Novel TBR1 c.1303C>T Variant Led to Diagnosis of Intellectual Developmental Disorder with Autism and Speech Delay: Application of Comprehensive Family-Based Whole-Genome Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Clinical Assessment of Brain Activity by Electroencephalogram
2.3. Whole-Genome Sequencing
2.4. Joint Trio-WGS Analysis
3. Results
3.1. Case Presentation
3.2. Trio-WGS Analysis
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- den Hoed, J.; Sollis, E.; Venselaar, H.; Estruch, S.B.; Deriziotis, P.; Fisher, S.E. Functional characterization of TBR1 variants in neurodevelopmental disorder. Sci. Rep. 2018, 8, 14279. [Google Scholar] [CrossRef] [PubMed]
- Deriziotis, P.; O’Roak, B.J.; Graham, S.A.; Estruch, S.B.; Dimitropoulou, D.; Bernier, R.A.; Gerdts, J.; Shendure, J.; Eichler, E.E.; Fisher, S.E. De novo TBR1 mutations in sporadic autism disrupt protein functions. Nat. Commun. 2014, 5, 4954. [Google Scholar] [CrossRef]
- McDermott, J.H.; Study, D.D.D.; Clayton-Smith, J.; Briggs, T.A. The TBR1-related autistic-spectrum-disorder phenotype and its clinical spectrum. Eur. J. Med. Genet. 2018, 61, 253–256. [Google Scholar] [CrossRef] [PubMed]
- Vegas, N.; Cavallin, M.; Kleefstra, T.; de Boer, L.; Philbert, M.; Maillard, C.; Boddaert, N.; Munnich, A.; Hubert, L.; Bery, A.; et al. Mutations in TBR1 gene leads to cortical malformations and intellectual disability. Eur. J. Med. Genet. 2018, 61, 759–764. [Google Scholar] [CrossRef] [PubMed]
- Elsabbagh, M.; Divan, G.; Koh, Y.J.; Kim, Y.S.; Kauchali, S.; Marcín, C.; Montiel-Nava, C.; Patel, V.; Paula, C.S.; Wang, C.; et al. Global prevalence of autism and other pervasive developmental disorders. Autism Res. 2012, 5, 160–179. [Google Scholar] [CrossRef] [PubMed]
- Zeidan, J.; Fombonne, E.; Scorah, J.; Ibrahim, A.; Durkin, M.S.; Saxena, S.; Yusuf, A.; Shih, A.; Elsabbagh, M. Global prevalence of autism: A systematic review update. Autism Res. 2022, 15, 778–790. [Google Scholar] [CrossRef]
- Lord, C.; Elsabbagh, M.; Baird, G.; Veenstra-Vanderweele, J. Autism spectrum disorder. Lancet 2018, 392, 508–520. [Google Scholar] [CrossRef]
- Hirota, T.; King, B.H. Autism Spectrum Disorder: A Review. JAMA 2023, 329, 157–168. [Google Scholar] [CrossRef]
- Sharma, S.R.; Gonda, X.; Tarazi, F.I. Autism Spectrum Disorder: Classification, diagnosis and therapy. Pharmacol. Ther. 2018, 190, 91–104. [Google Scholar] [CrossRef]
- Abrahams, B.S.; Geschwind, D.H. Advances in autism genetics: On the threshold of a new neurobiology. Nat. Rev. Genet. 2008, 9, 341–355. [Google Scholar] [CrossRef]
- Sandin, S.; Lichtenstein, P.; Kuja-Halkola, R.; Larsson, H.; Hultman, C.M.; Reichenberg, A. The familial risk of autism. JAMA 2014, 311, 1770–1777. [Google Scholar] [CrossRef] [PubMed]
- Rylaarsdam, L.; Guemez-Gamboa, A. Genetic Causes and Modifiers of Autism Spectrum Disorder. Front. Cell Neurosci. 2019, 13, 385. [Google Scholar] [CrossRef] [PubMed]
- Richards, S.; Aziz, N.; Bale, S.; Bick, D.; Das, S.; Gastier-Foster, J.; Grody, W.W.; Hegde, M.; Lyon, E.; Spector, E.; et al. Standards and guidelines for the interpretation of sequence variants: A joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 2015, 17, 405–424. [Google Scholar] [CrossRef]
- Nambot, S.; Faivre, L.; Mirzaa, G.; Thevenon, J.; Bruel, A.L.; Mosca-Boidron, A.L.; Masurel-Paulet, A.; Goldenberg, A.; Le Meur, N.; Charollais, A.; et al. De novo TBR1 variants cause a neurocognitive phenotype with ID and autistic traits: Report of 25 new individuals and review of the literature. Eur. J. Hum. Genet. 2020, 28, 770–782. [Google Scholar] [CrossRef] [PubMed]
- Bulfone, A.; Smiga, S.M.; Shimamura, K.; Peterson, A.; Puelles, L.; Rubenstein, J.L. T-brain-1: A homolog of Brachyury whose expression defines molecularly distinct domains within the cerebral cortex. Neuron 1995, 15, 63–78. [Google Scholar] [CrossRef]
- Bedogni, F.; Hodge, R.D.; Elsen, G.E.; Nelson, B.R.; Daza, R.A.; Beyer, R.P.; Bammler, T.K.; Rubenstein, J.L.; Hevner, R.F. Tbr1 regulates regional and laminar identity of postmitotic neurons in developing neocortex. Proc. Natl. Acad. Sci. USA 2010, 107, 13129–13134. [Google Scholar] [CrossRef]
- Jin, C.; Qian, H.; Xu, T.; Chen, J.; Li, X.; Gu, Z. Prenatal diagnosis by whole exome sequencing in a family with a novel TBR1 mutation causing intellectual disability. Taiwan. J. Obstet. Gynecol. 2021, 60, 1094–1097. [Google Scholar] [CrossRef]
- McKenna, W.L.; Betancourt, J.; Larkin, K.A.; Abrams, B.; Guo, C.; Rubenstein, J.L.; Chen, B. Tbr1 and Fezf2 regulate alternate corticofugal neuronal identities during neocortical development. J. Neurosci. 2011, 31, 549–564. [Google Scholar] [CrossRef] [PubMed]
- Lambert de Rouvroit, C.; Goffinet, A.M. A new view of early cortical development. Biochem. Pharmacol. 1998, 56, 1403–1409. [Google Scholar] [CrossRef]
- Hevner, R.F.; Shi, L.; Justice, N.; Hsueh, Y.; Sheng, M.; Smiga, S.; Bulfone, A.; Goffinet, A.M.; Campagnoni, A.T.; Rubenstein, J.L. Tbr1 regulates differentiation of the preplate and layer 6. Neuron 2001, 29, 353–366. [Google Scholar] [CrossRef]
- Crespo, I.; Pignatelli, J.; Kinare, V.; Méndez-Gómez, H.R.; Esgleas, M.; Román, M.J.; Canals, J.M.; Tole, S.; Vicario, C. Tbr1 Misexpression Alters Neuronal Development in the Cerebral Cortex. Mol. Neurobiol. 2022, 59, 5750–5765. [Google Scholar] [CrossRef] [PubMed]
- Notwell, J.H.; Heavner, W.E.; Darbandi, S.F.; Katzman, S.; McKenna, W.L.; Ortiz-Londono, C.F.; Tastad, D.; Eckler, M.J.; Rubenstein, J.L.; McConnell, S.K.; et al. TBR1 regulates autism risk genes in the developing neocortex. Genome Res. 2016, 26, 1013–1022. [Google Scholar] [CrossRef]
- Landrum, M.J.; Lee, J.M.; Riley, G.R.; Jang, W.; Rubinstein, W.S.; Church, D.M.; Maglott, D.R. ClinVar: Public archive of relationships among sequence variation and human phenotype. Nucleic Acids Res. 2014, 42, D980–D985. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Zhang, J.; Shen, Y.; Li, Y.; Luo, H.; Gan, J. Analysis of a child featuring global developmental delay and autism due to variant of TBR1 gene and a literature review. Zhonghua Yi Xue Yi Chuan Xue Za Zhi 2024, 41, 335–338. [Google Scholar] [CrossRef]
- Sapey-Triomphe, L.A.; Reversat, J.; Lesca, G.; Chatron, N.; Bussa, M.; Mazoyer, S.; Schmitz, C.; Sonié, S.; Edery, P. A de novo frameshift pathogenic variant in TBR1 identified in autism without intellectual disability. Hum. Genom. 2020, 14, 32. [Google Scholar] [CrossRef] [PubMed]
- Cao, X.; Li, J.; Song, H.; Zhu, Y. Identification of a novel TBR1 gene variant in a Chinese pedigree affected with intellectual developmental disorder with autism and speech delay. Zhonghua Yi Xue Yi Chuan Xue Za Zhi 2021, 38, 933–936. [Google Scholar] [CrossRef]
- Zhang, W.; Hu, L.; Huang, X.; Xie, D.; Wu, J.; Fu, X.; Liang, D.; Huang, S. Whole-exome sequencing identified five novel de novo variants in patients with unexplained intellectual disability. J. Clin. Lab. Anal. 2022, 36, e24587. [Google Scholar] [CrossRef]
Developmental Features | Psychological Features | Sleep Disorders | Brain MRI (Age) | Sleep EEG Features | Other Clinical Features | |||
---|---|---|---|---|---|---|---|---|
Speech Delay | DD/ID | Autistic Features | Altered Communication | Stereotypies | Focal Epileptic Discharges | |||
Moderate | Moderate | ADOS-2 Moderate | Present | Present | Nocturnal awakening | Normal (2 y) | Bilateral temporo-parieto-occipital | Food selectivity, specific tactile aversions (grass, sand, plasticine) |
Subject | Amino Acid Change | Effect | Inheritance | ASD | ID | Language Delay | Motor Delay | Seizures | EEG | Manuscript |
---|---|---|---|---|---|---|---|---|---|---|
1 | p.Gln435* | nonsense | de novo | + | + | + | − | − | bilateral temporo-parieto-occipital focal epileptic discharges | current study |
2 | p.Trp271Arg | missense | de novo | + | + | + | + | + | N/A | [1] |
3 | p.Trp271Cys | missense | de novo | + | N/A | N/A | N/A | N/A | N/A | [1] |
4 | p.Lys389Glu | missense | de novo | + | + | + | N/A | − | N/A | [1] |
5 | p.Ala136Profs*80 | frameshift | de novo | + | + | + | N/A | N/A | N/A | [2] |
6 | p.Lys228Glu | missense | de novo | + | + | + | N/A | N/A | N/A | [2] |
7 | p.Ser351* | frameshift | de novo | + | + | + | N/A | N/A | N/A | [2] |
8 | p.Gln178Glu | missense | inherited | + | − | + | N/A | N/A | N/A | [2] |
9 | p.Gln178Glu | missense | inherited | + | + | + | N/A | N/A | N/A | [2] |
10 | p.Gln418Arg | missense | inherited | + | + | + | N/A | N/A | N/A | [2] |
11 | p.Pro542Arg | missense | inherited | + | − | + | N/A | N/A | N/A | [2] |
12 | p.(Gly316Ter) | nonsense | de novo | + | + | + | + | − | normal | [3] |
13 | p.(Leu311Pro) | missense | de novo | + | + | + | + | − | N/A | [3] |
14 | p.(Thr532Argfs*144) | frameshift | de novo | + | + | + | + | − | N/A | [4] |
15 | p.(Thr532Argfs*144) | frameshift | de novo | N/A | + | + | + | N/A | N/A | [4] |
16 | p.(Tyr157*) | nonsense | N/A | + | + | + | + | − | normal | [14] |
17 | p.(Gln185*) | nonsense | de novo | + | + | + | + | − | not performed | [14] |
18 | p.(Ser238Thrfs*17) | frameshift | de novo | + | + | + | + | − | N/A | [14] |
19 | p.(Gln282*) | nonsense | de novo | + | + | + | + | − | N/A | [14] |
20 | p.(Trp299*) | nonsense | de novo | + | + | + | − | − | N/A | [14] |
21 | p.(Thr312Glnfs11*) | frameshift | de novo | + | + | + | + | − | normal | [14] |
22 | p.(Asp393Glyfs*2) | frameshift | de novo | + | + | + | + | − | normal | [14] |
23 | p.(Thr457Glnfs*30) | frameshift | de novo | + | + | + | − | − | slow pattern, asymmetric without paroxysmal activity | [14] |
24 | p.(Thr532Argfs*144) | frameshift | de novo | + | + | + | + | − | unspecific atypical diffuse α-like activity | [14] |
25 | p.(Thr532Argfs*144) | frameshift | de novo | + | + | + | + | − | N/A | [14] |
26 | p.(Thr532Argfs*144) | frameshift | de novo | + | + | + | N/A | − | normal | [14] |
27 | p.(Thr532Argfs*144) | frameshift | de novo | + | + | + | + | − | normal | [14] |
28 | p.(Thr532Argfs*144) | frameshift | de novo | − | + | + | N/A | − | normal | [14] |
29 | p.(Thr532Argfs*144) | frameshift | de novo | − | + | + | + | + | left temporal sharp and spike waves, diffuse arrhythmic slowdown | [14] |
30 | p.(Ser549Glyfs*128) | frameshift | de novo | + | + | + | + | + | epileptic activity in both hemispheres, disturbed background activity | [14] |
31 | p.(Pro550fs*127) | frameshift | de novo | + | + | + | + | − | N/A | [14] |
32 | p.(Gln552Alafs*122) | frameshift | de novo | − | + | + | + | − | abnormal | [14] |
33 | p.(Gln552Valfs*121) | frameshift | de novo | + | + | + | N/A | − | N/A | [14] |
34 | p.(Ile225Phe) | missense | de novo | + | + | + | + | + | right temporal spikes | [14] |
35 | p.Trp271Arg | missense | de novo | + | + | + | + | + | generalized multifocal seizures, focal epileptiform discharges in right frontal region | [14] |
36 | p.(Trp271Ser) | missense | de novo | − | + | + | − | − | N/A | [14] |
37 | p.(Val369_Ala371del) | in-frame deletion | de novo | + | + | + | + | − | not performed | [14] |
38 | p.(Gln373Arg) | missense | de novo | − | + | + | + | + | superimposed paroxysms of higher frequency, generalized with short spike-wave morphology in parieto-temporal regions | [14] |
39 | p.(Asn385Lys) | missense | de novo | + | + | + | − | − | paroxysmal rapid activity and polyspikes in the bilateral frontal region, high-amplitude sharp occipital waves | [14] |
40 | p.(Pro9Leufs*12) | frameshift | de novo | + | − | − | − | − | N/A | [25] |
41 | p.Phe124Valfs*18 | frameshift | inherited | N/A | + | + | N/A | N/A | N/A | [17] |
42 | c.1129-1G>C | splice site | N/A | + | + | + | N/A | N/A | N/A | [26] |
43 | p.Tyr553Serfs*124 | frameshift | de novo | + | + | + | + | N/A | N/A | [27] |
44 | (p.Gly533Leufs*143) | frameshift | N/A | + | + | + | + | + | multiple focal discharges in both awake and sleep stages; more pronounced in sleep | [24] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ćuk, M.; Unal, B.; Bagarić, M.; Krakar, G.; Walker, M.; Hayes, C.P.; Gašpić, B.; Skular, G.; Ghazani, A.A. Novel TBR1 c.1303C>T Variant Led to Diagnosis of Intellectual Developmental Disorder with Autism and Speech Delay: Application of Comprehensive Family-Based Whole-Genome Analysis. Genes 2025, 16, 120. https://doi.org/10.3390/genes16020120
Ćuk M, Unal B, Bagarić M, Krakar G, Walker M, Hayes CP, Gašpić B, Skular G, Ghazani AA. Novel TBR1 c.1303C>T Variant Led to Diagnosis of Intellectual Developmental Disorder with Autism and Speech Delay: Application of Comprehensive Family-Based Whole-Genome Analysis. Genes. 2025; 16(2):120. https://doi.org/10.3390/genes16020120
Chicago/Turabian StyleĆuk, Mario, Busra Unal, Matea Bagarić, Goran Krakar, McKenzie Walker, Connor P. Hayes, Boris Gašpić, Goran Skular, and Arezou A. Ghazani. 2025. "Novel TBR1 c.1303C>T Variant Led to Diagnosis of Intellectual Developmental Disorder with Autism and Speech Delay: Application of Comprehensive Family-Based Whole-Genome Analysis" Genes 16, no. 2: 120. https://doi.org/10.3390/genes16020120
APA StyleĆuk, M., Unal, B., Bagarić, M., Krakar, G., Walker, M., Hayes, C. P., Gašpić, B., Skular, G., & Ghazani, A. A. (2025). Novel TBR1 c.1303C>T Variant Led to Diagnosis of Intellectual Developmental Disorder with Autism and Speech Delay: Application of Comprehensive Family-Based Whole-Genome Analysis. Genes, 16(2), 120. https://doi.org/10.3390/genes16020120