The Roles of Proton-Sensing G-Protein-Coupled Receptors in Inflammation and Cancer
Abstract
:1. Introduction
2. Overview of Proton-Sensing GPCRs
3. Roles of GPR4 in Inflammation and Cancer
3.1. GPR4 in Inflammatory Disorders
3.2. GPR4 in Tumor Biology
3.3. GPR4 Small-Molecule Modulators
4. Roles of GPR65 in Inflammation and Cancer
4.1. GPR65 in Inflammatory Disorders
4.2. GPR65 in Tumor Biology
4.3. GPR65 Small-Molecule Modulators
5. Roles of GPR68 in Inflammation and Cancer
5.1. GPR68 in Inflammatory Disorders
5.2. GPR68 in Tumor Biology
5.3. GPR68 Small-Molecule Modulators
Receptor | Compound | Mechanism | Model/Cell Type | Effects | Ref. |
---|---|---|---|---|---|
GPR68 | Ogerin | Agonist | HEK293T cells expressing GPR68 | Increases cAMP signaling | [122] |
Mouse fear-conditioning model | Suppresses recall in fear conditioning | [122] | |||
Primary human lung fibroblasts of healthy and idiopathic pulmonary fibrosis patients | Causes the inhibition and partial reversal of TGF-β-mediated myofibroblast differentiation | [145] | |||
Human cutaneous neurofibroma-derived Schwann cells | In combination with Selumetinib, induces death and differentiation of Schwann cells isolated from cutaneous neurofibromas | [155] | |||
C57BL/6 mice injected with Ogerin | Increases B lymphocytes in peripheral blood | [170] | |||
MCF7 and T47D breast cancer cells | Increases the accumulation of lipid droplets in the cells | [158] | |||
GPR68 | Sulazepam | Agonist | HEK293 cells expressing GPR68 | Selectively activates cAMP signaling | [169] |
Dust-mite-induced airway hyperresponsiveness (AHR) mouse model | Reduces airway resistance | [146] | |||
GPR68 | Lorazepam | Agonist | HEK293 cells expressing GPR68 | Activates cAMP signaling and calcium mobilization | [169] |
Pancreatic ductal adenocarcinoma | Is associated with decreased pancreatic cancer patient survival; increases the expression of IL-6 in cancer-associated fibroblasts | [165] | |||
GPR68 | Isx (3,5-disubstituted isoxazoles) | Agonist | Mouse myocardial infarction model with left anterior descending coronary artery ligation | Promotes cardiomyogenic and pro-survival gene expression in subepicardial tissue after myocardial infarction | [167] |
C57BL/6 mice injected with Isx | Increases B lymphocytes in peripheral blood | [170] | |||
GPR68 | 128 (Osteocrin33-55) | Agonist | Flp-In T-REx 293 cells | Activates Gq/11 (calcium mobilization) and Gs (cAMP signaling) | [171] |
GPR68 | 139 (CART(42-89)9-28) | Agonist | Flp-In T-REx 293 cells | Activates Gq/11 (calcium mobilization) and Gs (cAMP signaling) | [171] |
GPR68 | Rat 148 (Corticotropin17-40) | Agonist | Flp-In T-REx 293 cells | Activates Gq/11 (calcium mobilization) and Gs (cAMP signaling) | [171] |
GPR68 | GPR68-I | Inhibitor | DSS-induced acute and chronic colitis models | Decreases disease severity, histopathologic parameters, and macrophage infiltration; reduces TNF, IL-6, and TGF-β1 | [144] |
Treatment of fibroblasts and CD14+ human monocytes with extracellular acidosis | Inhibits GPR68-mediated inositol phosphate (IP) production | [129] | |||
GPR68 | Ogremorphin | Inhibitor | Glioblastoma cells | Induces glioblastoma cell death through ferroptosis | [159] |
GPR68 | Cephalotaxus harringtonia var. nana extract | Inhibitor | Chronic kidney disease (CKD) mouse model | Ameliorates CKD-induced cardiac inflammation, fibrosis, and dysfunction | [174] |
GPR68 | Homoharringtonine | Inhibitor | Chronic kidney disease (CKD) mouse model | Ameliorates CKD-induced cardiac inflammation, fibrosis, and dysfunction | [174] |
6. Concluding Remarks
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lardner, A. The effects of extracellular pH on immune function. J. Leukoc. Biol. 2001, 69, 522–530. [Google Scholar] [CrossRef] [PubMed]
- Park, S.Y.; Bae, D.J.; Kim, M.J.; Piao, M.L.; Kim, I.S. Extracellular low pH modulates phosphatidylserine-dependent phagocytosis in macrophages by increasing stabilin-1 expression. J. Biol. Chem. 2012, 287, 11261–11271. [Google Scholar] [CrossRef] [PubMed]
- Simmen, H.P.; Blaser, J. Analysis of pH and pO2 in abscesses, peritoneal fluid, and drainage fluid in the presence or absence of bacterial infection during and after abdominal surgery. Am. J. Surg. 1993, 166, 24–27. [Google Scholar] [CrossRef] [PubMed]
- Barkas, F.; Liberopoulos, E.; Kei, A.; Elisaf, M. Electrolyte and acid-base disorders in inflammatory bowel disease. Ann. Gastroenterol. 2013, 26, 23–28. [Google Scholar]
- Lu, Z.; Gui, H.; Yao, L.; Yan, L.; Martens, H.; Aschenbach, J.R.; Shen, Z. Short-chain fatty acids and acidic pH up-regulate UT-B, GPR41, and GPR4 in rumen epithelial cells of goats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2015, 308, R283–R293. [Google Scholar] [CrossRef]
- Mortensen, P.B.; Clausen, M.R. Short-chain fatty acids in the human colon: Relation to gastrointestinal health and disease. Scand. J. Gastroenterol. Suppl. 1996, 216, 132–148. [Google Scholar] [CrossRef]
- Gatenby, R.A.; Gillies, R.J. Why do cancers have high aerobic glycolysis? Nat. Rev. Cancer 2004, 4, 891–899. [Google Scholar] [CrossRef]
- Gatenby, R.A.; Gillies, R.J. A microenvironmental model of carcinogenesis. Nat. Rev. Cancer 2008, 8, 56–61. [Google Scholar] [CrossRef]
- Justus, C.R.; Dong, L.; Yang, L.V. Acidic tumor microenvironment and pH-sensing G protein-coupled receptors. Front. Physiol. 2013, 4, 354. [Google Scholar] [CrossRef]
- Warburg, O.; Wind, F.; Negelein, E. The Metabolism of Tumors in the Body. J. Gen. Physiol. 1927, 8, 519–530. [Google Scholar] [CrossRef]
- Justus, C.R.; Sanderlin, E.J.; Yang, L.V. Molecular Connections between Cancer Cell Metabolism and the Tumor Microenvironment. Int. J. Mol. Sci. 2015, 16, 11055–11086. [Google Scholar] [CrossRef]
- Koppenol, W.H.; Bounds, P.L.; Dang, C.V. Otto Warburg’s contributions to current concepts of cancer metabolism. Nat. Rev. Cancer 2011, 11, 325–337. [Google Scholar] [CrossRef] [PubMed]
- Xie, J.; Wu, H.; Dai, C.; Pan, Q.; Ding, Z.; Hu, D.; Ji, B.; Luo, Y.; Hu, X. Beyond Warburg effect–dual metabolic nature of cancer cells. Sci. Rep. 2014, 4, 4927. [Google Scholar] [CrossRef]
- Chen, A.; Dong, L.; Leffler, N.R.; Asch, A.S.; Witte, O.N.; Yang, L.V. Activation of GPR4 by acidosis increases endothelial cell adhesion through the cAMP/Epac pathway. PLoS ONE 2011, 6, e27586. [Google Scholar] [CrossRef]
- Huang, Y.; McNamara, J.O. Ischemic stroke: “acidotoxicity” is a perpetrator. Cell 2004, 118, 665–666. [Google Scholar] [CrossRef]
- Huang, C.W.; Tzeng, J.N.; Chen, Y.J.; Tsai, W.F.; Chen, C.C.; Sun, W.H. Nociceptors of dorsal root ganglion express proton-sensing G-protein-coupled receptors. Mol. Cell. Neurosci. 2007, 36, 195–210. [Google Scholar] [CrossRef]
- Nedergaard, M.; Kraig, R.P.; Tanabe, J.; Pulsinelli, W.A. Dynamics of interstitial and intracellular pH in evolving brain infarct. Am. J. Physiol. 1991, 260, R581–R588. [Google Scholar] [CrossRef]
- Yang, L.V.; Castellone, R.D.; Dong, L. Targeting Tumor Microenvironments for Cancer Prevention and Therapy. In Cancer Prevention—From Mechanisms to Translational Benefits, 2012 ed.; Georgakilas, A.G., Ed.; InTech: London, UK, 2012; pp. 3–40. [Google Scholar]
- Holzer, P. Acid-sensitive ion channels and receptors. In Handbook of Experimental Pharmacology; Springer: Berlin/Heidelberg, Germany, 2009; pp. 283–332. [Google Scholar]
- Dong, L.; Li, Z.; Yang, L.V. Function and signaling of the pH-sensing G protein-coupled receptors in physiology and diseases. In Molecular Genetics of Dysregulated pH Homeostasis; Chi, J.T., Ed.; Springer: New York, NY, USA, 2014; pp. 45–65. [Google Scholar]
- Smith, J.B.; Dwyer, S.D.; Smith, L. Lowering Extracellular Ph Evokes Inositol Polyphosphate Formation and Calcium Mobilization. J. Biol. Chem. 1989, 264, 8723–8728. [Google Scholar] [CrossRef] [PubMed]
- Dwyer, S.D.; Zhuang, Y.; Smith, J.B. Calcium mobilization by cadmium or decreasing extracellular Na+ or pH in coronary endothelial cells. Exp. Cell Res. 1991, 192, 22–31. [Google Scholar] [CrossRef] [PubMed]
- Negulescu, P.A.; Machen, T.E. Lowering extracellular sodium or pH raises intracellular calcium in gastric cells. J. Membr. Biol. 1990, 116, 239–248. [Google Scholar] [CrossRef]
- Rohra, D.K.; Saito, S.Y.; Ohizumi, Y. Mechanism of acidic pH-induced contraction in spontaneously hypertensive rat aorta: Role of Ca2+ release from the sarcoplasmic reticulum. Acta Physiol. Scand. 2003, 179, 273–280. [Google Scholar] [CrossRef]
- Saadoun, S.; Lluch, M.; Rodriguez-Alvarez, J.; Blanco, I.; Rodriguez, R. Extracellular acidification modifies Ca2+ fluxes in rat brain synaptosomes. Biochem. Biophys. Res. Commun. 1998, 242, 123–128. [Google Scholar] [CrossRef]
- Trevani, A.S.; Andonegui, G.; Giordano, M.; Lopez, D.H.; Gamberale, R.; Minucci, F.; Geffner, J.R. Extracellular acidification induces human neutrophil activation. J. Immunol. 1999, 162, 4849–4857. [Google Scholar] [CrossRef] [PubMed]
- Ludwig, M.G.; Vanek, M.; Guerini, D.; Gasser, J.A.; Jones, C.E.; Junker, U.; Hofstetter, H.; Wolf, R.M.; Seuwen, K. Proton-sensing G-protein-coupled receptors. Nature 2003, 425, 93–98. [Google Scholar] [CrossRef]
- Liu, J.P.; Nakakura, T.; Tomura, H.; Tobo, M.; Mogi, C.; Wang, J.Q.; He, X.D.; Takano, M.; Damirin, A.; Komachi, M.; et al. Each one of certain histidine residues in G-protein-coupled receptor GPR4 is critical for extracellular proton-induced stimulation of multiple G-protein-signaling pathways. Pharmacol. Res. 2010, 61, 499–505. [Google Scholar] [CrossRef]
- Sanderlin, E.J.; Justus, C.R.; Krewson, E.A.; Yang, L.V. Emerging roles for the pH-sensing G protein-coupled receptors in response to acidotic stress. Cell Health Cytoskelet. 2015, 7, 99–109. [Google Scholar]
- An, S.; Tsai, C.; Goetzl, E.J. Cloning, sequencing and tissue distribution of two related G protein-coupled receptor candidates expressed prominently in human lung tissue. FEBS Lett. 1995, 375, 121–124. [Google Scholar] [CrossRef]
- Heiber, M.; Docherty, J.M.; Shah, G.; Nguyen, T.; Cheng, R.; Heng, H.H.; Marchese, A.; Tsui, L.C.; Shi, X.; George, S.R.; et al. Isolation of three novel human genes encoding G protein-coupled receptors. DNA Cell Biol. 1995, 14, 25–35. [Google Scholar] [CrossRef] [PubMed]
- Mahadevan, M.S.; Baird, S.; Bailly, J.E.; Shutler, G.G.; Sabourin, L.A.; Tsilfidis, C.; Neville, C.E.; Narang, M.; Korneluk, R.G. Isolation of a novel G protein-coupled receptor (GPR4) localized to chromosome 19q13.3. Genomics 1995, 30, 84–88. [Google Scholar] [CrossRef]
- Dong, L.; Li, Z.; Leffler, N.R.; Asch, A.S.; Chi, J.T.; Yang, L.V. Acidosis Activation of the Proton-Sensing GPR4 Receptor Stimulates Vascular Endothelial Cell Inflammatory Responses Revealed by Transcriptome Analysis. PLoS ONE 2013, 8, e61991. [Google Scholar] [CrossRef]
- Sanderlin, E.J.; Leffler, N.R.; Lertpiriyapong, K.; Cai, Q.; Hong, H.; Bakthavatchalu, V.; Fox, J.G.; Oswald, J.Z.; Justus, C.R.; Krewson, E.A.; et al. GPR4 deficiency alleviates intestinal inflammation in a mouse model of acute experimental colitis. Biochim. Biophys. Acta 2017, 1863, 569–584. [Google Scholar] [CrossRef] [PubMed]
- Kyaw, H.; Zeng, Z.; Su, K.; Fan, P.; Shell, B.K.; Carter, K.C.; Li, Y. Cloning, characterization, and mapping of human homolog of mouse T-cell death-associated gene. DNA Cell Biol. 1998, 17, 493–500. [Google Scholar] [CrossRef]
- Marie, M.A.; Sanderlin, E.J.; Satturwar, S.; Hong, H.; Lertpiriyapong, K.; Donthi, D.; Yang, L.V. GPR65 (TDAG8) inhibits intestinal inflammation and colitis-associated colorectal cancer development in experimental mouse models. Biochim. Biophys. Acta Mol. Basis Dis. 2022, 1868, 166288. [Google Scholar] [CrossRef]
- Radu, C.G.; Cheng, D.; Nijagal, A.; Riedinger, M.; McLaughlin, J.; Yang, L.V.; Johnson, J.; Witte, O.N. Normal immune development and glucocorticoid-induced thymocyte apoptosis in mice deficient for the T-cell death-associated gene 8 receptor. Mol. Cell Biol. 2006, 26, 668–677. [Google Scholar] [CrossRef]
- Sanderlin, E.J.; Satturwar, S.; Hong, H.; Lertpiriyapong, K.; Marie, M.; Yang, L.V. TDAG8 (GPR65) Inhibits Intestinal Inflammation in the DSS-Induced Experimental Colitis Mouse Model. bioRxiv 2018, preprint. [Google Scholar] [CrossRef]
- Xu, Y.; Casey, G. Identification of human OGR1, a novel G protein-coupled receptor that maps to chromosome 14. Genomics 1996, 35, 397–402. [Google Scholar] [CrossRef] [PubMed]
- Imenez Silva, P.H.; Camara, N.O.; Wagner, C.A. Role of proton-activated G protein-coupled receptors in pathophysiology. Am. J. Physiol. Cell Physiol. 2022, 323, C400–C414. [Google Scholar] [CrossRef] [PubMed]
- Krewson, E.A.; Sanderlin, E.J.; Marie, M.A.; Akhtar, S.N.; Velcicky, J.; Loetscher, P.; Yang, L.V. The Proton-Sensing GPR4 Receptor Regulates Paracellular Gap Formation and Permeability of Vascular Endothelial Cells. iScience 2020, 23, 100848. [Google Scholar] [CrossRef]
- Haque, M.E.; Akther, M.; Azam, S.; Choi, D.K.; Kim, I.S. GPR4 Knockout Improves the Neurotoxin-Induced, Caspase-Dependent Mitochondrial Apoptosis of the Dopaminergic Neuronal Cell. Int. J. Mol. Sci. 2020, 21, 7517. [Google Scholar] [CrossRef] [PubMed]
- Ouyang, S.; Li, Y.; Wu, X.; Wang, Y.; Liu, F.; Zhang, J.; Qiu, Y.; Zhou, Z.; Wang, Z.; Xia, W.; et al. GPR4 signaling is essential for the promotion of acid-mediated angiogenic capacity of endothelial progenitor cells by activating STAT3/VEGFA pathway in patients with coronary artery disease. Stem Cell Res. Ther. 2021, 12, 149. [Google Scholar] [CrossRef]
- Li, R.; Guan, Z.; Bi, S.; Wang, F.; He, L.; Niu, X.; You, Y.; Liu, Y.; Ding, Y.; Siwko, S.; et al. The proton-activated G protein-coupled receptor GPR4 regulates the development of osteoarthritis via modulating CXCL12/CXCR7 signaling. Cell Death Dis. 2022, 13, 152. [Google Scholar] [CrossRef]
- Dong, L.; Krewson, E.A.; Yang, L.V. Acidosis Activates Endoplasmic Reticulum Stress Pathways through GPR4 in Human Vascular Endothelial Cells. Int. J. Mol. Sci. 2017, 18, 278. [Google Scholar] [CrossRef] [PubMed]
- Sanderlin, E.J.; Marie, M.; Velcicky, J.; Loetscher, P.; Yang, L.V. Pharmacological inhibition of GPR4 remediates intestinal inflammation in a mouse colitis model. Eur. J. Pharmacol. 2019, 852, 218–230. [Google Scholar] [CrossRef]
- Wu, M.; Chen, Y.; Xia, H.; Wang, C.; Tan, C.Y.; Cai, X.; Liu, Y.; Ji, F.; Xiong, P.; Liu, R.; et al. Transcriptional and proteomic insights into the host response in fatal COVID-19 cases. Proc. Natl. Acad. Sci. USA 2020, 117, 28336–28343. [Google Scholar] [CrossRef]
- Yang, L.V.; Oppelt, K.A.; Thomassen, M.J.; Marie, M.A.; Nik Akhtar, S.; McCallen, J.D. Can GPR4 Be a Potential Therapeutic Target for COVID-19? Front. Med. 2021, 7, 626796. [Google Scholar] [CrossRef] [PubMed]
- Kochbeck, L.; Duesterhus, V.; Ebert, C.; Horstmann, S.; Droebner, K.; Schmidt, M.V.; Lize, M. Antagonizing COVID-19-induced GPR4 alleviates lung and kidney injury. Eur. Respir. J. 2021, 58, OA4112. [Google Scholar]
- Tobo, M.; Tomura, H.; Mogi, C.; Wang, J.Q.; Liu, J.P.; Komachi, M.; Damirin, A.; Kimura, T.; Murata, N.; Kurose, H.; et al. Previously postulated “ligand-independent” signaling of GPR4 is mediated through proton-sensing mechanisms. Cell Signal 2007, 19, 1745–1753. [Google Scholar] [CrossRef] [PubMed]
- Okito, A.; Nakahama, K.; Akiyama, M.; Ono, T.; Morita, I. Involvement of the G-protein-coupled receptor 4 in RANKL expression by osteoblasts in an acidic environment. Biochem. Biophys. Res. Commun. 2015, 458, 435–440. [Google Scholar] [CrossRef]
- Li, J.; Chen, K.; Zhao, Z. The protective effects of NE 52-QQ57 against interleukin-33-induced inflammatory response in activated synovial mast cells. J. Biochem. Mol. Toxicol. 2022, 36, e23116. [Google Scholar] [CrossRef]
- Li, H.; Liu, H.; Zhang, N.; Zhu, Z. Involvement of the G-Protein-Coupled Receptor 4 in the Increased Expression of RANK/RANKL/OPG System and Neurotrophins by Nucleus Pulposus Cells under the Degenerated Intervertebral Disc-Like Acidic Microenvironment. Biomed. Res. Int. 2020, 2020, 1328436. [Google Scholar] [CrossRef]
- He, H.; Su, H.; Chen, X.; Chen, X.; Yang, S. Interference with GPR4 inactivates NLRP3 inflammasome signaling by inhibiting LPAR1 expression to ameliorate oxygen-glucose deprivation/reoxygenation-induced inflammation and apoptosis of cardiomyocytes. Prostaglandins Other Lipid Mediat. 2024, 174, 106863. [Google Scholar] [CrossRef] [PubMed]
- Zhou, S.; Ma, G.; Luo, H.; Shan, S.; Xiong, J.; Cheng, G. Identification of 5 Potential Predictive Biomarkers for Alzheimer’s Disease by Integrating the Unified Test for Molecular Signatures and Weighted Gene Coexpression Network Analysis. J. Gerontol. A Biol. Sci. Med. Sci. 2023, 78, 653–658. [Google Scholar] [CrossRef]
- Weng, W.; Fu, J.; Cheng, F.; Wang, Y.; Zhang, J. Integrated Bulk and Single-Cell RNA-Sequencing Reveals the Effects of Circadian Rhythm Disruption on the Metabolic Reprogramming of CD4+ T Cells in Alzheimer’s Disease. Mol. Neurobiol. 2024, 61, 6013–6030. [Google Scholar] [CrossRef]
- Giudici, L.; Velic, A.; Daryadel, A.; Bettoni, C.; Mohebbi, N.; Suply, T.; Seuwen, K.; Ludwig, M.G.; Wagner, C.A. The proton-activated receptor GPR4 modulates glucose homeostasis by increasing insulin sensitivity. Cell Physiol. Biochem. 2013, 32, 1403–1416. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Tommasi, E.; Molina, D.; Sah, R.; Brosnihan, K.B.; Diz, D.; Petrovic, S. Deletion of proton-sensing receptor GPR4 associates with lower blood pressure and lower binding of angiotensin II receptor in SFO. Am. J. Physiol. Ren. Physiol. 2016, 311, F1260–F1266. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; de Valliere, C.; Imenez Silva, P.H.; Leonardi, I.; Gruber, S.; Gerstgrasser, A.; Melhem, H.; Weber, A.; Leucht, K.; Wolfram, L.; et al. The Proton-activated Receptor GPR4 Modulates Intestinal Inflammation. J. Crohns Colitis 2018, 12, 355–368. [Google Scholar] [CrossRef]
- Weder, B.; Schefer, F.; van Haaften, W.T.; Patsenker, E.; Stickel, F.; Mueller, S.; Hutter, S.; Schuler, C.; Baebler, K.; Wang, Y.; et al. New Therapeutic Approach for Intestinal Fibrosis Through Inhibition of pH-Sensing Receptor GPR4. Inflamm. Bowel Dis. 2022, 28, 109–125. [Google Scholar] [CrossRef]
- Miltz, W.; Velcicky, J.; Dawson, J.; Littlewood-Evans, A.; Ludwig, M.G.; Seuwen, K.; Feifel, R.; Oberhauser, B.; Meyer, A.; Gabriel, D.; et al. Design and synthesis of potent and orally active GPR4 antagonists with modulatory effects on nociception, inflammation, and angiogenesis. Bioorganic Med. Chem. 2017, 25, 4512–4525. [Google Scholar] [CrossRef]
- Velcicky, J.; Miltz, W.; Oberhauser, B.; Orain, D.; Vaupel, A.; Weigand, K.; Dawson King, J.; Littlewood-Evans, A.; Nash, M.; Feifel, R.; et al. Development of Selective, Orally Active GPR4 Antagonists with Modulatory Effects on Nociception, Inflammation, and Angiogenesis. J. Med. Chem. 2017, 60, 3672–3683. [Google Scholar] [CrossRef]
- Castellone, R.D.; Leffler, N.R.; Dong, L.; Yang, L.V. Inhibition of tumor cell migration and metastasis by the proton-sensing GPR4 receptor. Cancer Lett. 2011, 312, 197–208. [Google Scholar] [CrossRef]
- Wyder, L.; Suply, T.; Ricoux, B.; Billy, E.; Schnell, C.; Baumgarten, B.U.; Maira, S.M.; Koelbing, C.; Ferretti, M.; Kinzel, B.; et al. Reduced pathological angiogenesis and tumor growth in mice lacking GPR4, a proton sensing receptor. Angiogenesis 2011, 14, 533–544. [Google Scholar] [CrossRef] [PubMed]
- Sin, W.C.; Zhang, Y.; Zhong, W.; Adhikarakunnathu, S.; Powers, S.; Hoey, T.; An, S.; Yang, J. G protein-coupled receptors GPR4 and TDAG8 are oncogenic and overexpressed in human cancers. Oncogene 2004, 23, 6299–6303. [Google Scholar] [CrossRef]
- Ren, J.; Jin, W.; Gao, Y.E.; Zhang, Y.; Zhang, X.; Zhao, D.; Ma, H.; Li, Z.; Wang, J.; Xiao, L.; et al. Relations between GPR4 expression, microvascular density (MVD) and clinical pathological characteristics of patients with epithelial ovarian carcinoma (EOC). Curr. Pharm. Des. 2014, 20, 1904–1916. [Google Scholar] [CrossRef]
- Jing, Z.; Xu, H.; Chen, X.; Zhong, Q.; Huang, J.; Zhang, Y.; Guo, W.; Yang, Z.; Ding, S.; Chen, P.; et al. The Proton-Sensing G-Protein Coupled Receptor GPR4 Promotes Angiogenesis in Head and Neck Cancer. PLoS ONE 2016, 11, e0152789. [Google Scholar] [CrossRef] [PubMed]
- Ko, T.; Sharma, R.; Li, S. Genome-wide screening identifies novel genes implicated in cellular sensitivity to BRAF(V600E) expression. Oncogene 2020, 39, 723–738. [Google Scholar] [CrossRef] [PubMed]
- Yu, M.; Cui, R.; Huang, Y.; Luo, Y.; Qin, S.; Zhong, M. Increased proton-sensing receptor GPR4 signalling promotes colorectal cancer progression by activating the hippo pathway. EBioMedicine 2019, 48, 264–276. [Google Scholar] [CrossRef] [PubMed]
- Justus, C.R.; Yang, L.V. GPR4 decreases B16F10 melanoma cell spreading and regulates focal adhesion dynamics through the G13/Rho signaling pathway. Exp. Cell Res. 2015, 334, 100–113. [Google Scholar] [CrossRef] [PubMed]
- Marie, M.A.; Sanderlin, E.J.; Hoffman, A.P.; Cashwell, K.D.; Satturwar, S.; Hong, H.; Sun, Y.; Yang, L.V. GPR4 Knockout Attenuates Intestinal Inflammation and Forestalls the Development of Colitis-Associated Colorectal Cancer in Murine Models. Cancers 2023, 15, 4974. [Google Scholar] [CrossRef]
- Nakanishi, M.; Ibe, A.; Morishita, K.; Shinagawa, K.; Yamamoto, Y.; Takahashi, H.; Ikemori, K.; Muragaki, Y.; Ehata, S. Acid-sensing receptor GPR4 plays a crucial role in lymphatic cancer metastasis. Cancer Sci. 2024, 115, 1551–1563. [Google Scholar] [CrossRef]
- Fukuda, H.; Ito, S.; Watari, K.; Mogi, C.; Arisawa, M.; Okajima, F.; Kurose, H.; Shuto, S. Identification of a Potent and Selective GPR4 Antagonist as a Drug Lead for the Treatment of Myocardial Infarction. ACS Med. Chem. Lett. 2016, 7, 493–497. [Google Scholar] [CrossRef]
- Tobo, A.; Tobo, M.; Nakakura, T.; Ebara, M.; Tomura, H.; Mogi, C.; Im, D.S.; Murata, N.; Kuwabara, A.; Ito, S.; et al. Characterization of Imidazopyridine Compounds as Negative Allosteric Modulators of Proton-Sensing GPR4 in Extracellular Acidification-Induced Responses. PLoS ONE 2015, 10, e0129334. [Google Scholar] [CrossRef] [PubMed]
- Addante, A.; Wunder, F.; Dietz, L.; Brechmann, M.; Koch, M.; Borissoff, J.I.; Lizé, M. Preclinical Efficacy of a GPR4 Antagonist in a Murine Emphysema-Exacerbation Model. Am. J. Respir. Crit. Care Med. 2019, 199, A3782. [Google Scholar]
- Stalewski, J.; Shih, A.Y.; Papazyan, R.; Ramirez, J.; Ibanez, G.; Hsiao, P.; Yue, Y.; Yin, J.; Badger, C.; Wu, S.; et al. pH Dependence of a GPR4 Selective Antagonist Hampers Its Therapeutic Potential. J. Pharmacol. Exp. Ther. 2023, 386, 35–44. [Google Scholar] [CrossRef]
- Liu, H.; Liu, Y.; Chen, B. Antagonism of GPR4 with NE 52-QQ57 and the Suppression of AGE-Induced Degradation of Type II Collagen in Human Chondrocytes. Chem. Res. Toxicol. 2020, 33, 1915–1921. [Google Scholar] [CrossRef]
- Dong, B.; Zhang, X.; Fan, Y.; Cao, S. GPR4 knockout improves renal ischemia-reperfusion injury and inhibits apoptosis via suppressing the expression of CHOP. Biochem. J. 2017, 474, 4065–4074. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Xiao, X.; Yan, Y.; Yu, L.; Lv, C.; Zhang, Y.; Hong, T.; Zhang, H.; Wang, Y. GPRASP1 loss-of-function links to arteriovenous malformations by endothelial activating GPR4 signals. Brain 2024, 147, 1571–1586. [Google Scholar] [CrossRef] [PubMed]
- Haque, M.E.; Azam, S.; Akther, M.; Cho, D.Y.; Kim, I.S.; Choi, D.K. The Neuroprotective Effects of GPR4 Inhibition through the Attenuation of Caspase Mediated Apoptotic Cell Death in an MPTP Induced Mouse Model of Parkinson’s Disease. Int. J. Mol. Sci. 2021, 22, 4674. [Google Scholar] [CrossRef]
- Musha, S.; Yoshida, S.; Murakami, S.; Kojima, R.; Deai, M.; Saso, N.; Mogi, C.; Sato, K.; Okajima, F.; Tomura, H. Involvement of GPR4 in increased growth hormone and prolactin expressions by extracellular acidification in MtT/S cells. J. Reprod. Dev. 2020, 66, 175–180. [Google Scholar] [CrossRef]
- Choi, J.W.; Lee, S.Y.; Choi, Y. Identification of a putative G protein-coupled receptor induced during activation-induced apoptosis of T cells. Cell Immunol. 1996, 168, 78–84. [Google Scholar] [CrossRef]
- Hussman, J.P.; Beecham, A.H.; Schmidt, M.; Martin, E.R.; McCauley, J.L.; Vance, J.M.; Haines, J.L.; Pericak-Vance, M.A. GWAS analysis implicates NF-kappaB-mediated induction of inflammatory T cells in multiple sclerosis. Genes Immun. 2016, 17, 305–312. [Google Scholar] [CrossRef]
- Hardin, M.; Cho, M.; McDonald, M.L.; Beaty, T.; Ramsdell, J.; Bhatt, S.; van Beek, E.J.; Make, B.J.; Crapo, J.D.; Silverman, E.K.; et al. The clinical and genetic features of COPD-asthma overlap syndrome. Eur. Respir. J. 2014, 44, 341–350. [Google Scholar] [CrossRef] [PubMed]
- Al-Mossawi, M.H.; Chen, L.; Fang, H.; Ridley, A.; de Wit, J.; Yager, N.; Hammitzsch, A.; Pulyakhina, I.; Fairfax, B.P.; Simone, D.; et al. Unique transcriptome signatures and GM-CSF expression in lymphocytes from patients with spondyloarthritis. Nat. Commun. 2017, 8, 1510. [Google Scholar] [CrossRef] [PubMed]
- Jostins, L.; Ripke, S.; Weersma, R.K.; Duerr, R.H.; McGovern, D.P.; Hui, K.Y.; Lee, J.C.; Schumm, L.P.; Sharma, Y.; Anderson, C.A.; et al. Host-microbe interactions have shaped the genetic architecture of inflammatory bowel disease. Nature 2012, 491, 119–124. [Google Scholar] [CrossRef] [PubMed]
- Karnes, J.H.; Cronin, R.M.; Rollin, J.; Teumer, A.; Pouplard, C.; Shaffer, C.M.; Blanquicett, C.; Bowton, E.A.; Cowan, J.D.; Mosley, J.D.; et al. A genome-wide association study of heparin-induced thrombocytopenia using an electronic medical record. Thromb. Haemost. 2015, 113, 772–781. [Google Scholar] [CrossRef] [PubMed]
- Tcymbarevich, I.; Richards, S.M.; Russo, G.; Kuhn-Georgijevic, J.; Cosin-Roger, J.; Baebler, K.; Lang, S.; Bengs, S.; Atrott, K.; Bettoni, C.; et al. Lack of the pH-sensing Receptor TDAG8 [GPR65] in Macrophages Plays a Detrimental Role in Murine Models of Inflammatory Bowel Disease. J. Crohn’s Colitis 2019, 13, 245–258. [Google Scholar] [CrossRef]
- Yuan, Y.; Ma, Y.; Zhang, X.; Han, R.; Hu, X.; Yang, J.; Wang, M.; Guan, S.Y.; Pan, G.; Xu, S.Q.; et al. Genetic polymorphisms of G protein-coupled receptor 65 gene are associated with ankylosing spondylitis in a Chinese Han population: A case-control study. Hum. Immunol. 2019, 80, 146–150. [Google Scholar] [CrossRef]
- Xie, L.; McKenzie, C.I.; Qu, X.; Mu, Y.; Wang, Q.; Bing, N.; Naidoo, K.; Alam, M.J.; Yu, D.; Gong, F.; et al. pH and Proton Sensor GPR65 Determine Susceptibility to Atopic Dermatitis. J. Immunol. 2021, 207, 101–109. [Google Scholar] [CrossRef]
- He, X.D.; Tobo, M.; Mogi, C.; Nakakura, T.; Komachi, M.; Murata, N.; Takano, M.; Tomura, H.; Sato, K.; Okajima, F. Involvement of proton-sensing receptor TDAG8 in the anti-inflammatory actions of dexamethasone in peritoneal macrophages. Biochem. Biophys. Res. Commun. 2011, 415, 627–631. [Google Scholar] [CrossRef]
- Jin, Y.; Sato, K.; Tobo, A.; Mogi, C.; Tobo, M.; Murata, N.; Ishii, S.; Im, D.S.; Okajima, F. Inhibition of interleukin-1beta production by extracellular acidification through the TDAG8/cAMP pathway in mouse microglia. J. Neurochem. 2014, 129, 683–695. [Google Scholar] [CrossRef]
- Mogi, C.; Tobo, M.; Tomura, H.; Murata, N.; He, X.D.; Sato, K.; Kimura, T.; Ishizuka, T.; Sasaki, T.; Sato, T.; et al. Involvement of proton-sensing TDAG8 in extracellular acidification-induced inhibition of proinflammatory cytokine production in peritoneal macrophages. J. Immunol. 2009, 182, 3243–3251. [Google Scholar] [CrossRef]
- Onozawa, Y.; Fujita, Y.; Kuwabara, H.; Nagasaki, M.; Komai, T.; Oda, T. Activation of T cell death-associated gene 8 regulates the cytokine production of T cells and macrophages in vitro. Eur. J. Pharmacol. 2012, 683, 325–331. [Google Scholar] [CrossRef] [PubMed]
- Okajima, F. Regulation of inflammation by extracellular acidification and proton-sensing GPCRs. Cell Signal 2013, 25, 2263–2271. [Google Scholar] [CrossRef] [PubMed]
- Nagasaka, A.; Mogi, C.; Ono, H.; Nishi, T.; Horii, Y.; Ohba, Y.; Sato, K.; Nakaya, M.; Okajima, F.; Kurose, H. The proton-sensing G protein-coupled receptor T-cell death-associated gene 8 (TDAG8) shows cardioprotective effects against myocardial infarction. Sci. Rep. 2017, 7, 7812. [Google Scholar] [CrossRef]
- Onozawa, Y.; Komai, T.; Oda, T. Activation of T cell death-associated gene 8 attenuates inflammation by negatively regulating the function of inflammatory cells. Eur. J. Pharmacol. 2011, 654, 315–319. [Google Scholar] [CrossRef]
- Wirasinha, R.C.; Vijayan, D.; Smith, N.J.; Parnell, G.P.; Swarbrick, A.; Brink, R.; King, C.; Stewart, G.; Booth, D.R.; Batten, M. GPR65 inhibits experimental autoimmune encephalomyelitis through CD4+ T cell independent mechanisms that include effects on iNKT cells. Immunol. Cell Biol. 2018, 96, 128–136. [Google Scholar] [CrossRef]
- Tsurumaki, H.; Mogi, C.; Aoki-Saito, H.; Tobo, M.; Kamide, Y.; Yatomi, M.; Sato, K.; Dobashi, K.; Ishizuka, T.; Hisada, T.; et al. Protective Role of Proton-Sensing TDAG8 in Lipopolysaccharide-Induced Acute Lung Injury. Int. J. Mol. Sci. 2015, 16, 28931–28942. [Google Scholar] [CrossRef]
- Lin, R.; Wu, W.; Chen, H.; Gao, H.; Wu, X.; Li, G.; He, Q.; Lu, H.; Sun, M.; Liu, Z. GPR65 promotes intestinal mucosal Th1 and Th17 cell differentiation and gut inflammation through downregulating NUAK2. Clin. Transl. Med. 2022, 12, e771. [Google Scholar] [CrossRef]
- Ding, Y.; Li, H.; Xu, L.; Wang, Y.; Yang, H. Identification and Validation of Prognostic Biomarkers Specifically Expressed in Macrophage in IgA Nephropathy Patients Based on Integrated Bioinformatics Analyses. Front. Mol. Biosci. 2022, 9, 884588. [Google Scholar] [CrossRef]
- Jang, K.B.; You, M.J.; Yang, B.; Rim, C.; Kim, H.J.; Kwon, M.S. Persistent Acidic Environment Induces Impaired Phagocytosis via ERK in Microglia. Neurochem. Res. 2022, 47, 1341–1353. [Google Scholar] [CrossRef]
- Sato, K.; Tobo, A.; Mogi, C.; Tobo, M.; Yamane, N.; Tosaka, M.; Tomura, H.; Im, D.S.; Okajima, F. The protective role of proton-sensing TDAG8 in the brain injury in a mouse ischemia reperfusion model. Sci. Rep. 2020, 10, 17193. [Google Scholar] [CrossRef]
- Chen, X.; Jaiswal, A.; Costliow, Z.; Herbst, P.; Creasey, E.A.; Oshiro-Rapley, N.; Daly, M.J.; Carey, K.L.; Graham, D.B.; Xavier, R.J. pH sensing controls tissue inflammation by modulating cellular metabolism and endo-lysosomal function of immune cells. Nat. Immunol. 2022, 23, 1063–1075. [Google Scholar] [CrossRef] [PubMed]
- Mercier, V.; Boucher, G.; Devost, D.; Bourque, K.; Alikashani, A.; Beauchamp, C.; Bitton, A.; Foisy, S.; Goyette, P.; Charron, G.; et al. IBD-associated G protein-coupled receptor 65 variant compromises signalling and impairs key functions involved in inflammation. Cell Signal 2022, 93, 110294. [Google Scholar] [CrossRef] [PubMed]
- Perren, L.; Busch, M.; Schuler, C.; Ruiz, P.A.; Foti, F.; Weibel, N.; de Valliere, C.; Morsy, Y.; Seuwen, K.; Hausmann, M.; et al. OGR1 (GPR68) and TDAG8 (GPR65) Have Antagonistic Effects in Models of Colonic Inflammation. Int. J. Mol. Sci. 2023, 24, 14855. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Lin, J.; Gao, X.; Su, H.; Lin, R.; Gao, H.; Feng, Z.; Wu, H.; Feng, B.; Zuo, K.; et al. Intestinal epithelial pH-sensing receptor GPR65 maintains mucosal homeostasis via regulating antimicrobial defense and restrains gut inflammation in inflammatory bowel disease. Gut Microbes 2023, 15, 2257269. [Google Scholar] [CrossRef] [PubMed]
- Kottyan, L.C.; Collier, A.R.; Cao, K.H.; Niese, K.A.; Hedgebeth, M.; Radu, C.G.; Witte, O.N.; Khurana Hershey, G.K.; Rothenberg, M.E.; Zimmermann, N. Eosinophil viability is increased by acidic pH in a cAMP- and GPR65-dependent manner. Blood 2009, 114, 2774–2782. [Google Scholar] [CrossRef]
- Gaublomme, J.T.; Yosef, N.; Lee, Y.; Gertner, R.S.; Yang, L.V.; Wu, C.; Pandolfi, P.P.; Mak, T.; Satija, R.; Shalek, A.K.; et al. Single-Cell Genomics Unveils Critical Regulators of Th17 Cell Pathogenicity. Cell 2015, 163, 1400–1412. [Google Scholar] [CrossRef]
- Dai, S.P.; Hsieh, W.S.; Chen, C.H.; Lu, Y.H.; Huang, H.S.; Chang, D.M.; Huang, S.L.; Sun, W.H. TDAG8 deficiency reduces satellite glial number and pro-inflammatory macrophage number to relieve rheumatoid arthritis disease severity and chronic pain. J. Neuroinflammation 2020, 17, 170. [Google Scholar] [CrossRef]
- Ihara, Y.; Kihara, Y.; Hamano, F.; Yanagida, K.; Morishita, Y.; Kunita, A.; Yamori, T.; Fukayama, M.; Aburatani, H.; Shimizu, T.; et al. The G protein-coupled receptor T-cell death-associated gene 8 (TDAG8) facilitates tumor development by serving as an extracellular pH sensor. Proc. Natl. Acad. Sci. USA 2010, 107, 17309–17314. [Google Scholar] [CrossRef]
- Qi, J.; Liu, S.; Zhang, Z. What role does GPR65 play in the progression of osteosarcoma? Its mechanism and clinical significance. Cancer Cell Int. 2024, 24, 31. [Google Scholar] [CrossRef]
- Ryder, C.; McColl, K.; Zhong, F.; Distelhorst, C.W. Acidosis promotes Bcl-2 family-mediated evasion of apoptosis: Involvement of acid-sensing G protein-coupled receptor Gpr65 signaling to Mek/Erk. J. Biol. Chem. 2012, 287, 27863–27875. [Google Scholar] [CrossRef]
- Rosko, A.E.; McColl, K.S.; Zhong, F.; Ryder, C.B.; Chang, M.J.; Sattar, A.; Caimi, P.F.; Hill, B.T.; Al-Harbi, S.; Almasan, A.; et al. Acidosis Sensing Receptor GPR65 Correlates with Anti-Apoptotic Bcl-2 Family Member Expression in CLL Cells: Potential Implications for the CLL Microenvironment. J. Leuk. 2014, 2, 160. [Google Scholar]
- Li, Z.; Dong, L.; Dean, E.; Yang, L.V. Acidosis decreases c-Myc oncogene expression in human lymphoma cells: A role for the proton-sensing G protein-coupled receptor TDAG8. Int. J. Mol. Sci. 2013, 14, 20236–20255. [Google Scholar] [CrossRef]
- Malone, M.H.; Wang, Z.; Distelhorst, C.W. The glucocorticoid-induced gene tdag8 encodes a pro-apoptotic G protein-coupled receptor whose activation promotes glucocorticoid-induced apoptosis. J. Biol. Chem. 2004, 279, 52850–52859. [Google Scholar] [CrossRef]
- Justus, C.R.; Sanderlin, E.J.; Dong, L.; Sun, T.; Chi, J.T.; Lertpiriyapong, K.; Yang, L.V. Contextual tumor suppressor function of T cell death-associated gene 8 (TDAG8) in hematological malignancies. J. Transl. Med. 2017, 15, 204. [Google Scholar] [CrossRef]
- Bohn, T.; Rapp, S.; Luther, N.; Klein, M.; Bruehl, T.J.; Kojima, N.; Aranda Lopez, P.; Hahlbrock, J.; Muth, S.; Endo, S.; et al. Tumor immunoevasion via acidosis-dependent induction of regulatory tumor-associated macrophages. Nat. Immunol. 2018, 19, 1319–1329. [Google Scholar] [CrossRef]
- Mori, D.; Tsujikawa, T.; Sugiyama, Y.; Kotani, S.I.; Fuse, S.; Ohmura, G.; Arai, A.; Kawaguchi, T.; Hirano, S.; Mazda, O.; et al. Extracellular acidity in tumor tissue upregulates programmed cell death protein 1 expression on tumor cells via proton-sensing G protein-coupled receptors. Int. J. Cancer 2021, 149, 2116–2124. [Google Scholar] [CrossRef] [PubMed]
- Yan, C.; Yang, Z.; Chen, P.; Yeh, Y.; Sun, C.; Xie, T.; Huang, W.; Zhang, X. GPR65 sensing tumor-derived lactate induces HMGB1 release from TAM via the cAMP/PKA/CREB pathway to promote glioma progression. J. Exp. Clin. Cancer Res. 2024, 43, 105. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Sun, L.; Sun, H.; Xing, Y.; Zhou, S.; An, G.; Li, J.; Ren, K.; Sun, J. GPR65 as a potential immune checkpoint regulates the immune microenvironment according to pan-cancer analysis. Heliyon 2023, 9, e13617. [Google Scholar] [CrossRef]
- Huang, X.P.; Karpiak, J.; Kroeze, W.K.; Zhu, H.; Chen, X.; Moy, S.S.; Saddoris, K.A.; Nikolova, V.D.; Farrell, M.S.; Wang, S.; et al. Allosteric ligands for the pharmacologically dark receptors GPR68 and GPR65. Nature 2015, 527, 477–483. [Google Scholar] [CrossRef]
- Ma, X.D.; Hang, L.H.; Shao, D.H.; Shu, W.W.; Hu, X.L.; Luo, H. TDAG8 activation attenuates cerebral ischaemia-reperfusion injury via Akt signalling in rats. Exp. Neurol. 2017, 293, 115–123. [Google Scholar] [CrossRef]
- Chen, R.; Zhang, M.Q.; Miao, Y.L.; Zhang, S.H.; Cheng, Y.; Wang, S.S.; Yin, J.; Yang, C.H.; Zhang, H.F.; Tang, L.; et al. Targeting Neuronal GPR65 With Delayed BTB09089 Treatment Improves Neurorehabilitation Following Ischemic Stroke. Stroke 2024, 55, 2151–2162. [Google Scholar] [CrossRef] [PubMed]
- Gobejishvili, L. GPR65 as a potential novel therapeutic target for the treatment of hepatic fibrosis. Mil. Med. Res. 2024, 11, 4. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Zhang, M.X.; Meng, X.X.; Zhu, J.; Wang, J.J.; He, Y.F.; Li, Y.H.; Zhao, S.C.; Shi, Z.M.; Zheng, L.N.; et al. Targeting GPR65 alleviates hepatic inflammation and fibrosis by suppressing the JNK and NF-kappaB pathways. Mil. Med. Res. 2023, 10, 56. [Google Scholar] [PubMed]
- Neale, I.; Reddy, C.; Tan, Z.Y.; Li, B.; Nag, P.P.; Park, J.; Park, J.; Carey, K.L.; Graham, D.B.; Xavier, R.J. Small-molecule probe for IBD risk variant GPR65 I231L alters cytokine signaling networks through positive allosteric modulation. Sci. Adv. 2024, 10, eadn2339. [Google Scholar] [CrossRef]
- Corbin, A.; Cipriani, B.; Miller, D.; Naylor, A.; Milne, G.; Young, B.; Satchell, R.; Quareshy, M.; Sarkar, S.; Moechel, T.; et al. 497 PTT-4256 is a first-in-class small molecule inhibitor of GPR65 that counteracts the low pH-dependent immunosuppressive effects on immune cells and displays pronounced anti-tumor activity in mice. J. ImmunoTherapy Cancer 2023, 11, A559. [Google Scholar]
- de Valliere, C.; Cosin-Roger, J.; Baebler, K.; Schoepflin, A.; Mamie, C.; Mollet, M.; Schuler, C.; Bengs, S.; Lang, S.; Scharl, M.; et al. pH-Sensing G Protein-Coupled Receptor OGR1 (GPR68) Expression and Activation Increases in Intestinal Inflammation and Fibrosis. Int. J. Mol. Sci. 2022, 23, 1419. [Google Scholar] [CrossRef] [PubMed]
- Nagel, D.J.; Rackow, A.R.; Ku, W.Y.; Bell, T.J.; Sime, P.J.; Kottmann, R.M. Cell-Type-Specific Effects of the Ovarian Cancer G-Protein Coupled Receptor (OGR1) on Inflammation and Fibrosis; Potential Implications for Idiopathic Pulmonary Fibrosis. Cells 2022, 11, 2540. [Google Scholar] [CrossRef] [PubMed]
- Saxena, H.; Deshpande, D.A.; Tiegs, B.C.; Yan, H.; Battafarano, R.J.; Burrows, W.M.; Damera, G.; Panettieri, R.A.; Dubose, T.D., Jr.; An, S.S.; et al. The GPCR OGR1 (GPR68) mediates diverse signalling and contraction of airway smooth muscle in response to small reductions in extracellular pH. Br. J. Pharmacol. 2012, 166, 981–990. [Google Scholar] [CrossRef]
- Xu, J.; Mathur, J.; Vessieres, E.; Hammack, S.; Nonomura, K.; Favre, J.; Grimaud, L.; Petrus, M.; Francisco, A.; Li, J.; et al. GPR68 Senses Flow and Is Essential for Vascular Physiology. Cell 2018, 173, 762–775.e716. [Google Scholar] [CrossRef]
- Imenez Silva, P.H.; Katamesh-Benabbas, C.; Chan, K.; Pastor Arroyo, E.M.; Knopfel, T.; Bettoni, C.; Ludwig, M.G.; Gasser, J.A.; Brandao-Burch, A.; Arnett, T.R.; et al. The proton-activated ovarian cancer G protein-coupled receptor 1 (OGR1) is responsible for renal calcium loss during acidosis. Kidney Int. 2020, 97, 920–933. [Google Scholar] [CrossRef]
- Wang, T.; Zhou, G.; He, M.; Xu, Y.; Rusyniak, W.G.; Xu, Y.; Ji, Y.; Simon, R.P.; Xiong, Z.G.; Zha, X.M. GPR68 Is a Neuroprotective Proton Receptor in Brain Ischemia. Stroke 2020, 51, 3690–3700. [Google Scholar] [CrossRef]
- Nogueira, P.A.S.; Moura-Assis, A.; Razolli, D.S.; Bombassaro, B.; Zanesco, A.M.; Gaspar, J.M.; Donato Junior, J.; Velloso, L.A. The orphan receptor GPR68 is expressed in the hypothalamus and is involved in the regulation of feeding. Neurosci. Lett. 2022, 781, 136660. [Google Scholar] [CrossRef]
- Khan, N.M.; Diaz-Hernandez, M.E.; Martin, W.N.; Patel, B.; Chihab, S.; Drissi, H. pH-sensing G protein-coupled orphan receptor GPR68 is expressed in human cartilage and correlates with degradation of extracellular matrix during OA progression. PeerJ 2023, 11, e16553. [Google Scholar] [CrossRef]
- Tomura, H.; Wang, J.Q.; Liu, J.P.; Komachi, M.; Damirin, A.; Mogi, C.; Tobo, M.; Nochi, H.; Tamoto, K.; Im, D.S.; et al. Cyclooxygenase-2 expression and prostaglandin E2 production in response to acidic pH through OGR1 in a human osteoblastic cell line. J. Bone Min. Res. 2008, 23, 1129–1139. [Google Scholar] [CrossRef]
- Krieger, N.S.; Yao, Z.; Kyker-Snowman, K.; Kim, M.H.; Boyce, B.F.; Bushinsky, D.A. Increased bone density in mice lacking the proton receptor OGR1. Kidney Int. 2016, 89, 565–573. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.; Mailhot, G.; Birnbaum, M.J.; MacKay, C.A.; Mason-Savas, A.; Odgren, P.R. Expression of and role for ovarian cancer G-protein-coupled receptor 1 (OGR1) during osteoclastogenesis. J. Biol. Chem. 2006, 281, 23598–23605. [Google Scholar] [CrossRef]
- Aoki, H.; Mogi, C.; Hisada, T.; Nakakura, T.; Kamide, Y.; Ichimonji, I.; Tomura, H.; Tobo, M.; Sato, K.; Tsurumaki, H.; et al. Proton-sensing ovarian cancer G protein-coupled receptor 1 on dendritic cells is required for airway responses in a murine asthma model. PLoS ONE 2013, 8, e79985. [Google Scholar] [CrossRef] [PubMed]
- de Valliere, C.; Wang, Y.; Eloranta, J.J.; Vidal, S.; Clay, I.; Spalinger, M.R.; Tcymbarevich, I.; Terhalle, A.; Ludwig, M.G.; Suply, T.; et al. G Protein-coupled pH-sensing Receptor OGR1 Is a Regulator of Intestinal Inflammation. Inflamm. Bowel Dis. 2015, 21, 1269–1281. [Google Scholar] [CrossRef]
- Hutter, S.; van Haaften, W.T.; Hunerwadel, A.; Baebler, K.; Herfarth, N.; Raselli, T.; Mamie, C.; Misselwitz, B.; Rogler, G.; Weder, B.; et al. Intestinal Activation of pH-Sensing Receptor OGR1 [GPR68] Contributes to Fibrogenesis. J. Crohn’s Colitis 2018, 12, 1348–1358. [Google Scholar] [CrossRef] [PubMed]
- de Valliere, C.; Cosin-Roger, J.; Simmen, S.; Atrott, K.; Melhem, H.; Zeitz, J.; Madanchi, M.; Tcymbarevich, I.; Fried, M.; Kullak-Ublick, G.A.; et al. Hypoxia Positively Regulates the Expression of pH-Sensing G-Protein-Coupled Receptor OGR1 (GPR68). Cell Mol. Gastroenterol. Hepatol. 2016, 2, 796–810. [Google Scholar] [CrossRef]
- de Valliere, C.; Babler, K.; Busenhart, P.; Schwarzfischer, M.; Maeyashiki, C.; Schuler, C.; Atrott, K.; Lang, S.; Spalinger, M.R.; Scharl, M.; et al. A Novel OGR1 (GPR68) Inhibitor Attenuates Inflammation in Murine Models of Colitis. Inflamm. Intest. Dis. 2021, 6, 140–153. [Google Scholar] [CrossRef] [PubMed]
- Bell, T.J.; Nagel, D.J.; Woeller, C.F.; Kottmann, R.M. Ogerin mediated inhibition of TGF-β(1) induced myofibroblast differentiation is potentiated by acidic pH. PLoS ONE 2022, 17, e0271608. [Google Scholar] [CrossRef] [PubMed]
- Nayak, A.P.; Deshpande, D.A.; Shah, S.D.; Villalba, D.R.; Yi, R.; Wang, N.; Penn, R.B. OGR1-dependent regulation of the allergen-induced asthma phenotype. Am. J. Physiol. Lung Cell Mol. Physiol. 2021, 321, L1044–L1054. [Google Scholar] [CrossRef]
- Bushinsky, D.A.; Ori, Y. Effects of metabolic and respiratory acidosis on bone. Curr. Opin. Nephrol. Hypertens. 1993, 2, 588–596. [Google Scholar] [CrossRef] [PubMed]
- Elemam, N.M.; Youness, R.A.; Hussein, A.; Shihab, I.; Yakout, N.M.; Elwany, Y.N.; Manie, T.M.; Talaat, I.M.; Maghazachi, A.A. Expression of GPR68, an Acid-Sensing Orphan G Protein-Coupled Receptor, in Breast Cancer. Front. Oncol. 2022, 12, 847543. [Google Scholar] [CrossRef] [PubMed]
- Wiley, S.Z.; Sriram, K.; Liang, W.; Chang, S.E.; French, R.; McCann, T.; Sicklick, J.; Nishihara, H.; Lowy, A.M.; Insel, P.A. GPR68, a proton-sensing GPCR, mediates interaction of cancer-associated fibroblasts and cancer cells. FASEB J. 2018, 32, 1170–1183. [Google Scholar] [CrossRef]
- Singh, L.S.; Berk, M.; Oates, R.; Zhao, Z.; Tan, H.; Jiang, Y.; Zhou, A.; Kirmani, K.; Steinmetz, R.; Lindner, D.; et al. Ovarian cancer G protein-coupled receptor 1, a new metastasis suppressor gene in prostate cancer. J. Natl. Cancer Inst. 2007, 99, 1313–1327. [Google Scholar] [CrossRef] [PubMed]
- Ren, J.; Zhang, L. Effects of ovarian cancer G protein coupled receptor 1 on the proliferation, migration, and adhesion of human ovarian cancer cells. Chin. Med. J. 2011, 124, 1327–1332. [Google Scholar]
- Li, J.; Guo, B.; Wang, J.; Cheng, X.; Xu, Y.; Sang, J. Ovarian cancer G protein coupled receptor 1 suppresses cell migration of MCF7 breast cancer cells via a Galpha12/13-Rho-Rac1 pathway. J. Mol. Signal 2013, 8, 6. [Google Scholar] [CrossRef]
- de Valliere, C.; Vidal, S.; Clay, I.; Jurisic, G.; Tcymbarevich, I.; Lang, S.; Ludwig, M.G.; Okoniewski, M.; Eloranta, J.J.; Kullak-Ublick, G.A.; et al. The pH-sensing receptor OGR1 improves barrier function of epithelial cells and inhibits migration in an acidic environment. Am. J. Physiol. Gastrointest. Liver Physiol. 2015, 309, G475–G490. [Google Scholar] [CrossRef]
- Sharma, A.L.; Meitei, P.M.; Machathoibi, T.C.; Singh, N.T.; Singh, T.R.; Singh, L.S. Ovarian cancer G protein-coupled receptor 1 inhibits A549 cells migration through casein kinase 2alpha intronless gene and neutral endopeptidase. BMC Cancer 2022, 22, 143. [Google Scholar] [CrossRef]
- Mazuelas, H.; Magallon-Lorenz, M.; Uriarte-Arrazola, I.; Negro, A.; Rosas, I.; Blanco, I.; Castellanos, E.; Lazaro, C.; Gel, B.; Carrio, M.; et al. Unbalancing cAMP and Ras/MAPK pathways as a therapeutic strategy for cutaneous neurofibromas. JCI Insight 2024, 9, e168826. [Google Scholar] [CrossRef]
- Fang, J.; Liu, X.; Bolanos, L.; Barker, B.; Rigolino, C.; Cortelezzi, A.; Oliva, E.N.; Cuzzola, M.; Grimes, H.L.; Fontanillo, C.; et al. A calcium- and calpain-dependent pathway determines the response to lenalidomide in myelodysplastic syndromes. Nat. Med. 2016, 22, 727–734. [Google Scholar] [CrossRef]
- Wei, W.C.; Huang, W.C.; Lin, Y.P.; Becker, E.B.E.; Ansorge, O.; Flockerzi, V.; Conti, D.; Cenacchi, G.; Glitsch, M.D. Functional expression of calcium-permeable canonical transient receptor potential 4-containing channels promotes migration of medulloblastoma cells. J. Physiol. 2017, 595, 5525–5544. [Google Scholar] [CrossRef] [PubMed]
- Pillai, S.; Mahmud, I.; Mahar, R.; Griffith, C.; Langsen, M.; Nguyen, J.; Wojtkowiak, J.W.; Swietach, P.; Gatenby, R.A.; Bui, M.M.; et al. Lipogenesis mediated by OGR1 regulates metabolic adaptation to acid stress in cancer cells via autophagy. Cell Rep. 2022, 39, 110796. [Google Scholar] [CrossRef] [PubMed]
- Williams, C.H.; Neitzel, L.R.; Cornell, J.; Rea, S.; Mills, I.; Silver, M.S.; Ahmad, J.D.; Birukov, K.G.; Birukova, A.; Brem, H.; et al. GPR68-ATF4 signaling is a novel prosurvival pathway in glioblastoma activated by acidic extracellular microenvironment. Exp. Hematol. Oncol. 2024, 13, 13. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Wang, D.; Singh, L.S.; Berk, M.; Tan, H.; Zhao, Z.; Steinmetz, R.; Kirmani, K.; Wei, G.; Xu, Y. Abnormalities in osteoclastogenesis and decreased tumorigenesis in mice deficient for ovarian cancer G protein-coupled receptor 1. PLoS ONE 2009, 4, e5705. [Google Scholar] [CrossRef]
- Yan, L.; Singh, L.S.; Zhang, L.; Xu, Y. Role of OGR1 in myeloid-derived cells in prostate cancer. Oncogene 2014, 33, 157–164. [Google Scholar] [CrossRef]
- Cao, L.; Li, W.; Yang, X.; Zhang, W.; Li, M.; Zhang, H.; Qin, C.; Chen, X.; Gao, R. Inhibition of host Ogr1 enhances effector CD8(+) T-cell function by modulating acidic microenvironment. Cancer Gene Ther. 2021, 28, 1213–1224. [Google Scholar] [CrossRef]
- Ye, S.; Zhu, Y.; Zhong, D.; Song, X.; Li, J.; Xiao, F.; Huang, Z.; Zhang, W.; Wu, M.; Zhang, K.; et al. G protein-coupled receptor GPR68 inhibits lymphocyte infiltration and contributes to gender-dependent melanoma growth. Front. Oncol. 2023, 13, 1202750. [Google Scholar] [CrossRef]
- Zhu, H.; Guo, S.; Zhang, Y.; Yin, J.; Yin, W.; Tao, S.; Wang, Y.; Zhang, C. Proton-sensing GPCR-YAP Signalling Promotes Cancer-associated Fibroblast Activation of Mesenchymal Stem Cells. Int. J. Biol. Sci. 2016, 12, 389–396. [Google Scholar] [CrossRef] [PubMed]
- Cornwell, A.C.; Tisdale, A.A.; Venkat, S.; Maraszek, K.E.; Alahmari, A.A.; George, A.; Attwood, K.; George, M.; Rempinski, D.; Franco-Barraza, J.; et al. Lorazepam Stimulates IL6 Production and Is Associated with Poor Survival Outcomes in Pancreatic Cancer. Clin. Cancer Res. 2023, 29, 3793–3812. [Google Scholar] [CrossRef]
- Yamanaka, T.; Harimoto, N.; Yokobori, T.; Muranushi, R.; Hoshino, K.; Hagiwara, K.; Gantumur, D.; Handa, T.; Ishii, N.; Tsukagoshi, M.; et al. Conophylline Inhibits Hepatocellular Carcinoma by Inhibiting Activated Cancer-associated Fibroblasts Through Suppression of G Protein-coupled Receptor 68. Mol. Cancer Ther. 2021, 20, 1019–1028. [Google Scholar] [CrossRef]
- Russell, J.L.; Goetsch, S.C.; Aguilar, H.R.; Coe, H.; Luo, X.; Liu, N.; van Rooij, E.; Frantz, D.E.; Schneider, J.W. Regulated expression of pH sensing G Protein-coupled receptor-68 identified through chemical biology defines a new drug target for ischemic heart disease. ACS Chem. Biol. 2012, 7, 1077–1083. [Google Scholar] [CrossRef]
- Greenwald, E.; Posner, C.; Bharath, A.; Lyons, A.; Salmeron, C.; Sriram, K.; Wiley, S.Z.; Insel, P.A.; Zhang, J. GPCR Signaling Measurement and Drug Profiling with an Automated Live-Cell Microscopy System. ACS Sens. 2023, 8, 19–27. [Google Scholar] [CrossRef]
- Pera, T.; Deshpande, D.A.; Ippolito, M.; Wang, B.; Gavrila, A.; Michael, J.V.; Nayak, A.P.; Tompkins, E.; Farrell, E.; Kroeze, W.K.; et al. Biased signaling of the proton-sensing receptor OGR1 by benzodiazepines. FASEB J. 2018, 32, 862–874. [Google Scholar] [CrossRef] [PubMed]
- He, X.; Feng, S.; Hawkins, C.; Lawley, L.; Fan, W.; Xu, Y.; Zha, X.M.; Fang, J. G protein-coupled receptor 68 increases the number of B lymphocytes. Am. J. Blood Res. 2020, 10, 15–21. [Google Scholar]
- Foster, S.R.; Hauser, A.S.; Vedel, L.; Strachan, R.T.; Huang, X.P.; Gavin, A.C.; Shah, S.D.; Nayak, A.P.; Haugaard-Kedstrom, L.M.; Penn, R.B.; et al. Discovery of Human Signaling Systems: Pairing Peptides to G Protein-Coupled Receptors. Cell 2019, 179, 895–908.e821. [Google Scholar] [CrossRef]
- Yu, X.; Huang, X.P.; Kenakin, T.P.; Slocum, S.T.; Chen, X.; Martini, M.L.; Liu, J.; Jin, J. Design, Synthesis, and Characterization of Ogerin-Based Positive Allosteric Modulators for G Protein-Coupled Receptor 68 (GPR68). J. Med. Chem. 2019, 62, 7557–7574. [Google Scholar] [CrossRef]
- Yoshida, Y.; Matsunaga, N.; Nakao, T.; Hamamura, K.; Kondo, H.; Ide, T.; Tsutsui, H.; Tsuruta, A.; Kurogi, M.; Nakaya, M.; et al. Alteration of circadian machinery in monocytes underlies chronic kidney disease-associated cardiac inflammation and fibrosis. Nat. Commun. 2021, 12, 2783. [Google Scholar] [CrossRef]
- Yoshida, Y.; Fukuoka, K.; Sakugawa, M.; Kurogi, M.; Hamamura, K.; Hamasaki, K.; Tsurusaki, F.; Sotono, K.; Nishi, T.; Fukuda, T.; et al. Inhibition of G protein-coupled receptor 68 using homoharringtonine attenuates chronic kidney disease-associated cardiac impairment. Transl. Res. 2024, 269, 31–46. [Google Scholar] [CrossRef] [PubMed]
- Aalkjaer, C.; Peng, H.L. pH and smooth muscle. Acta Physiol. Scand. 1997, 161, 557–566. [Google Scholar] [CrossRef]
- Bouchama, A.; De Vol, E.B. Acid-base alterations in heatstroke. Intensive Care Med. 2001, 27, 680–685. [Google Scholar] [CrossRef]
- Curley, G.; Contreras, M.M.; Nichol, A.D.; Higgins, B.D.; Laffey, J.G. Hypercapnia and acidosis in sepsis: A double-edged sword? Anesthesiology 2010, 112, 462–472. [Google Scholar] [CrossRef] [PubMed]
- Epstein, S.K.; Singh, N. Respiratory acidosis. Respir. Care 2001, 46, 366–383. [Google Scholar] [PubMed]
- Koul, P.B. Diabetic ketoacidosis: A current appraisal of pathophysiology and management. Clin. Pediatr. 2009, 48, 135–144. [Google Scholar] [CrossRef] [PubMed]
- Krieger, N.S.; Frick, K.K.; Bushinsky, D.A. Mechanism of acid-induced bone resorption. Curr. Opin. Nephrol. Hypertens. 2004, 13, 423–436. [Google Scholar] [CrossRef]
- Siesjo, B.K.; Katsura, K.I.; Kristian, T.; Li, P.A.; Siesjo, P. Molecular mechanisms of acidosis-mediated damage. Acta Neurochir. Suppl. 1996, 66, 8–14. [Google Scholar]
- Wesson, D.E. The Continuum of Acid Stress. Clin. J. Am. Soc. Nephrol. 2021, 16, 1292–1299. [Google Scholar] [CrossRef]
- Wesson, D.E.; Buysse, J.M.; Bushinsky, D.A. Mechanisms of Metabolic Acidosis-Induced Kidney Injury in Chronic Kidney Disease. J. Am. Soc. Nephrol. 2020, 31, 469–482. [Google Scholar] [CrossRef]
- Frick, K.K.; Krieger, N.S.; Nehrke, K.; Bushinsky, D.A. Metabolic acidosis increases intracellular calcium in bone cells through activation of the proton receptor OGR1. J. Bone Min. Res. 2009, 24, 305–313. [Google Scholar] [CrossRef] [PubMed]
- Hang, L.H.; Yang, J.P.; Yin, W.; Wang, L.N.; Guo, F.; Ji, F.H.; Shao, D.H.; Xu, Q.N.; Wang, X.Y.; Zuo, J.L. Activation of spinal TDAG8 and its downstream PKA signaling pathway contribute to bone cancer pain in rats. Eur. J. Neurosci. 2012, 36, 2107–2117. [Google Scholar] [CrossRef]
- Ishii, S.; Kihara, Y.; Shimizu, T. Identification of T cell death-associated gene 8 (TDAG8) as a novel acid sensing G-protein-coupled receptor. J. Biol. Chem. 2005, 280, 9083–9087. [Google Scholar] [CrossRef] [PubMed]
- Murakami, N.; Yokomizo, T.; Okuno, T.; Shimizu, T. G2A is a proton-sensing G-protein-coupled receptor antagonized by lysophosphatidylcholine. J. Biol. Chem. 2004, 279, 42484–42491. [Google Scholar] [CrossRef] [PubMed]
- Radu, C.G.; Nijagal, A.; McLaughlin, J.; Wang, L.; Witte, O.N. Differential proton sensitivity of related G protein-coupled receptors T cell death-associated gene 8 and G2A expressed in immune cells. Proc. Natl. Acad. Sci. USA 2005, 102, 1632–1637. [Google Scholar] [CrossRef]
- Seuwen, K.; Ludwig, M.G.; Wolf, R.M. Receptors for protons or lipid messengers or both? J. Recept. Signal Transduct. Res. 2006, 26, 599–610. [Google Scholar] [CrossRef]
- Sun, X.; Yang, L.V.; Tiegs, B.C.; Arend, L.J.; McGraw, D.W.; Penn, R.B.; Petrovic, S. Deletion of the pH sensor GPR4 decreases renal acid excretion. J. Am. Soc. Nephrol. 2010, 21, 1745–1755. [Google Scholar] [CrossRef]
- Wang, J.Q.; Kon, J.; Mogi, C.; Tobo, M.; Damirin, A.; Sato, K.; Komachi, M.; Malchinkhuu, E.; Murata, N.; Kimura, T.; et al. TDAG8 is a proton-sensing and psychosine-sensitive G-protein-coupled receptor. J. Biol. Chem. 2004, 279, 45626–45633. [Google Scholar] [CrossRef]
- Yang, L.V.; Radu, C.G.; Roy, M.; Lee, S.; McLaughlin, J.; Teitell, M.A.; Iruela-Arispe, M.L.; Witte, O.N. Vascular abnormalities in mice deficient for the G protein-coupled receptor GPR4 that functions as a pH sensor. Mol. Cell Biol. 2007, 27, 1334–1347. [Google Scholar] [CrossRef]
- Hunt, J.F.; Fang, K.; Malik, R.; Snyder, A.; Malhotra, N.; Platts-Mills, T.A.; Gaston, B. Endogenous airway acidification. Implications for asthma pathophysiology. Am. J. Respir. Crit. Care Med. 2000, 161, 694–699. [Google Scholar] [CrossRef]
- Kellum, J.A. Determinants of blood pH in health and disease. Crit. Care 2000, 4, 6–14. [Google Scholar] [CrossRef]
- Lassen, K.G.; McKenzie, C.I.; Mari, M.; Murano, T.; Begun, J.; Baxt, L.A.; Goel, G.; Villablanca, E.J.; Kuo, S.Y.; Huang, H.; et al. Genetic Coding Variant in GPR65 Alters Lysosomal pH and Links Lysosomal Dysfunction with Colitis Risk. Immunity 2016, 44, 1392–1405. [Google Scholar] [CrossRef] [PubMed]
- Jacoby, E.; Bouhelal, R.; Gerspacher, M.; Seuwen, K. The 7 TM G-protein-coupled receptor target family. ChemMedChem 2006, 1, 761–782. [Google Scholar] [CrossRef]
- Lappano, R.; Maggiolini, M. G protein-coupled receptors: Novel targets for drug discovery in cancer. Nat. Rev. Drug Discov. 2011, 10, 47–60. [Google Scholar] [CrossRef] [PubMed]
- Overington, J.P.; Al-Lazikani, B.; Hopkins, A.L. How many drug targets are there? Nat. Rev. Drug Discov. 2006, 5, 993–996. [Google Scholar] [CrossRef]
- Hauser, A.S.; Attwood, M.M.; Rask-Andersen, M.; Schioth, H.B.; Gloriam, D.E. Trends in GPCR drug discovery: New agents, targets and indications. Nat. Rev. Drug Discov. 2017, 16, 829–842. [Google Scholar] [CrossRef] [PubMed]
Receptor | Compound | Mechanism | Model/Cell Type | Effects | Ref. |
---|---|---|---|---|---|
GPR4 | 39C, also known as EIDIP (2-Ethyl-3-(4-(E-3-(4-isopropyl-piperazin-1-yl)-propenyl)-benzyl)-5,7-dimethyl-3H-imidazo(4,5-b)pyridine) | Inhibitor | Human vascular endothelial cells | Reduces the expression of IL-1, IL-8, CXCL1, CXCL2, CCL2, CCL7, VCAM-1, ICAM-1, E-selectin, RELB, COX2, ATF3, and CHOP in cultured endothelial cells | [33,45] |
GPR4-expressing HEK and HeLa cells | Attenuates acidic-pH-induced cAMP formation | [61] | |||
Mouse VEGF-induced angiogenesis model | Anti-angiogenic effects | [61] | |||
Rat antigen-induced arthritis model | Anti-inflammatory effects, such as reduced knee swelling and joint damage/erosions | [61] | |||
Rat hyperalgesia model | Anti-nociceptive effects | [61] | |||
Short-term emphysema exacerbation COPD mouse model | Rescues manifestations of disease such as lung permeability, inflammation, mucous hypersecretion, airway remodeling, and protease secretion | [75] | |||
Mouse heterotopic intestinal transplant model | Reduces fibrogenesis and decreases collagen deposition | [60] | |||
GPR4 | NE-52-QQ57, also known as Compound 13 (2-(4-((2-Ethyl-5,7-dimethylpyrazolo[1,5-a]pyrimidin-3-yl)methyl)phenyl)-5-(piperidin-4-yl)-1,3,4-oxadiazole) | Inhibitor | GPR4-expressing HEK and HeLa cells | Attenuates acidic-pH-induced cAMP formation | [62] |
Cultured chondrocytes | Reduces the expression of TNF-α, IL-1β, IL-6, iNOS, nitric oxide (NO), COX2, and PGE2 | [77] | |||
Mouse VEGF-induced angiogenesis model | Anti-angiogenic effects | [62] | |||
Rat antigen-induced arthritis model | Anti-inflammatory effects, such as reduced knee swelling | [62] | |||
Rat hyperalgesia model | Anti-nociceptive effects | [62] | |||
Mouse post-traumatic and aging-associated osteoarthritis models | Reduces osteoarthritis progression and promotes extracellular matrix production | [44] | |||
Mouse DSS-induced acute colitis model | Alleviates intestinal inflammation; downregulates cytokines such as TNF-α and adhesion molecules such as VCAM-1, E-selectin, and MAdCAM-1 in colon tissues | [46] | |||
Mouse IL10-deficient spontaneous colitis model | Lack of significant efficacy but exhibits a trend towards improvement for several disease parameters such as histopathology, inflammation, and hyperplasia scores | [76] | |||
Mouse hindlimb ischemia–reperfusion model | Reduces tissue edema, leukocyte infiltration, and exudate formation | [41] | |||
GPRASP1 loss-of-function mouse model of arteriovenous malformations | Reduces brain hemorrhagic lesions, cerebral edema, and arteriovenous malformations | [79] | |||
1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced mouse Parkinson’s disease model | Attenuates dopaminergic neuronal loss and ameliorates motor and memory functions | [80] | |||
Human neuroblastoma SH-SY5Y cells treated with H2O2 and MPP+ | Inhibits neuronal cell death | [42] | |||
Mouse melanoma metastasis model | Reduces lymphangiogenesis and melanoma lymph-node metastasis | [72] | |||
GPR4 | 3b (2-((2-Ethyl-5,7-dimethyl-3H-imidazo[4,5-b]pyridin-3-yl)methyl)-8-(piperidin-1-ylmethyl)-10,11-dihydro-5H-dibenzo[b,f]azepine) | Inhibitor | Mouse myocardial infarction model | Leads to prolonged survival after myocardial infarction | [73] |
Pituitary tumor cell treatment with acidic media | Reduces growth hormone and prolactin expression in MtT/S pituitary tumor cells | [81] |
Receptor | Compound | Mechanism | Model/Cell Type | Effects | Ref. |
---|---|---|---|---|---|
GPR65 | BTB09089 (3-[(2,4-dichlorobenzyl)thio]-1,6-dimethyl-5,6-dihydro-1H-pyridazino[4,5-e][1,3,4]thiadiazin-5-one) | Agonist | Mouse splenocytes and peritoneal macrophages | Increases levels of cAMP; suppresses IL-2 expression of splenocytes when stimulated with anti-CD3 and anti-CD28 antibodies; suppresses TNF-α and IL-6 expression in peritoneal exuded macrophages induced by thioglycolate when stimulated with lipopolysaccharides | [94] |
Rat ischemic stroke model induced by middle cerebral artery occlusion (MCAO) | Leads to activation of the AKT pathway and protection against neuronal apoptosis and neurological deficits | [123] | |||
Mouse ischemic stroke model induced by photothrombotic ischemia | Inhibits microglial activation, reduces neuronal damage, and improves neurological function recovery following ischemic stroke | [124] | |||
Mouse hepatic macrophages | Promotes M1 macrophage polarization and stimulates the release of TNF-α, IL-6, and TGF-β | [126] | |||
GPR65 | BRD5075 BRD5080 | Agonist | Mouse bone-marrow-derived dendritic cells | Reduces the expression of inflammatory cytokines and chemokines in dendritic cells | [127] |
HeLa cells expressing GPR65 | Increases cAMP signaling | [127] | |||
GPR65 | ZINC13684400 | Agonist | HEK293T cells expressing GPR65 | Increases cAMP signaling | [122] |
GPR65 | ZINC62678696 | Inhibitor | HEK293T cells expressing GPR65 | Decreases cAMP signaling | [122] |
Mouse hepatic macrophages | Abrogates M1 macrophage polarization and reduces the release of TNF-α, IL-6, and TGF-β | [126] | |||
Carbon tetrachloride (CCl4) murine liver fibrosis model | Alleviates hepatic fibrosis and inflammation | [126] | |||
GPR65 | PTT-4256 | Inhibitor | MC38 colon cancer and B16F10 melanoma mouse models | Counteracts acidic-pH-mediated immunosuppressive transcriptional programs in immune cells and shows significant therapeutic efficacy | [128] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Justus, C.R.; Marie, M.A.; Sanderlin, E.J.; Yang, L.V. The Roles of Proton-Sensing G-Protein-Coupled Receptors in Inflammation and Cancer. Genes 2024, 15, 1151. https://doi.org/10.3390/genes15091151
Justus CR, Marie MA, Sanderlin EJ, Yang LV. The Roles of Proton-Sensing G-Protein-Coupled Receptors in Inflammation and Cancer. Genes. 2024; 15(9):1151. https://doi.org/10.3390/genes15091151
Chicago/Turabian StyleJustus, Calvin R., Mona A. Marie, Edward J. Sanderlin, and Li V. Yang. 2024. "The Roles of Proton-Sensing G-Protein-Coupled Receptors in Inflammation and Cancer" Genes 15, no. 9: 1151. https://doi.org/10.3390/genes15091151
APA StyleJustus, C. R., Marie, M. A., Sanderlin, E. J., & Yang, L. V. (2024). The Roles of Proton-Sensing G-Protein-Coupled Receptors in Inflammation and Cancer. Genes, 15(9), 1151. https://doi.org/10.3390/genes15091151