Comparative Analysis of Two NGS-Based Platforms for Product-of-Conception Karyotyping
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples
2.2. lcWGS by NGS
2.3. QF-PCR
2.4. FISH
2.5. Methylation Study
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Soler, A.; Morales, C.; Mademont-Soler, I.; Margarit, E.; Borrell, A.; Borobio, V.; Muñoz, M.; Sánchez, A. Overview of Chromosome Abnormalities in First Trimester Miscarriages: A Series of 1,011 Consecutive Chorionic Villi Sample Karyotypes. Cytogenet. Genome Res. 2017, 152, 81–89. [Google Scholar] [CrossRef] [PubMed]
- Shah, M.S.; Cinnioglu, C.; Maisenbacher, M.; Comstock, I.; Kort, J.; Lathi, R.B. Comparison of cytogenetics and molecular karyotyping for chromosome testing of miscarriage specimens. Fertil. Steril. 2017, 107, 1028–1033. [Google Scholar] [CrossRef] [PubMed]
- Smits, M.A.J.; Maarle, M.V.; Hamer, G.; Mastenbroek, S.; Goddijn, M.; Wely, M.V. Cytogenetic testing of pregnancy loss tissue: A meta-analysis. Reprod. Biomed. Online 2020, 40, 867–879. [Google Scholar] [CrossRef] [PubMed]
- Benkhalifa, M.; Kasakyan, S.; Clement, P.; Baldi, M.; Tachdjian, G.; Demirol, A.; Gurgan, T.; Fiorentino, F.; Mohammed, M.; Qumsiyeh, M.B. Array comparative genomic hybridization profiling of first-trimester spontaneous abortions that fail to grow in vitro. Prenat. Diagn. 2005, 25, 894–900. [Google Scholar] [CrossRef]
- Robberecht, C.; Schuddinck, V.; Fryns, J.P.; Vermeesch, J.R. Diagnosis of miscarriages by molecular karyotyping: Benefits and pitfalls. Genet. Med. 2009, 11, 646–654. [Google Scholar] [CrossRef] [PubMed]
- Sahoo, T.; Dzidic, N.; Strecker, M.N.; Commander, S.; Travis, M.K.; Doherty, C.; Tyson, R.W.; Mendoza, A.E.; Stephenson, M.; Dise, C.A.; et al. Comprehensive genetic analysis of pregnancy loss by chromosomal microarrays: Outcomes, benefits, and challenges. Genet. Med. 2017, 19, 83–89. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Cheng, Q.; Meng, L.; Luo, C.; Hu, H.; Zhang, J.; Cheng, J.; Xu, T.; Jiang, T.; Liang, D.; et al. linical application of SNP array analysis in first-trimester pregnancy loss: A prospective study. Clin. Genet. 2017, 91, 849–858. [Google Scholar] [CrossRef] [PubMed]
- Fiorentino, F.; Bono, S.; Biricik, A.; Nuccitelli, A.; Cotroneo, E.; Cottone, G.; Kokocinski, F.; Michel, C.E.; Minasi, M.G.; Greco, E. Application of next-generation sequencing technology for comprehensive aneuploidy screening of blastocysts in clinical preimplantation genetic screening cycles. Hum. Reprod. 2014, 29, 2802–2813. [Google Scholar] [CrossRef] [PubMed]
- Dong, Z.; Zhang, J.; Hu, P.; Chen, H.; Xu, J.; Tian, Q.; Meng, L.; Ye, Y.; Wang, J.; Zhang, M.; et al. Low-pass whole-genome sequencing in clinical cytogenetics: A validated approach. Genet. Med. 2016, 18, 940–948. [Google Scholar] [CrossRef] [PubMed]
- Kato, T.; Miyai, S.; Suzuki, H.; Murase, Y.; Ota, S.; Yamauchi, H.; Ammae, M.; Nakano, T.; Nakaoka, Y.; Inoue, T.; et al. Usefulness of combined NGS and QF-PCR analysis for product of conception karyotyping. Reprod. Med. Biol. 2022, 27, e12449. [Google Scholar] [CrossRef] [PubMed]
- Chuang, T.H.; Wu, Z.H.; Kuan, C.S.; Lee, M.J.; Hsieh, C.L.; Wang, H.L.; Lai, H.H.; Chang, Y.J.; Chen, S.U. High concordance in preimplantation genetic testing for aneuploidy between automatic identification via Ion S5 and manual identification via Miseq. Sci. Rep. 2021, 23, 18931. [Google Scholar] [CrossRef] [PubMed]
- García-Pascual, C.M.; Navarro-Sánchez, L.; Navarro, R.; Martínez, L.; Jiménez, J.; Rodrigo, L.; Simón, C.; Rubio, C. Optimized NGS Approach for Detection of Aneuploidies and Mosaicism in PGT-A and Imbalances in PGT-SR. Genes 2020, 29, 724. [Google Scholar] [CrossRef] [PubMed]
- Johansson, J.; Lidéus, S.; Höijer, I.; Ameur, A.; Gudmundsson, S.; Annerén, G.; Bondeson, M.L.; Wilbe, M. A novel quantitative targeted analysis of X-chromosome inactivation (XCI) using nanopore sequencing. Sci. Rep. 2023, 13, 12856. [Google Scholar] [CrossRef]
- Sharp, A.J.; Stathaki, E.; Migliavacca, E.; Brahmachary, M.; Montgomery, S.B.; Dupre, Y.; Antonarakis, S.E. DNA methylation profiles of human active and inactive X chromosomes. Genome Res. 2011, 21, 1592–1600. [Google Scholar] [CrossRef] [PubMed]
- Essers, R.; Lebedev, I.N.; Kurg, A.; Fonova, E.A.; Stevens, S.J.C.; Koeck, R.M.; von Rango, U.; Brandts, L.; Deligiannis, S.P.; Nikitina, T.V.; et al. Prevalence of chromosomal alterations in first-trimester spontaneous pregnancy loss. Nat. Med. 2023, 29, 3233–3242. [Google Scholar] [CrossRef] [PubMed]
- Kang, H.; Wang, L.; Xie, Y.; Chen, Y.; Gao, C.; Li, X.; Hu, Y.; Liu, Q. Prenatal Diagnosis of Chromosomal Mosaicism in 18,369 Cases of Amniocentesis. Am. J. Perinatol. 2024, 41, e2058–e2068. [Google Scholar] [CrossRef] [PubMed]
- Practice Committees of the American Society for Reproductive Medicine and the Genetic Counseling Professional Group. Clinical management of mosaic results from preimplantation genetic testing for aneuploidy of blastocysts: A committee opinion. Fertil. Steril. 2023, 120, 973–982. [Google Scholar] [CrossRef]
- Hall, H.; Hunt, P.; Hassold, T. Meiosis and sex chromosome aneuploidy: How meiotic errors cause aneuploidy; how aneuploidy causes meiotic errors. Curr. Opin. Genet. Dev. 2006, 16, 323–329. [Google Scholar] [CrossRef] [PubMed]
- Hook, E.B.; Warburton, D. Turner syndrome revisited: Review of new data supports the hypothesis that all viable 45,X cases are cryptic mosaics with a rescue cell line, implying an origin by mitotic loss. Hum. Genet. 2014, 133, 417–424. [Google Scholar] [CrossRef] [PubMed]
Results of Chromosomal Analysis by NGS | ||
---|---|---|
Case No. | Illumina | Thermo Fisher Scientific |
1 | 46,XX | 46,XX |
2 | 46,XY | 46,XY |
3 | 46,XX | 46,XX |
4 | 48,XY,+15,+22 | 48,XY,+15,+22 |
5 | 47,XX,+9 | 47,XX,+9 |
6 | 47,XY,+13 | 47,XY,+13 |
7 | 47,XY,+15 | 47,XY,+15 |
8 | 47,XY,+21 | 47,XY,+21 |
9 | 46,XX | 46,XX |
10 | 47,XX,+15 | 47,XX,+15 |
11 | 47,XY,+15 | 47,XY,+15 |
12 | 47,XX,+8 | 47,XX,+8 |
13 | 49,XX,+9,+13,+21/48,X,+9,+13,+21 | 49,XX,+9,+13,+21/48,X,+9,+13,+21 |
14 | 46,XY | 46,XY |
15 | 47,XY,+16 | 47,XY,+16 |
16 | 47,XY,+9 | 47,XY,+9 |
17 | 46,XX | 46,XX |
18 | 45,X | 45,X |
19 | 46,XX | 46,XX |
20 | 46,XY | 46,XY |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Murase, Y.; Shichiri, Y.; Inagaki, H.; Nakano, T.; Nakaoka, Y.; Morimoto, Y.; Ichikawa, T.; Nishizawa, H.; Sugihara, E.; Kurahashi, H. Comparative Analysis of Two NGS-Based Platforms for Product-of-Conception Karyotyping. Genes 2024, 15, 1100. https://doi.org/10.3390/genes15081100
Murase Y, Shichiri Y, Inagaki H, Nakano T, Nakaoka Y, Morimoto Y, Ichikawa T, Nishizawa H, Sugihara E, Kurahashi H. Comparative Analysis of Two NGS-Based Platforms for Product-of-Conception Karyotyping. Genes. 2024; 15(8):1100. https://doi.org/10.3390/genes15081100
Chicago/Turabian StyleMurase, Yuri, Yui Shichiri, Hidehito Inagaki, Tatsuya Nakano, Yoshiharu Nakaoka, Yoshiharu Morimoto, Tomoko Ichikawa, Haruki Nishizawa, Eiji Sugihara, and Hiroki Kurahashi. 2024. "Comparative Analysis of Two NGS-Based Platforms for Product-of-Conception Karyotyping" Genes 15, no. 8: 1100. https://doi.org/10.3390/genes15081100
APA StyleMurase, Y., Shichiri, Y., Inagaki, H., Nakano, T., Nakaoka, Y., Morimoto, Y., Ichikawa, T., Nishizawa, H., Sugihara, E., & Kurahashi, H. (2024). Comparative Analysis of Two NGS-Based Platforms for Product-of-Conception Karyotyping. Genes, 15(8), 1100. https://doi.org/10.3390/genes15081100