
B2M F | GAGGCTATCCAGCGTACTCCA |
B2M R | CGGCAGGCATACTCATCTTTT |
UBC F | GTGGTGCGTCCAGAGAGAC |
UBC R | GGCCTTCGCCATATCCTTTTC |
IPO8 F | TCCGAACTATTATCGACAGGACC |
IPO8 R | GTTCAAAGAGCCGAGCTACAA |
4.6. Western Blot
4.7. TG Mass Assay
4.8. TG Synthesis Assay
4.9. Seahorse Bioanalyzer Assay
4.10. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shah, P.A.; Patil, R.; Harrison, S.A. NAFLD-related hepatocellular carcinoma: The growing challenge. Hepatology 2023, 77, 323–338. [Google Scholar] [CrossRef] [PubMed]
- Zhou, B.; Ma, Q.; Kong, S.W.; Hu, Y.; Campbell, P.H.; McGowan, F.X.; Ackerman, K.G.; Wu, B.; Zhou, B.; Tevosian, S.G.; et al. Fog2 is critical for cardiac function and maintenance of coronary vasculature in the adult mouse heart. J. Clin. Investig. 2009, 119, 1462–1476. [Google Scholar] [CrossRef] [PubMed]
- Crispino, J.D.; Lodish, M.B.; Thurberg, B.L.; Litovsky, S.H.; Collins, T.; Molkentin, J.D.; Orkin, S.H. Proper coronary vascular development and heart morphogenesis depend on interaction of GATA-4 with FOG cofactors. Genes. Dev. 2001, 15, 839–844. [Google Scholar] [CrossRef] [PubMed]
- Guerraty, M.A.; Verma, S.; Ko, Y.A.; McQuillan, M.A.; Conlon, D.; Tobias, J.W.; Levin, M.G.; Haury, W.; Zhang, C.; Judy, R.; et al. FOG2 coding variant Ser657Gly is associated with Coronary Microvascular Disease through altered hypoxia-mediated gene transcription. medRxiv 2023. [Google Scholar] [CrossRef]
- Guo, Y.; Yu, J.; Deng, J.; Liu, B.; Xiao, Y.; Li, K.; Xiao, F.; Yuan, F.; Liu, Y.; Chen, S.; et al. A Novel Function of Hepatic FOG2 in Insulin Sensitivity and Lipid Metabolism Through PPARalpha. Diabetes 2016, 65, 2151–2163. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Y.; Batmanov, K.; Hu, W.; Zhu, K.; Tom, A.Y.; Guan, D.; Jiang, C.; Cheng, L.; McCright, S.J.; Yang, E.C.; et al. Hepatocytes demarcated by EphB2 contribute to the progression of nonalcoholic steatohepatitis. Sci. Transl. Med. 2023, 15, eadc9653. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Wang, X.; Ma, L.; Ma, Z.; Li, S.; Fang, X.; Ma, X. Bioinformatics analyses and biological function of lncRNA ZFPM2-AS1 and ZFPM2 gene in hepatocellular carcinoma. Oncol. Lett. 2020, 19, 3677–3686. [Google Scholar] [CrossRef] [PubMed]
- Karczewski, K.J.; Solomonson, M.; Chao, K.R.; Goodrich, J.K.; Tiao, G.; Lu, W.; Riley-Gillis, B.M.; Tsai, E.A.; Kim, H.I.; Zheng, X.; et al. Systematic single-variant and gene-based association testing of thousands of phenotypes in 394,841 UK Biobank exomes. Cell Genom. 2022, 2, 100168. [Google Scholar] [CrossRef] [PubMed]
- Verma, A.; Damrauer, S.M.; Naseer, N.; Weaver, J.; Kripke, C.M.; Guare, L.; Sirugo, G.; Kember, R.L.; Drivas, T.G.; Dudek, S.M.; et al. The Penn Medicine BioBank: Towards a Genomics-Enabled Learning Healthcare System to Accelerate Precision Medicine in a Diverse Population. J. Pers. Med. 2022, 12, 1974. [Google Scholar] [CrossRef]
- All of Us Research Program Genomics, I. Genomic data in the All of Us Research Program. Nature 2024, 627, 340–346. [Google Scholar] [CrossRef]
- Verma, A.; Huffman, J.E.; Rodriguez, A.; Conery, M.; Liu, M.; Ho, Y.L.; Kim, Y.; Heise, D.A.; Guare, L.; Panickan, V.A.; et al. Diversity and scale: Genetic architecture of 2068 traits in the VA Million Veteran Program. Science 2024, 385, eadj1182. [Google Scholar] [CrossRef]
- Zhou, W.; Nielsen, J.B.; Fritsche, L.G.; Dey, R.; Gabrielsen, M.E.; Wolford, B.N.; LeFaive, J.; VandeHaar, P.; Gagliano, S.A.; Gifford, A.; et al. Efficiently controlling for case-control imbalance and sample relatedness in large-scale genetic association studies. Nat. Genet. 2018, 50, 1335–1341. [Google Scholar] [CrossRef] [PubMed]
- Ko, Y.A.; Sirugo, G.; Guerraty, M.A.; Gao, Y.; Raedschelders, K.; Kember, R.; Vujkovic, M.; Sheth, S.; Marchadier, D.; Munshi, A.A.; et al. Proteomic Phenome-Wide Association Study With Penn Medicine Biobank Identifies Potential Novel Biomarkers for Disease Diagnosis in 400 African Americans. Circulation 2019, 140, A13490. [Google Scholar]
- Pashos, E.E.; Park, Y.; Wang, X.; Raghavan, A.; Yang, W.; Abbey, D.; Peters, D.T.; Arbelaez, J.; Hernandez, M.; Kuperwasser, N.; et al. Large, Diverse Population Cohorts of hiPSCs and Derived Hepatocyte-like Cells Reveal Functional Genetic Variation at Blood Lipid-Associated Loci. Cell Stem Cell 2017, 20, 558–570. [Google Scholar] [CrossRef]
- Fahlbusch, P.; Knebel, B.; Hörbelt, T.; Barbosa, D.M.; Nikolic, A.; Jacob, S.; Al-Hasani, H.; Van De Velde, F.; Van Nieuwenhove, Y.; Müller-Wieland, D.; et al. Physiological Disturbance in Fatty Liver Energy Metabolism Converges on IGFBP2 Abundance and Regulation in Mice and Men. Int. J. Mol. Sci. 2020, 21, 4144. [Google Scholar] [CrossRef]
- Chen, X.; Tang, Y.; Chen, S.; Ling, W.; Wang, Q. IGFBP-2 as a biomarker in NAFLD improves hepatic steatosis: An integrated bioinformatics and experimental study. Endocr. Connect. 2021, 10, 1315–1325. [Google Scholar] [CrossRef] [PubMed]
- Panwar, V.; Singh, A.; Bhatt, M.; Tonk, R.K.; Azizov, S.; Raza, A.S.; Sengupta, S.; Kumar, D.; Garg, M. Multifaceted role of mTOR (mammalian target of rapamycin) signaling pathway in human health and disease. Signal Transduct. Target. Ther. 2023, 8, 375. [Google Scholar] [CrossRef]
- Ricoult, S.J.; Manning, B.D. The multifaceted role of mTORC1 in the control of lipid metabolism. EMBO Rep. 2013, 14, 242–251. [Google Scholar] [CrossRef]
- Goupille, O.; Kadri, Z.; Langele, A.; Luccantoni, S.; Badoual, C.; Leboulch, P.; Chretien, S. The integrity of the FOG-2 LXCXE pRb-binding motif is required for small intestine homeostasis. Exp. Physiol. 2019, 104, 1074–1089. [Google Scholar] [CrossRef]
- Goupille, O.; Penglong, T.; Kadri, Z.; Granger-Locatelli, M.; Denis, R.; Luquet, S.; Badoual, C.; Fucharoen, S.; Maouche-Chretien, L.; Leboulch, P.; et al. The LXCXE Retinoblastoma Protein-Binding Motif of FOG-2 Regulates Adipogenesis. Cell Rep. 2017, 21, 3524–3535. [Google Scholar] [CrossRef]
- Hyun, S.; Lee, J.H.; Jin, H.; Nam, J.; Namkoong, B.; Lee, G.; Chung, J.; Kim, V.N. Conserved MicroRNA miR-8/miR-200 and its target USH/FOG2 control growth by regulating PI3K. Cell 2009, 139, 1096–1108. [Google Scholar] [CrossRef] [PubMed]
- Pizzuti, A.; Sarkozy, A.; Newton, A.L.; Conti, E.; Flex, E.; Cristina Digilio, M.; Amati, F.; Gianni, D.; Tandoi, C.; Marino, B.; et al. Mutations ofZFPM2/FOG2 gene in sporadic cases of tetralogy of Fallot. Human. Mutation 2003, 22, 372–377. [Google Scholar] [CrossRef] [PubMed]
- Fairfield, C.J.; Drake, T.M.; Pius, R.; Bretherick, A.D.; Campbell, A.; Clark, D.W.; Fallowfield, J.A.; Hayward, C.; Henderson, N.C.; Joshi, P.K.; et al. Genome-Wide Association Study of NAFLD Using Electronic Health Records. Hepatol. Commun. 2022, 6, 297–308. [Google Scholar] [CrossRef]
- Miao, Z.; Garske, K.M.; Pan, D.Z.; Koka, A.; Kaminska, D.; Mannisto, V.; Sinsheimer, J.S.; Pihlajamaki, J.; Pajukanta, P. Identification of 90 NAFLD GWAS loci and establishment of NAFLD PRS and causal role of NAFLD in coronary artery disease. HGG Adv. 2022, 3, 100056. [Google Scholar] [CrossRef]
- Pan, J.J.; Fallon, M.B. Gender and racial differences in nonalcoholic fatty liver disease. World J. Hepatol. 2014, 6, 274–283. [Google Scholar] [CrossRef]
- Kalia, H.S.; Gaglio, P.J. The Prevalence and Pathobiology of Nonalcoholic Fatty Liver Disease in Patients of Different Races or Ethnicities. Clin. Liver Dis. 2016, 20, 215–224. [Google Scholar] [CrossRef]
- Sherif, Z.A.; Saeed, A.; Ghavimi, S.; Nouraie, S.M.; Laiyemo, A.O.; Brim, H.; Ashktorab, H. Global Epidemiology of Nonalcoholic Fatty Liver Disease and Perspectives on US Minority Populations. Dig. Dis. Sci. 2016, 61, 1214–1225. [Google Scholar] [CrossRef]
- Fry, A.; Littlejohns, T.J.; Sudlow, C.; Doherty, N.; Adamska, L.; Sprosen, T.; Collins, R.; Allen, N.E. Comparison of Sociodemographic and Health-Related Characteristics of UK Biobank Participants With Those of the General Population. Am. J. Epidemiol. 2017, 186, 1026–1034. [Google Scholar] [CrossRef]
- Vujkovic, M.; Ramdas, S.; Lorenz, K.M.; Guo, X.; Darlay, R.; Cordell, H.J.; He, J.; Gindin, Y.; Chung, C.; Myers, R.P.; et al. A multiancestry genome-wide association study of unexplained chronic ALT elevation as a proxy for nonalcoholic fatty liver disease with histological and radiological validation. Nat. Genet. 2022, 54, 761–771. [Google Scholar] [CrossRef]
- Sveinbjornsson, G.; Ulfarsson, M.O.; Thorolfsdottir, R.B.; Jonsson, B.A.; Einarsson, E.; Gunnlaugsson, G.; Rognvaldsson, S.; Arnar, D.O.; Baldvinsson, M.; Bjarnason, R.G.; et al. Multiomics study of nonalcoholic fatty liver disease. Nat. Genet. 2022, 54, 1652–1663. [Google Scholar] [CrossRef]
- Lin, Y.H.; Wei, Y.; Zeng, Q.; Wang, Y.; Pagani, C.A.; Li, L.; Zhu, M.; Wang, Z.; Hsieh, M.H.; Corbitt, N.; et al. IGFBP2 expressing midlobular hepatocytes preferentially contribute to liver homeostasis and regeneration. Cell Stem Cell 2023, 30, 665–676. [Google Scholar] [CrossRef] [PubMed]
- Powell, E.E.; Wong, V.W.; Rinella, M. Non-alcoholic fatty liver disease. Lancet 2021, 397, 2212–2224. [Google Scholar] [CrossRef] [PubMed]
- Balduzzi, S.; Rucker, G.; Schwarzer, G. How to perform a meta-analysis with R: A practical tutorial. Evid. Based Ment. Health 2019, 22, 153–160. [Google Scholar] [CrossRef]
- Folch, J.; Lees, M.; Sloane Stanley, G.H. A simple method for the isolation and purification of total lipides from animal tissues. J. Biol. Chem. 1957, 226, 497–509. [Google Scholar]
Source | Measurement | β | p-Value | Case (N) | Total (N) |
---|---|---|---|---|---|
Genebass | Liver Failure/Cirrhosis | +4.288 | 0.0053 | 234 | 367,963 |
Meta-analysis: PennMedicine Biobank, All of Us, Million Veterans Program | Cirrhosis of the liver without mention of alcohol | +0.068 | 0.01239 | 5665 | 171,129 |
PennMedicine Biobank | Plasma alanine transaminase | +0.23 | 0.03 | 102 | 389 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Conlon, D.M.; Kanakala, S.; Cherlin, T.; Ko, Y.-A.; Vitali, C.; Gurunathan, S.; Venkatesh, R.; Woerner, J.; Guare, L.A.; Biobank, P.M.; et al. Genotype-First Approach Identifies an Association between rs28374544/FOG2S657G and Liver Disease through Alterations in mTORC1 Signaling. Genes 2024, 15, 1098. https://doi.org/10.3390/genes15081098
Conlon DM, Kanakala S, Cherlin T, Ko Y-A, Vitali C, Gurunathan S, Venkatesh R, Woerner J, Guare LA, Biobank PM, et al. Genotype-First Approach Identifies an Association between rs28374544/FOG2S657G and Liver Disease through Alterations in mTORC1 Signaling. Genes. 2024; 15(8):1098. https://doi.org/10.3390/genes15081098
Chicago/Turabian StyleConlon, Donna M., Siri Kanakala, Tess Cherlin, Yi-An Ko, Cecilia Vitali, Sharavana Gurunathan, Rasika Venkatesh, Jakob Woerner, Lindsay A. Guare, Penn Medicine Biobank, and et al. 2024. "Genotype-First Approach Identifies an Association between rs28374544/FOG2S657G and Liver Disease through Alterations in mTORC1 Signaling" Genes 15, no. 8: 1098. https://doi.org/10.3390/genes15081098
APA StyleConlon, D. M., Kanakala, S., Cherlin, T., Ko, Y. -A., Vitali, C., Gurunathan, S., Venkatesh, R., Woerner, J., Guare, L. A., Biobank, P. M., Verma, A., Verma, S. S., & Guerraty, M. A. (2024). Genotype-First Approach Identifies an Association between rs28374544/FOG2S657G and Liver Disease through Alterations in mTORC1 Signaling. Genes, 15(8), 1098. https://doi.org/10.3390/genes15081098