Genetic Signature of River Capture Imprinted in Schizopygopsis Fish from the Eastern Tibetan Plateau
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling and Data Acquisition
2.2. Phylogenetic Reconstruction
2.3. Estimation of Divergence Time and Biogeographic Analyses
3. Results
3.1. Phylogenetic Analyses and Divergence Time Estimation
3.2. Ancestral State Reconstruction
4. Discussion
4.1. Taxonomic Assignments
4.2. Palaeo-Drainages Connection Signature
4.3. River Capture History in the Upper Changjiang System
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, P.X. Cenozoic deformation and the history of sea-land interactions in Asia. Geophys. Monogr. 2004, 149, 1–22. [Google Scholar]
- Clark, M.K.; Schoenbohm, L.M.; Royden, L.H.; Whipple, K.X.; Burchfiel, B.C.; Zhang, X.; Tang, W.; Wang, E.; Chen, L. Surface uplift, tectonics, and erosion of eastern Tibet from largescale drainage patterns. Tectonics 2004, 23, TC1006. [Google Scholar] [CrossRef]
- Gu, J.W.; Chen, J.; Sun, Q.L.; Wang, Z.H.; Wei, Z.X.; Chen, Z.Y. China’s Yangtze delta: Geochemical fingerprints reflecting river connection to the sea. Geomorphology 2014, 227, 166–173. [Google Scholar] [CrossRef]
- Li, C.X.; Zhang, G.J. A sea running Changjiang River during the Last Glaciation? Acta Geogr. Sin. 1995, 50, 459–462. [Google Scholar]
- Liu, X.B.; Chen, J.; Maher, B.A.; Zhao, B.C.; Yue, W.; Sun, Q.L.; Chen, Z.Y. Connection of the proto-Yangtze River to the East China Sea traced by sediment magnetic properties. Geomorphology 2018, 303, 162–171. [Google Scholar] [CrossRef]
- Wang, H.Z. Atlas of Paleogeography of China; Map Publishing House: Beijing, China, 1985. [Google Scholar]
- Zheng, H. Birth of the Yangtze River: Age and tectonic-geomorphic implications. Natl. Sci. Rev. 2015, 2, 438–453. [Google Scholar] [CrossRef]
- Zheng, H.; Clift, P.D.; Wang, P.; Tada, R.; Jia, J.T.; He, M.Y.; Jourdan, F. Pre-Miocene birth of the Yangtze River. Proc. Natl. Acad. Sci. USA 2013, 110, 7556–7561. [Google Scholar] [CrossRef]
- Ren, M.E.; Bao, H.S.; Han, T.C.; Wang, F.Y.; Huang, P.H. The geomorphology of the Jinshajiang valley of northwest Yunnan and problems associated with river capture. Acta Geogr. Sin. 1959, 25, 135–155. [Google Scholar]
- Li, H.Y.; Ming, Q.Z. Summary and prospects for the valley & drainage evolution of the Shigu-Yibin section of the Jinsha River. Geogr. Geo-Inf. Sci. 2011, 27, 50–55. [Google Scholar]
- Ming, Q.Z.; Shi, Z.T.; Dong, M. The inquiry on genesis and formation times of the First Bend of Yangtze River. Prog. Geogr. 2007, 26, 119–126. [Google Scholar]
- Shi, Z.T.; Ming, Q.Z.; Dong, M. A new discussion on the origin of the First Turn of the Yangtze River. Yunnan Geogr. Environ. Res. 2006, 18, 1–6. [Google Scholar]
- He, H.S.; He, K.Z.; Jiang, F.C.; Zhu, Z.Y.; Zhu, X.M. A study on the genesis of Shaxi-Hongwen valley in northwest Yunnan—An once more discussion on the capture problem of the Jinsha River. Geoscience 1991, 5, 280–289. [Google Scholar]
- He, H.S.; He, K.Z.; Zhu, X.M.; Zhu, Z.Y. A discussion on the problem of river-capturing of the Jinshajiang River in northwest Yunnan. Geoscience 1989, 3, 319–330. [Google Scholar]
- Wei, H.H.; Wang, E.; Wu, G.L.; Meng, K. No sedimentary records indicating southerly flow of the paleo-Upper Yangtze River from the First Bend in southeastern Tibet. Gondwana Res. 2016, 32, 93–104. [Google Scholar] [CrossRef]
- Yang, D.Y.; Li, X.S. Study on the eastward flow of the Jinsha River. J. Nanjing Univ. (Nat. Sci.) 2001, 37, 317–322. [Google Scholar]
- Zheng, H.B.; Wei, X.C.; Wang, P.; He, M.Y.; Luo, C.; Yang, Q. Geological evolution of the Yangtze River. Sci. Sin. Terrae 2017, 47, 385–393. [Google Scholar]
- Bishop, P. Drainage rearrangement by river capture, beheading and diversion. Prog. Phys. Geogr. 1995, 19, 449–473. [Google Scholar] [CrossRef]
- Yang, D.Y. The Geomorphic Processes of the Yangtze River; Geological Publishing House: Beijing, China, 2006. [Google Scholar]
- Chen, F.; Xue, G.; Wang, Y.K.; Zhang, H.C.; Clift, P.D.; Xing, Y.W.; He, J.; Albert, J.S.; Chen, J.; Xie, P. Evolution of the Yangtze River and its biodiversity. Innovation 2023, 4, 100417. [Google Scholar] [CrossRef]
- He, D.K.; Chen, Y.F. Biogeography and molecular phylogeny of the genus Schizothorax (Teleostei: Cyprinidae) in China inferred from cytochrome b sequences. J. Biogeogr. 2006, 33, 1448–1460. [Google Scholar] [CrossRef]
- Li, X.X.; Qian, J.S.; Huang, J.H.; Zhu, R.; Lin, P.C.; He, D.K. Genetic memory of fishes on river development in Himalayas. Quat. Sci. 2023, 43, 819–837. [Google Scholar]
- Lima, S.M.Q.; Berbel-Filho, W.M.; Araújo1, T.F.P.; Lazzarotto, H.; Tatarenkov, A.; Avise, J.C. Headwater capture evidenced by paleo-rivers reconstruction and population genetic structure of the armored catfish (Pareiorhaphis garbei) in the Serra do Mar mountains of southeastern Brazil. Front. Genet. 2018, 8, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Qi, D.L.; Guo, S.C.; Chao, Y.; Kong, Q.H.; Li, C.Z.; Xia, M.Z.; Xie, B.S.; Zhao, K. The biogeography and phylogeny of schizothoracine fishes (Schizopygopsis) in the Qinghai-Tibetan Plateau. Zool. Scr. 2015, 44, 523–533. [Google Scholar] [CrossRef]
- Todd, E.V.; Blair, D.; Farley, S.; Farrington, L.; Fitzsimmons, N.N.; Georges, A.; Limpus, C.J.; Jerry, D.R. Contemporary genetic structure reflects historical drainage isolation in an Australian snapping turtle, Elseya albagula. Zool. J. Linn. Soc. 2013, 169, 200–214. [Google Scholar] [CrossRef]
- Unmack, P.J. Biogeography of Australian Freshwater Fishes. J. Biogeogr. 2001, 28, 1053–1089. [Google Scholar] [CrossRef]
- Waters, J.M.; Craw, D.; Youngson, J.H.; Wallis, G.P. Genes meet geology: Fish phylogeographic pattern reflects ancient, rather than modern, drainage connections. Evolution 2001, 55, 1844–1851. [Google Scholar]
- Wilkinson, M.J.; Marshall, L.G.; Lundberg, J.G. River behavior on megafans and potential influences on diversification and distribution of aquatic organisms. J. South Am. Earth Sci. 2006, 21, 151–172. [Google Scholar] [CrossRef]
- Hewitt, G.M. Some genetic consequences of ice ages, and their role in divergence and speciation. Biol. J. Linn. Soc. 1996, 58, 247–276. [Google Scholar] [CrossRef]
- He, D.K.; Chen, Y.X.; Chen, Y.F. Molecular phylogeny and biogeography of the genus Triplophysa (Osteichthyes: Nemacheilinae) in the Tibetan Plateau inferred from cytochrome b DNA sequences. Prog. Nat. Sci. 2006, 16, 1395–1404. [Google Scholar]
- Qi, D. Fish of the upper Yellow River. In Landscape and Ecosystem Diversity, Dynamics and Management in the Yellow River Source Zone; Brierley, G.J., Li, X.L., Cullum, C., Gao, J., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 233–252. [Google Scholar]
- Tang, Y.T.; Li, C.H.; Wanghe, K.Y.; Feng, C.G.; Tong, C.; Tian, F.; Zhao, K. Convergent evolution misled taxonomy in schizothoracine fishes (Cypriniformes: Cyprinidae). Mol. Phylogenetics Evol. 2019, 134, 323–337. [Google Scholar] [CrossRef]
- He, D.K.; Chen, Y.F. Molecular phylogeny and biogeography of the highly specialized grade schizothoracine fishes (Teleostei: Cyprinidae) inferred from cytochrome b sequences. Chin. Sci. Bull. 2007, 52, 777–788. [Google Scholar] [CrossRef]
- Duan, Z.Y.; Zhao, K.; Peng, Z.G.; Li, J.B.; Diogo, R.; Zhao, X.Q.; He, S.P. Comparative phylogeography of the Yellow River schizothoracine fishes (Cyprinidae): Vicariance, expansion, and recent coalescence in response to the Quaternary environmental upheaval in the Tibetan Plateau. Mol. Phylogenetics Evol. 2009, 53, 1025–1031. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Mayden, R.L.; He, S.P. Population genetic structure and geographical differentiation of the Chinese catfish Hemibagrus macropterus (Siluriformes, Bagridae): Evidence for altered drainage patterns. Mol. Phylogenetics Evol. 2009, 51, 405–411. [Google Scholar] [CrossRef] [PubMed]
- Cao, W.X.; Chen, Y.Y.; Wu, Y.F.; Zhu, S.Q. Origin and evolution of schizothoracine fishes in relation to the upheaval of the Xizang Plateau (in Chinese). In The Comprehensive Scientific Expedition to the Qinghai-Xizang Plateau, Collection in Studies on the Period, Amplitude and Type of the Uplift of the Qinghai-Xizang Plateau; Chinese Academy of Sciences, Ed.; Science Press: Beijing, China, 1981; pp. 118–130. [Google Scholar]
- Sambrook, J.; Fritsch, E.F.; Maniatis, T. Molecular Cloning: A Laboratory Manual, 2nd ed.; Cold Spring Harbor Laboratory: Long Island, NY, USA, 1989. [Google Scholar]
- Xiao, W.; Zhang, Y.; Liu, H. Molecular systematics of Xenocyprinae (Teleostei: Cyprinidae): Taxonomy, biogeography, and coevolution of a special group restricted in East Asia. Mol. Phylogenetics Evol. 2001, 18, 163–173. [Google Scholar] [CrossRef] [PubMed]
- Thompson, J.D.; Gibson, T.J.; Plewniak, F.; Jeanmougin, F.; Higgins, D.G. The ClustalX windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 1997, 25, 4876–4882. [Google Scholar] [CrossRef]
- Qi, D.; Guo, S.; Liu, J.; Zhao, X. Natural Center for Biotechnology Information. Available online: https://www.ncbi.nlm.nih.gov/nuccore/DQ309367. (accessed on 26 July 2016).
- Tang, Y.; Zhao, K. Natural Center for Biotechnology Information. Available online: https://www.ncbi.nlm.nih.gov/nuccore/KY461332 (accessed on 12 February 2018).
- Yu, C.J.; Song, Z.B.; Yue, B.S. Taxonomic implications from phylogenetic relationships of subspecies of Schizopygopsis malacanthus (Pisces: Cyprinidae) based on sequence analysis of cytochrome b and mitochondrial DNA control region. J. Nat. Hist. 2006, 40, 2569–2576. [Google Scholar] [CrossRef]
- Qi, D.; Zhao, X.; Guo, S. Natural Center for Biotechnology Information. Available online: https://www.ncbi.nlm.nih.gov/nuccore/DQ646898- DQ646898 (accessed on 14 July 2016).
- Chen, J.; Zhang, X.; Qi, D.; Guo, S. Natural Center for Biotechnology Information. Available online: https://www.ncbi.nlm.nih.gov/nuccore/KT833098 (accessed on 30 September 2016).
- Liu, Z.; Zhang, J.; Shi, H.; Wang, Y.; Li, Z. Natural Center for Biotechnology Information. Available online: https://www.ncbi.nlm.nih.gov/nuccore/KM371149 (accessed on 1 January 2015).
- Posada, D.; Crandall, K.A. Modeltest: Testing the model of DNA substitution. Bioinformatics 1998, 14, 817–818. [Google Scholar] [CrossRef]
- Farris, J.S. Outgroups and parsimony. Syst. Zool. 1982, 31, 328–334. [Google Scholar] [CrossRef]
- Felsenstein, J. Evolutionary trees from DNA sequences: A maximum likelihood approach. J. Mol. Evol. 1981, 17, 368–376. [Google Scholar] [CrossRef]
- Huelsenbeck, J.P.; Ronquist, F. MRBAYES: Bayesian inference of phylogeny. Bioinformatics 2001, 17, 754–755. [Google Scholar] [CrossRef]
- Swofford, D.L. PAUP*. Phylogenetic Analysis Using Parsimony (* and Other Methods), Version 4.0b10; Sinauer Associates: Sunderland, MA, USA, 2003. [Google Scholar]
- Guindon, S.; Dufayard, J.F.; Lefort, V.; Anisimova, M.; Hordijk, W.; Gascuel, O. New algorithms and methods to estimate Maximum-Likelihood phylogenies: Assessing the performance of PhyML 3.0. Syst. Biol. 2010, 59, 307–321. [Google Scholar] [CrossRef]
- Ronquist, F.; Teslenko, M.; Mark, P.V.D.; Ayres, D.L.; Darling, A.; Hohna, S.; Larget, B.; Liu, L.; Suchard, M.A.; Huelsenbeck, J.P. MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 2012, 61, 539–542. [Google Scholar] [CrossRef] [PubMed]
- Felsenstein, J. Confidence limits on phylogenies: An approach using the bootstrap. Evolution 1985, 39, 783–791. [Google Scholar] [CrossRef] [PubMed]
- Bandelt, H.J.; Forster, P.; Röhl, A. Median-joining networks for inferring intraspecific phylogenies. Mol. Biol. Evol. 1999, 16, 37–48. [Google Scholar] [CrossRef] [PubMed]
- Bouckaert, R.; Heled, J.; Kühnert, D.; Vaughan, T.; Wu, C.-H.; Xie, D.; Suchard, M.A.; Rambaut, A.; Drummond, A.J. BEAST 2: A software platform for Bayesian evolutionary analysis. PLoS Comput. Biol. 2014, 10, e1003537. [Google Scholar] [CrossRef]
- Gernhard, T. The conditioned reconstructed process. J. Theor. Biol. 2008, 253, 769–778. [Google Scholar] [CrossRef] [PubMed]
- Drummond, A.J.; Ho, S.Y.; Phillips, M.J.; Rambau, T.A. Relaxed phylogenetics and dating with confidence. PLoS Biol. 2006, 4, e88. [Google Scholar] [CrossRef] [PubMed]
- Cui, Z.J.; Wu, Y.Q.; Liu, G.N.; Ge, D.K.; Pang, Q.Q.; Xu, Q.H. On Kunlun-Yellow River tectonic movement. Sci. China Ser. D-Earth Sci. 1998, 41, 592–600. [Google Scholar] [CrossRef]
- Rambaut, A.; Suchard, M.; Drummond, A.J. Tracer v1.6. 2013. Available online: http://tree.bio.ed.ac.uk/software/tracer/ (accessed on 11 December 2013).
- Yu, Y.; Blair, C.; He, X.J. RASP 4: Ancestral state reconstruction tool for multiple genes and characters. Mol. Biol. Evol. 2020, 37, 604–606. [Google Scholar] [CrossRef]
- Wu, Y.F.; Wu, C.Z. The Fishes of the Qinghai—Xizang Plateau; Sichuan Science and Technology Press: Chengdu, China, 1992. [Google Scholar]
- Qi, D.L.; Guo, S.C.; Zhao, X.Q. Molecular systematics of two enigmatic fishes in the genus Schizopygopsis in the Qinghai-Tibetan Plateau. Acta Zool. Sin. 2006, 52, 1058–1066. [Google Scholar]
- Chen, Y.Y. The Fishes of the Hengduan Mountains Region; Science Press: Beijing, China, 1998. [Google Scholar]
- Berendzen, P.B.; Simons, A.M.; Wood, R.M. Phylogeography of the northern hogsucker, Hypentelium nigricans (Teleostei: Cypriniformes): Genetic evidence for the existence of the ancient Teays River. J. Biogeogr. 2003, 30, 1139–1152. [Google Scholar] [CrossRef]
- Mayden, R.L. Vicariance biogeography, parsimony, and evolution in North American freshwater fishes. Syst. Zool. 1988, 37, 329–355. [Google Scholar] [CrossRef]
- Thomaz, A.T.; Malabarba, L.R.; Bonatto, S.L.; Knowles, L.L. Testing the effect of palaeodrainages versus habitat stability on genetic divergence in riverine systems: Study of a neotropical fish of the Brazilian coastal Atlantic forest. J. Biogeogr. 2015, 42, 2389–2401. [Google Scholar] [CrossRef]
- Thomaz, A.T.; Malabarba, L.R.; Knowles, L.L. Genomic signatures of paleodrainages in a freshwater fish along the southeastern coast of Brazil: Genetic structure reflects past riverine properties. Heredity 2017, 119, 287–294. [Google Scholar] [CrossRef]
- Burridge, C.P.; Craw, D.; Waters, J.M. River capture, range expansion, and cladogenesis: The genetic signature of freshwater vicariance. Evolution 2006, 60, 1038–1049. [Google Scholar] [PubMed]
- Nelson, G.; Platnick, N. Biogeography. Carol. Biol. Read. 1984, 119, 1–20. [Google Scholar]
- Barron, E.J. Explanations of the Tertiary global cooling trend. Palaeogeogr. Palaeoclimatol. Palaeoecol. 1985, 50, 45–61. [Google Scholar] [CrossRef]
- Hall, R. The plate tectonics of Cenozoic SE Asia and the distribution of land and sea. In Biogeography and Geological Evolution of SE Asia; Hall, R., Holloway, J.D., Eds.; Backhuys Publishers: Leiden, The Netherlands, 1998; pp. 99–131. [Google Scholar]
- Li, J.J. Uplift of the Tibetan Plateau and late Cenozoic environmental change. J. Lanzhou Univ. (Nat. Sci.) 2013, 49, 154–159. [Google Scholar]
- Shi, Y.F.; Li, J.J.; Li, B.Y.; Yao, T.D.; Wang, S.M.; Li, S.J.; Cui, Z.J.; Wang, F.B.; Pan, B.T.; Fang, X.M.; et al. Uplift of the Qinghai-Xizang (Tibetan) Plateau and East Asia Environmental change during late Cenozoic. Acta Geogr. Sin. 1999, 54, 10–20. [Google Scholar]
- Li, J.J.; Fang, X.M.; Pan, B.T.; Zhao, Z.J.; Song, Y.G. Late Cenozoic intensive uplift of Qinghai-Xizang Plateau and its impacts on environments in surrounding area. Quat. Sci. 2001, 21, 381–391. [Google Scholar]
- Han, W.X.; Fang, X.M.; Berger, A. Tibet forcing of mid-Pleistocene synchronous enhancement of East Asian winter and summer monsoons revealed by Chinese loess record. Quat. Res. 2012, 78, 174–184. [Google Scholar] [CrossRef]
- Winograd, I.J.; Landwehr, J.M.; Ludwig, K.R.; Coplen, T.B.; Riggs, A.C. Duration and structure of the past four interglaciations. Quarernary Res. 1997, 48, 141–154. [Google Scholar] [CrossRef]
- Wright, S. Evolution and the Geneticss of Populations, Vol.2: The Theory of Gene Frequencies; University of Chicago Press: Chicago, IL, USA, 1969. [Google Scholar]
- Kong, W.Q.; Zhou, C.W.; Wei, Z.J.; Feng, B.; Duan, C. Artificial breeding technology of Schigoygopsis pylzov applied in culture. Hebei Fish. 2023, 351, 6–7, 20. [Google Scholar]
- Li, W.; Zhao, L.Y.; Zhao, W.H.; Guo, W.J.; Qiao, Q.L.; Liu, M. Artificial propagation of Herzensteinia microcephalus (Herzenstein, 1891) in the southern headwaters of the Yangtze River. J. Yangtze River Sci. Res. Inst. 2020, 37, 8–13. [Google Scholar]
- Wang, J.L.; Wang, Q.L.; Zeng, B.H.; Wang, W.L. Preliminary study on large scale seedling cultivation techniques of Schizopygopsis younghusbandi. Tibet J. Agric. Sci. 2019, z1, 33–35. [Google Scholar]
- Hewitt, G.M. Post-glacial re-colonization of European biota. Biol. J. Linn. Soc. 1999, 68, 87–112. [Google Scholar] [CrossRef]
- Nei, M.; Maruyama, T.; Chakraborty, R. The bottleneck effect and genetic variability in populations. Evolution 1975, 29, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.J. An outline of palaeogeography during the Jurassic and Cretaceous periods of China-with a discussion on the origin of Yangtze River. Acta Sci. Nat. Univ. Pekin. 1979, 3, 90–109. [Google Scholar]
- Kong, P.; Zheng, Y. Provenance and time constraints on the formation of the first bend of the Yangtze River. Geochem. Geophys. Geosystems 2012, 13, Q06017. [Google Scholar] [CrossRef]
- Zhang, J.P.; Liu, Z.; Zhang, B.; Yin, X.Y.; Wang, L.; Shi, H.N.; Kang, Y.J. Genetic diversity and taxonomic status of Gymnocypris chilianensis based on the mitochondrial DNA cytochrome b gene. Genet. Mol. Res. 2015, 14, 9253–9260. [Google Scholar] [CrossRef] [PubMed]
Drainage (Locality) | Elevation (m) | Species | Haplotype | GenBank Number | Reference |
---|---|---|---|---|---|
Changjiang/Yangtze System | |||||
1. Tuotuo River (Tanggula town, Qinghai, China) | 4700 | Schizopygopsis thermalis S. microcephalus | Stherm HmT241 | DQ309367 KY461332 | [40,41] |
2. Jinsha River (First Bend, Shigu town, Yunnan, China) | 1850 | S.microcephalus | YNSG08, 23, 27, 31,65 | MN399193-MN399197 | this study |
3. Shuiluo River (Litang and Daocheng Counties, Sichuan, China) | 3976 | S. malacanthus malacanthus | Smm1, 2, 3, 4 | DQ533789-DQ533792 | [42] |
4. Litang River (Litang County, Sichuan, China) | 3685 | S. malacanthus malacanthus | Smm5, 6 | DQ533793, DQ533794 | [42] |
5. Yalong River (Chengduo county, Qinghai, China) | 3831 | S. malacanthus | SmZ1, SmFEMS, SmFEM2 | DQ309360, DQ646898, DQ646899 | [40,43] |
6. Jialing River (Têwo county, Gansu, China) | 1700 | S. kialingensis | SkT260 | KY461338 | [32] |
Yellow River System | |||||
7. Yellow River (Maduo county, Qinghai province) | 4300 | Chuanchia labiosa | Clabi1 | KT833098 | [44] |
8. Heihe River (Zhangye city, Gansu, China) | 3633 | Gymnocypris eckloni chilianensis | Gech31 | KM371149 | [45] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, L.; Bi, Y.; Weese, D.; Wu, J.; Xu, S.; Ren, H.; Zhang, F.; Liu, X.; Chen, L.; Zhang, J. Genetic Signature of River Capture Imprinted in Schizopygopsis Fish from the Eastern Tibetan Plateau. Genes 2024, 15, 1148. https://doi.org/10.3390/genes15091148
He L, Bi Y, Weese D, Wu J, Xu S, Ren H, Zhang F, Liu X, Chen L, Zhang J. Genetic Signature of River Capture Imprinted in Schizopygopsis Fish from the Eastern Tibetan Plateau. Genes. 2024; 15(9):1148. https://doi.org/10.3390/genes15091148
Chicago/Turabian StyleHe, Lijun, Yonghong Bi, David Weese, Jie Wu, Shasha Xu, Huimin Ren, Fenfen Zhang, Xueqing Liu, Lei Chen, and Jing Zhang. 2024. "Genetic Signature of River Capture Imprinted in Schizopygopsis Fish from the Eastern Tibetan Plateau" Genes 15, no. 9: 1148. https://doi.org/10.3390/genes15091148
APA StyleHe, L., Bi, Y., Weese, D., Wu, J., Xu, S., Ren, H., Zhang, F., Liu, X., Chen, L., & Zhang, J. (2024). Genetic Signature of River Capture Imprinted in Schizopygopsis Fish from the Eastern Tibetan Plateau. Genes, 15(9), 1148. https://doi.org/10.3390/genes15091148