Genomic and Transcriptomic Approaches Advance the Diagnosis and Prognosis of Neurodegenerative Diseases
Abstract
:1. Introduction
2. Current Methods for the Diagnosis and Prognosis of Neurodegenerative Diseases
2.1. Clinical Evaluation and Neuropsychological Assessment
2.1.1. Clinical Evaluation
2.1.2. Neuropsychological Testing
2.2. Biomarker Analysis
2.2.1. Cerebrospinal Fluid (CSF) Biomarkers
2.2.2. Blood Biomarkers
2.2.3. Saliva and Urine Biomarkers
2.3. Neuroimaging
2.3.1. Structural Imaging (MRI and CT)
2.3.2. Functional and Molecular Imaging (PET and fMRI)
2.4. Limitations of Current Diagnostic Methods
3. Harnessing Genomic Technologies for Improved Diagnosis and Prognosis of Neurodegenerative
3.1. Next-Generation Sequencing: WGS and WES
3.2. Transcriptomics Technologies
3.2.1. RNA Sequencing (RNA-Seq)
3.2.2. Single-Cell RNA Sequencing (scRNA-Seq)
3.2.3. Visium Spatial Transcriptomics
3.2.4. Integration and Comparative Analysis
3.3. Epigenomic Technologies
3.4. Multi-Omics Approaches
4. Functional Genomics and Genetic Technologies Driving Future Prognosis
4.1. Insights from Functional Genomics into Disease Mechanisms and Prognostic Applications
4.2. Genome-Wide Association Studies (GWAS) for Risk Stratification and Prognostic Insights
4.3. Single-Cell Genomics and Spatial Transcriptomics for Prognostic Biomarker Discovery
4.4. Emerging Genetic Technologies for Prognostic Applications
4.5. Integrating Genomics with Therapeutic Strategies to Improve Prognostic Precision
5. Conclusions and Perspectives
5.1. Genomics Transforming Diagnosis and Prognosis
5.2. Overcoming Traditional Limitations
5.3. Future Opportunities in Prognosis and Patient Care
5.4. Collaborative Efforts and Continued Research
5.5. Closing Remarks
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ciurea, A.V.; Mohan, A.G.; Covache-Busuioc, R.-A.; Costin, H.-P.; Glavan, L.-A.; Corlatescu, A.-D.; Saceleanu, V.M. Unraveling Molecular and Genetic Insights into Neurodegenerative Diseases: Advances in Understanding Alzheimer’s, Parkinson’s, and Huntington’s Diseases and Amyotrophic Lateral Sclerosis. Int. J. Mol. Sci. 2023, 24, 10809. [Google Scholar] [CrossRef] [PubMed]
- Amartumur, S.; Nguyen, H.; Huynh, T.; Kim, T.S.; Woo, R.-S.; Oh, E.; Kim, K.K.; Lee, L.P.; Heo, C. Neuropathogenesis-on-Chips for Neurodegenerative Diseases. Nat. Commun. 2024, 15, 2219. [Google Scholar] [CrossRef]
- Erkkinen, M.G.; Kim, M.-O.; Geschwind, M.D. Clinical Neurology and Epidemiology of the Major Neurodegenerative Diseases. Cold Spring Harb. Perspect. Biol. 2018, 10, a033118. [Google Scholar] [CrossRef]
- Gadhave, D.G.; Sugandhi, V.V.; Jha, S.K.; Nangare, S.N.; Gupta, G.; Singh, S.K.; Dua, K.; Cho, H.; Hansbro, P.M.; Paudel, K.R. Neurodegenerative Disorders: Mechanisms of Degeneration and Therapeutic Approaches with Their Clinical Relevance. Ageing Res. Rev. 2024, 99, 102357. [Google Scholar] [CrossRef]
- Knox, E.G.; Aburto, M.R.; Clarke, G.; Cryan, J.F.; O’Driscoll, C.M. The Blood-Brain Barrier in Aging and Neurodegeneration. Mol. Psychiatry 2022, 27, 2659–2673. [Google Scholar] [CrossRef] [PubMed]
- Alkhalifa, A.E.; Al-Ghraiybah, N.F.; Odum, J.; Shunnarah, J.G.; Austin, N.; Kaddoumi, A. Blood-Brain Barrier Breakdown in Alzheimer’s Disease: Mechanisms and Targeted Strategies. Int. J. Mol. Sci. 2023, 24, 16288. [Google Scholar] [CrossRef]
- Pang, S.Y.-Y.; Ho, P.W.-L.; Liu, H.-F.; Leung, C.-T.; Li, L.; Chang, E.E.S.; Ramsden, D.B.; Ho, S.-L. The Interplay of Aging, Genetics and Environmental Factors in the Pathogenesis of Parkinson’s Disease. Transl. Neurodegener. 2019, 8, 23. [Google Scholar] [CrossRef]
- Better, M.A. 2024 Alzheimer’s Disease Facts and Figures. Alzheimers Dement. 2024, 20, 3708–3821. [Google Scholar] [CrossRef]
- DeTure, M.A.; Dickson, D.W. The Neuropathological Diagnosis of Alzheimer’s Disease. Mol. Neurodegener. 2019, 14, 32. [Google Scholar] [CrossRef]
- Aamodt, W.W.; Sun, C.; Dahodwala, N.; Elser, H.; Schneider, A.L.C.; Farrar, J.T.; Coe, N.B.; Willis, A.W. End-of-Life Health Care Service Use and Cost Among Medicare Decedents With Neurodegenerative Diseases. Neurology 2024, 103, e209925. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Río, M.; Moreno Caballero, M.; Manuel Górriz Sáez, J.; Mínguez-Castellanos, A. Diagnosis of Neurodegenerative Diseases: The Clinical Approach. Curr. Alzheimer Res. 2016, 13, 469–474. [Google Scholar] [CrossRef] [PubMed]
- Luebke, M.; Parulekar, M.; Thomas, F.P. Fluid Biomarkers for the Diagnosis of Neurodegenerative Diseases. Biomark. Neuropsychiatry 2023, 8, 100062. [Google Scholar] [CrossRef]
- Ausó, E.; Gómez-Vicente, V.; Esquiva, G. Biomarkers for Alzheimer’s Disease Early Diagnosis. J. Pers. Med. 2020, 10, 114. [Google Scholar] [CrossRef]
- Ramesh, S.; Arachchige, A.S.P.M. Depletion of Dopamine in Parkinson’s Disease and Relevant Therapeutic Options: A Review of the Literature. AIMS Neurosci. 2023, 10, 200–231. [Google Scholar] [CrossRef]
- Dickson, D.W. Parkinson’s Disease and Parkinsonism: Neuropathology. Cold Spring Harb. Perspect. Med. 2012, 2, a009258. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Li, J.-Y. Overlaps and Divergences between Tauopathies and Synucleinopathies: A Duet of Neurodegeneration. Transl. Neurodegener. 2024, 13, 16. [Google Scholar] [CrossRef]
- Young, A.L.; Marinescu, R.V.; Oxtoby, N.P.; Bocchetta, M.; Yong, K.; Firth, N.C.; Cash, D.M.; Thomas, D.L.; Dick, K.M.; Cardoso, J.; et al. Uncovering the Heterogeneity and Temporal Complexity of Neurodegenerative Diseases with Subtype and Stage Inference. Nat. Commun. 2018, 9, 4273. [Google Scholar] [CrossRef] [PubMed]
- Roggenbuck, J.; Quick, A.; Kolb, S.J. Genetic Testing and Genetic Counseling for Amyotrophic Lateral Sclerosis: An Update for Clinicians. Genet. Med. 2017, 19, 267–274. [Google Scholar] [CrossRef] [PubMed]
- Roberts, J.S.; Patterson, A.K.; Uhlmann, W.R. Genetic Testing for Neurodegenerative Diseases: Ethical and Health Communication Challenges. Neurobiol. Dis. 2020, 141, 104871. [Google Scholar] [CrossRef] [PubMed]
- Koníčková, D.; Menšíková, K.; Tučková, L.; Hényková, E.; Strnad, M.; Friedecký, D.; Stejskal, D.; Matěj, R.; Kaňovský, P. Biomarkers of Neurodegenerative Diseases: Biology, Taxonomy, Clinical Relevance, and Current Research Status. Biomedicines 2022, 10, 1760. [Google Scholar] [CrossRef] [PubMed]
- Abondio, P.; Bruno, F.; Passarino, G.; Montesanto, A.; Luiselli, D. Pangenomics: A New Era in the Field of Neurodegenerative Diseases. Ageing Res. Rev. 2024, 94, 102180. [Google Scholar] [CrossRef] [PubMed]
- Lanoiselée, H.-M.; Nicolas, G.; Wallon, D.; Rovelet-Lecrux, A.; Lacour, M.; Rousseau, S.; Richard, A.-C.; Pasquier, F.; Rollin-Sillaire, A.; Martinaud, O.; et al. APP, PSEN1, and PSEN2 Mutations in Early-Onset Alzheimer Disease: A Genetic Screening Study of Familial and Sporadic Cases. PLoS Med. 2017, 14, e1002270. [Google Scholar] [CrossRef] [PubMed]
- Xiao, X.; Liu, H.; Liu, X.; Zhang, W.; Zhang, S.; Jiao, B. APP, PSEN1, and PSEN2 Variants in Alzheimer’s Disease: Systematic Re-Evaluation According to ACMG Guidelines. Front. Aging Neurosci. 2021, 13, 695808. [Google Scholar] [CrossRef] [PubMed]
- Tran, J.; Anastacio, H.; Bardy, C. Genetic Predispositions of Parkinson’s Disease Revealed in Patient-Derived Brain Cells. Npj Park. Dis. 2020, 6, 8. [Google Scholar] [CrossRef]
- Ofengeim, D.; Giagtzoglou, N.; Huh, D.; Zou, C.; Yuan, J. Single-Cell RNA Sequencing: Unraveling the Brain One Cell at a Time. Trends Mol. Med. 2017, 23, 563–576. [Google Scholar] [CrossRef] [PubMed]
- Nourse, J.B.; Russell, S.N.; Moniz, N.A.; Peter, K.; Seyfarth, L.M.; Scott, M.; Park, H.-A.; Caldwell, K.A.; Caldwell, G.A. Integrated Regulation of Dopaminergic and Epigenetic Effectors of Neuroprotection in Parkinson’s Disease Models. Proc. Natl. Acad. Sci. USA 2023, 120, e2210712120. [Google Scholar] [CrossRef] [PubMed]
- Paulsen, J.S. Early Detection of Huntington Disease. Future Neurol. 2010, 5, 85–104. [Google Scholar] [CrossRef]
- Scherr, M.; Utz, L.; Tahmasian, M.; Pasquini, L.; Grothe, M.J.; Rauschecker, J.P.; Grimmer, T.; Drzezga, A.; Sorg, C.; Riedl, V. Effective Connectivity in the Default Mode Network Is Distinctively Disrupted in Alzheimer’s Disease-A Simultaneous Resting-State FDG-PET/fMRI Study. Hum. Brain Mapp. 2021, 42, 4134–4143. [Google Scholar] [CrossRef]
- Raulin, A.-C.; Doss, S.V.; Trottier, Z.A.; Ikezu, T.C.; Bu, G.; Liu, C.-C. ApoE in Alzheimer’s Disease: Pathophysiology and Therapeutic Strategies. Mol. Neurodegener. 2022, 17, 72. [Google Scholar] [CrossRef]
- Kaipainen, A.L.; Pitkänen, J.; Haapalinna, F.; Jääskeläinen, O.; Jokinen, H.; Melkas, S.; Erkinjuntti, T.; Vanninen, R.; Koivisto, A.M.; Lötjönen, J.; et al. A Novel CT-Based Automated Analysis Method Provides Comparable Results with MRI in Measuring Brain Atrophy and White Matter Lesions. Neuroradiology 2021, 63, 2035–2046. [Google Scholar] [CrossRef]
- Benatar, M.; Wuu, J.; McHutchison, C.; Postuma, R.B.; Boeve, B.F.; Petersen, R.; Ross, C.A.; Rosen, H.; Arias, J.J.; Fradette, S.; et al. Preventing Amyotrophic Lateral Sclerosis: Insights from Pre-Symptomatic Neurodegenerative Diseases. Brain 2022, 145, 27–44. [Google Scholar] [CrossRef] [PubMed]
- Jankovic, J.; Tan, E.K. Parkinson’s Disease: Etiopathogenesis and Treatment. J. Neurol. Neurosurg. Psychiatry 2020, 91, 795–808. [Google Scholar] [CrossRef]
- Klimova, B.; Maresova, P.; Valis, M.; Hort, J.; Kuca, K. Alzheimer’s Disease and Language Impairments: Social Intervention and Medical Treatment. Clin. Interv. Aging 2015, 10, 1401–1407. [Google Scholar] [CrossRef] [PubMed]
- Silva, M.V.F.; Loures, C.D.M.G.; Alves, L.C.V.; De Souza, L.C.; Borges, K.B.G.; Carvalho, M.D.G. Alzheimer’s Disease: Risk Factors and Potentially Protective Measures. J. Biomed. Sci. 2019, 26, 33. [Google Scholar] [CrossRef] [PubMed]
- Masrori, P.; Van Damme, P. Amyotrophic Lateral Sclerosis: A Clinical Review. Eur. J. Neurol. 2020, 27, 1918–1929. [Google Scholar] [CrossRef]
- Schneider, S.A.; Bird, T. Huntington’s Disease, Huntington’s Disease Look-Alikes, and Benign Hereditary Chorea: What’s New? Mov. Disord. Clin. Pract. 2016, 3, 342–354. [Google Scholar] [CrossRef]
- Wakasugi, N.; Hanakawa, T. It Is Time to Study Overlapping Molecular and Circuit Pathophysiologies in Alzheimer’s and Lewy Body Disease Spectra. Front. Syst. Neurosci. 2021, 15, 777706. [Google Scholar] [CrossRef] [PubMed]
- Wood, J.L.; Weintraub, S.; Coventry, C.; Xu, J.; Zhang, H.; Rogalski, E.; Mesulam, M.-M.; Gefen, T. Montreal Cognitive Assessment (MoCA) Performance and Domain-Specific Index Scores in Amnestic Versus Aphasic Dementia. J. Int. Neuropsychol. Soc. JINS 2020, 26, 927–931. [Google Scholar] [CrossRef]
- Oleksy, P.; Zieliński, K.; Buczkowski, B.; Sikora, D.; Góralczyk, E.; Zając, A.; Mąka, M.; Papież, Ł.; Kamiński, J. Cognitive Function Tests: Application of MMSE and MoCA in Various Clinical Settings- a Brief Overview. Qual. Sport 2024, 34, 56285. [Google Scholar] [CrossRef]
- Tariot, P.N.; Boada, M.; Lanctôt, K.L.; Hahn-Pedersen, J.; Dabbous, F.; Udayachalerm, S.; Raket, L.L.; Halchenko, Y.; Michalak, W.; Weidner, W.; et al. Relationships of Change in Clinical Dementia Rating (CDR) on Patient Outcomes and Probability of Progression: Observational Analysis. Alzheimers Res. Ther. 2024, 16, 36. [Google Scholar] [CrossRef] [PubMed]
- Morris, J.C. Clinical Dementia Rating: A Reliable and Valid Diagnostic and Staging Measure for Dementia of the Alzheimer Type. Int. Psychogeriatr. 1997, 9, 173–176. [Google Scholar] [CrossRef] [PubMed]
- De Carvalho, M.; Swash, M. Diagnosis and Differential Diagnosis of MND/ALS: IFCN Handbook Chapter. Clin. Neurophysiol. Pract. 2024, 9, 27–38. [Google Scholar] [CrossRef] [PubMed]
- Iaccarino, L.; Burnham, S.C.; Dell’Agnello, G.; Dowsett, S.A.; Epelbaum, S. Diagnostic Biomarkers of Amyloid and Tau Pathology in Alzheimer’s Disease: An Overview of Tests for Clinical Practice in the United States and Europe. J. Prev. Alzheimers Dis. 2023, 10, 426–442. [Google Scholar] [CrossRef] [PubMed]
- Hansson, O.; Batrla, R.; Brix, B.; Carrillo, M.C.; Corradini, V.; Edelmayer, R.M.; Esquivel, R.N.; Hall, C.; Lawson, J.; Bastard, N.L.; et al. The Alzheimer’s Association International Guidelines for Handling of Cerebrospinal Fluid for Routine Clinical Measurements of Amyloid β and Tau. Alzheimers Dement. 2021, 17, 1575–1582. [Google Scholar] [CrossRef] [PubMed]
- Parnetti, L.; Paciotti, S.; Farotti, L.; Bellomo, G.; Sepe, F.N.; Eusebi, P. Parkinson’s and Lewy Body Dementia CSF Biomarkers. Clin. Chim. Acta 2019, 495, 318–325. [Google Scholar] [CrossRef] [PubMed]
- Alirezaei, Z.; Pourhanifeh, M.H.; Borran, S.; Nejati, M.; Mirzaei, H.; Hamblin, M.R. Neurofilament Light Chain as a Biomarker, and Correlation with Magnetic Resonance Imaging in Diagnosis of CNS-Related Disorders. Mol. Neurobiol. 2020, 57, 469–491. [Google Scholar] [CrossRef] [PubMed]
- O’Day, D.H. Protein Biomarkers Shared by Multiple Neurodegenerative Diseases Are Calmodulin-Binding Proteins Offering Novel and Potentially Universal Therapeutic Targets. J. Clin. Med. 2023, 12, 7045. [Google Scholar] [CrossRef] [PubMed]
- Vivacqua, G.; Suppa, A.; Mancinelli, R.; Belvisi, D.; Fabbrini, A.; Costanzo, M.; Formica, A.; Onori, P.; Fabbrini, G.; Berardelli, A. Salivary Alpha-Synuclein in the Diagnosis of Parkinson’s Disease and Progressive Supranuclear Palsy. Park. Relat. Disord. 2019, 63, 143–148. [Google Scholar] [CrossRef]
- Ashton, N.J.; Ide, M.; Zetterberg, H.; Blennow, K. Salivary Biomarkers for Alzheimer’s Disease and Related Disorders. Neurol. Ther. 2019, 8, 83–94. [Google Scholar] [CrossRef] [PubMed]
- Sato, S.; Mizuno, Y.; Hattori, N. Urinary 8-Hydroxydeoxyguanosine Levels as a Biomarker for Progression of Parkinson Disease. Neurology 2005, 64, 1081–1083. [Google Scholar] [CrossRef] [PubMed]
- Rogers, M.-L.; Schultz, D.W.; Karnaros, V.; Shepheard, S.R. Urinary Biomarkers for Amyotrophic Lateral Sclerosis: Candidates, Opportunities and Considerations. Brain Commun. 2023, 5, fcad287. [Google Scholar] [CrossRef]
- Du, A.-T.; Schuff, N.; Kramer, J.H.; Rosen, H.J.; Gorno-Tempini, M.L.; Rankin, K.; Miller, B.L.; Weiner, M.W. Different Regional Patterns of Cortical Thinning in Alzheimer’s Disease and Frontotemporal Dementia. Brain J. Neurol. 2007, 130, 1159–1166. [Google Scholar] [CrossRef] [PubMed]
- Langley, J.; Huddleston, D.E.; Merritt, M.; Chen, X.; McMurray, R.; Silver, M.; Factor, S.A.; Hu, X. Diffusion Tensor Imaging of the Substantia Nigra in Parkinson’s Disease Revisited. Hum. Brain Mapp. 2016, 37, 2547–2556. [Google Scholar] [CrossRef] [PubMed]
- Aylward, E.H.; Sparks, B.F.; Field, K.M.; Yallapragada, V.; Shpritz, B.D.; Rosenblatt, A.; Brandt, J.; Gourley, L.M.; Liang, K.; Zhou, H.; et al. Onset and Rate of Striatal Atrophy in Preclinical Huntington Disease. Neurology 2004, 63, 66–72. [Google Scholar] [CrossRef]
- Christidi, F.; Karavasilis, E.; Argyropoulos, G.D.; Velonakis, G.; Zouvelou, V.; Murad, A.; Evdokimidis, I.; Rentzos, M.; Seimenis, I.; Bede, P. Neurometabolic Alterations in Motor Neuron Disease: Insights from Magnetic Resonance Spectroscopy. J. Integr. Neurosci. 2022, 21, 87. [Google Scholar] [CrossRef]
- Schwarz, C.G. Uses of Human MR and PET Imaging in Research of Neurodegenerative Brain Diseases. Neurother. J. Am. Soc. Exp. Neurother. 2021, 18, 661–672. [Google Scholar] [CrossRef]
- Clark, C.M. Use of Florbetapir-PET for Imaging β-Amyloid Pathology. J. Am. Med. Assoc. 2011, 305, 275. [Google Scholar] [CrossRef] [PubMed]
- Amadoru, S.; Doré, V.; McLean, C.A.; Hinton, F.; Shepherd, C.E.; Halliday, G.M.; Leyton, C.E.; Yates, P.A.; Hodges, J.R.; Masters, C.L.; et al. Comparison of Amyloid PET Measured in Centiloid Units with Neuropathological Findings in Alzheimer’s Disease. Alzheimers Res. Ther. 2020, 12, 22. [Google Scholar] [CrossRef] [PubMed]
- Burnham, S.C.; Iaccarino, L.; Pontecorvo, M.J.; Fleisher, A.S.; Lu, M.; Collins, E.C.; Devous, M.D. A Review of the Flortaucipir Literature for Positron Emission Tomography Imaging of Tau Neurofibrillary Tangles. Brain Commun. 2023, 6, fcad305. [Google Scholar] [CrossRef] [PubMed]
- Cheng, F.; Duan, Y.; Jiang, H.; Zeng, Y.; Chen, X.; Qin, L.; Zhao, L.; Yi, F.; Tang, Y.; Liu, C. Identifying and Distinguishing of Essential Tremor and Parkinson’s Disease with Grouped Stability Analysis Based on Searchlight-Based MVPA. Biomed. Eng. Online 2022, 21, 81. [Google Scholar] [CrossRef]
- Michels, S.; Buchholz, H.-G.; Rosar, F.; Heinrich, I.; Hoffmann, M.A.; Schweiger, S.; Tüscher, O.; Schreckenberger, M. 18F-FDG PET/CT: An Unexpected Case of Huntington’s Disease. BMC Neurol. 2019, 19, 78. [Google Scholar] [CrossRef] [PubMed]
- Dang, C.; Wang, Y.; Li, Q.; Lu, Y. Neuroimaging Modalities in the Detection of Alzheimer’s Disease-Associated Biomarkers. Psychoradiology 2023, 3, kkad009. [Google Scholar] [CrossRef] [PubMed]
- Van Rheenen, W.; Van Der Spek, R.A.A.; Bakker, M.K.; Van Vugt, J.J.F.A.; Hop, P.J.; Zwamborn, R.A.J.; De Klein, N.; Westra, H.-J.; Bakker, O.B.; Deelen, P.; et al. Common and Rare Variant Association Analyses in Amyotrophic Lateral Sclerosis Identify 15 Risk Loci with Distinct Genetic Architectures and Neuron-Specific Biology. Nat. Genet. 2021, 53, 1636–1648. [Google Scholar] [CrossRef]
- Prokopenko, D.; Morgan, S.L.; Mullin, K.; Hofmann, O.; Chapman, B.; Kirchner, R.; Alzheimer’s Disease Neuroimaging Initiative (ADNI); Amberkar, S.; Wohlers, I.; Lange, C.; et al. Whole-Genome Sequencing Reveals New Alzheimer’s Disease-Associated Rare Variants in Loci Related to Synaptic Function and Neuronal Development. Alzheimers Dement. J. Alzheimers Assoc. 2021, 17, 1509–1527. [Google Scholar] [CrossRef]
- Chia, R.; Sabir, M.S.; Bandres-Ciga, S.; Saez-Atienzar, S.; Reynolds, R.H.; Gustavsson, E.; Walton, R.L.; Ahmed, S.; Viollet, C.; Ding, J.; et al. Genome Sequencing Analysis Identifies New Loci Associated with Lewy Body Dementia and Provides Insights into Its Genetic Architecture. Nat. Genet. 2021, 53, 294–303. [Google Scholar] [CrossRef] [PubMed]
- Tan, Y.J.; Yong, A.C.W.; Foo, J.N.; Lian, M.M.; Lim, W.K.; Dominguez, J.; Fong, Z.H.; Narasimhalu, K.; Chiew, H.J.; Ng, K.P.; et al. C9orf72 Expansions Are the Most Common Cause of Genetic Frontotemporal Dementia in a Southeast Asian Cohort. Ann. Clin. Transl. Neurol. 2023, 10, 568–578. [Google Scholar] [CrossRef]
- Bagyinszky, E.; Giau, V.V.; An, S.A. Transcriptomics in Alzheimer’s Disease: Aspects and Challenges. Int. J. Mol. Sci. 2020, 21, 3517. [Google Scholar] [CrossRef]
- Fiorini, M.R.; Dilliott, A.A.; Thomas, R.A.; Farhan, S.M.K. Transcriptomics of Human Brain Tissue in Parkinson’s Disease: A Comparison of Bulk and Single-Cell RNA Sequencing. Mol. Neurobiol. 2024, 61, 8996–9015. [Google Scholar] [CrossRef] [PubMed]
- Cao, M.C.; Scotter, E.L. Transcriptional Targets of Amyotrophic Lateral Sclerosis/Frontotemporal Dementia Protein TDP-43—Meta-Analysis and Interactive Graphical Database. Dis. Model. Mech. 2022, 15, dmm049418. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, H.J.R.; Patikas, N.; Foskolou, S.; Field, S.F.; Park, J.-E.; Byrne, M.L.; Bassett, A.R.; Metzakopian, E. Single-Cell Transcriptomics of Parkinson’s Disease Human In Vitro Models Reveals Dopamine Neuron-Specific Stress Responses. Cell Rep. 2020, 33, 108263. [Google Scholar] [CrossRef]
- Deczkowska, A.; Keren-Shaul, H.; Weiner, A.; Colonna, M.; Schwartz, M.; Amit, I. Disease-Associated Microglia: A Universal Immune Sensor of Neurodegeneration. Cell 2018, 173, 1073–1081. [Google Scholar] [CrossRef]
- Nguyen, A.T.; Wang, K.; Hu, G.; Wang, X.; Miao, Z.; Azevedo, J.A.; Suh, E.; Van Deerlin, V.M.; Choi, D.; Roeder, K.; et al. APOE and TREM2 Regulate Amyloid-Responsive Microglia in Alzheimer’s Disease. Acta Neuropathol. 2020, 140, 477–493. [Google Scholar] [CrossRef] [PubMed]
- Malaiya, S.; Cortes-Gutierrez, M.; Herb, B.R.; Coffey, S.R.; Legg, S.R.W.; Cantle, J.P.; Colantuoni, C.; Carroll, J.B.; Ament, S.A. Single-Nucleus RNA-Seq Reveals Dysregulation of Striatal Cell Identity Due to Huntington’s Disease Mutations. J. Neurosci. Off. J. Soc. Neurosci. 2021, 41, 5534–5552. [Google Scholar] [CrossRef] [PubMed]
- Vanrobaeys, Y.; Peterson, Z.J.; Walsh, E.N.; Chatterjee, S.; Lin, L.-C.; Lyons, L.C.; Nickl-Jockschat, T.; Abel, T. Spatial Transcriptomics Reveals Unique Gene Expression Changes in Different Brain Regions after Sleep Deprivation. Nat. Commun. 2023, 14, 7095. [Google Scholar] [CrossRef] [PubMed]
- Jung, N.; Kim, T.-K. Spatial Transcriptomics in Neuroscience. Exp. Mol. Med. 2023, 55, 2105–2115. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.-T.; Lu, A.; Craessaerts, K.; Pavie, B.; Sala Frigerio, C.; Corthout, N.; Qian, X.; Laláková, J.; Kühnemund, M.; Voytyuk, I.; et al. Spatial Transcriptomics and In Situ Sequencing to Study Alzheimer’s Disease. Cell 2020, 182, 976–991.e19. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Chang, Y.; Li, L.; Acosta, D.; Li, Y.; Guo, Q.; Wang, C.; Turkes, E.; Morrison, C.; Julian, D.; et al. Spatially Resolved Transcriptomics Reveals Genes Associated with the Vulnerability of Middle Temporal Gyrus in Alzheimer’s Disease. Acta Neuropathol. Commun. 2022, 10, 188. [Google Scholar] [CrossRef] [PubMed]
- Yu, M.; Risacher, S.L.; Nho, K.T.; Wen, Q.; Oblak, A.L.; Unverzagt, F.W.; Apostolova, L.G.; Farlow, M.R.; Brosch, J.R.; Clark, D.G.; et al. Spatial Transcriptomic Patterns Underlying Amyloid-β and Tau Pathology Are Associated with Cognitive Dysfunction in Alzheimer’s Disease. Cell Rep. 2024, 43, 113691. [Google Scholar] [CrossRef]
- Johnston, K.G.; Berackey, B.T.; Tran, K.M.; Gelber, A.; Yu, Z.; MacGregor, G.R.; Mukamel, E.A.; Tan, Z.; Green, K.N.; Xu, X. Single-Cell Spatial Transcriptomics Reveals Distinct Patterns of Dysregulation in Non-Neuronal and Neuronal Cells Induced by the Trem2R47H Alzheimer’s Risk Gene Mutation. Mol. Psychiatry 2024, 30, 461–477. [Google Scholar] [CrossRef] [PubMed]
- Kamath, T.; Abdulraouf, A.; Burris, S.J.; Langlieb, J.; Gazestani, V.; Nadaf, N.M.; Balderrama, K.; Vanderburg, C.; Macosko, E.Z. Single-Cell Genomic Profiling of Human Dopamine Neurons Identifies a Population That Selectively Degenerates in Parkinson’s Disease. Nat. Neurosci. 2022, 25, 588–595. [Google Scholar] [CrossRef]
- Guo, J.; You, L.; Zhou, Y.; Hu, J.; Li, J.; Yang, W.; Tang, X.; Sun, Y.; Gu, Y.; Dong, Y.; et al. Spatial Enrichment and Genomic Analyses Reveal the Link of NOMO1 with Amyotrophic Lateral Sclerosis. Brain 2024, 147, 2826–2841. [Google Scholar] [CrossRef] [PubMed]
- Piwecka, M.; Rajewsky, N.; Rybak-Wolf, A. Single-Cell and Spatial Transcriptomics: Deciphering Brain Complexity in Health and Disease. Nat. Rev. Neurol. 2023, 19, 346–362. [Google Scholar] [CrossRef]
- Cummings, B.B.; Marshall, J.L.; Tukiainen, T.; Lek, M.; Donkervoort, S.; Foley, A.R.; Bolduc, V.; Waddell, L.B.; Sandaradura, S.A.; O’Grady, G.L.; et al. Improving Genetic Diagnosis in Mendelian Disease with Transcriptome Sequencing. Sci. Transl. Med. 2017, 9, eaal5209. [Google Scholar] [CrossRef]
- Wang, C.; Acosta, D.; McNutt, M.; Bian, J.; Ma, A.; Fu, H.; Ma, Q. A Single-Cell and Spatial RNA-Seq Database for Alzheimer’s Disease (ssREAD). Nat. Commun. 2024, 15, 4710. [Google Scholar] [CrossRef] [PubMed]
- Dash, B.P.; Hermann, A. Combination of Novel RNA Sequencing and Sophisticated Network Modeling to Reveal a Common Denominator in Amyotrophic Lateral Sclerosis? Neural Regen. Res. 2023, 18, 2403–2405. [Google Scholar] [CrossRef]
- Feng, B.; Zheng, J.; Cai, Y.; Han, Y.; Han, Y.; Wu, J.; Feng, J.; Zheng, K. An Epigenetic Manifestation of Alzheimer’s Disease: DNA Methylation. Actas Esp. Psiquiatr. 2024, 52, 365–374. [Google Scholar] [CrossRef]
- Milicic, L.; Porter, T.; Vacher, M.; Laws, S.M. Utility of DNA Methylation as a Biomarker in Aging and Alzheimer’s Disease. J. Alzheimers Dis. Rep. 2023, 7, 475–503. [Google Scholar] [CrossRef]
- Chen, Y.; Liang, R.; Li, Y.; Jiang, L.; Ma, D.; Luo, Q.; Song, G. Chromatin Accessibility: Biological Functions, Molecular Mechanisms and Therapeutic Application. Signal Transduct. Target. Ther. 2024, 9, 340. [Google Scholar] [CrossRef] [PubMed]
- Yoon, J.H.; Lee, H.; Kwon, D.; Lee, D.; Lee, S.; Cho, E.; Kim, J.; Kim, D. Integrative Approach of Omics and Imaging Data to Discover New Insights for Understanding Brain Diseases. Brain Commun. 2024, 6, fcae265. [Google Scholar] [CrossRef] [PubMed]
- Griñán-Ferré, C.; Bellver-Sanchis, A.; Guerrero, A.; Pallàs, M. Advancing Personalized Medicine in Neurodegenerative Diseases: The Role of Epigenetics and Pharmacoepigenomics in Pharmacotherapy. Pharmacol. Res. 2024, 205, 107247. [Google Scholar] [CrossRef] [PubMed]
- Sowell, R.A.; Owen, J.B.; Butterfield, D.A. Proteomics in Animal Models of Alzheimer’s and Parkinson’s Diseases. Ageing Res. Rev. 2009, 8, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Rayaprolu, S.; Higginbotham, L.; Bagchi, P.; Watson, C.M.; Zhang, T.; Levey, A.I.; Rangaraju, S.; Seyfried, N.T. Systems-Based Proteomics to Resolve the Biology of Alzheimer’s Disease beyond Amyloid and Tau. Neuropsychopharmacology 2021, 46, 98–115. [Google Scholar] [CrossRef]
- Butterfield, D.A.; Palmieri, E.M.; Castegna, A. Clinical Implications from Proteomic Studies in Neurodegenerative Diseases: Lessons from Mitochondrial Proteins. Expert Rev. Proteom. 2016, 13, 259–274. [Google Scholar] [CrossRef]
- Luo, X.; Liu, Y.; Balck, A.; Klein, C.; Fleming, R.M.T. Identification of Metabolites Reproducibly Associated with Parkinson’s Disease via Meta-Analysis and Computational Modelling. Npj Park. Dis. 2024, 10, 126. [Google Scholar] [CrossRef]
- Yin, F. Lipid Metabolism and Alzheimer’s Disease: Clinical Evidence, Mechanistic Link and Therapeutic Promise. FEBS J. 2023, 290, 1420–1453. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Y.; Cao, S.; Li, N.; Tang, J.; Lin, G. Identification of Key Lipid Metabolism-Related Genes in Alzheimer’s Disease. Lipids Health Dis. 2023, 22, 155. [Google Scholar] [CrossRef] [PubMed]
- Papagiannakis, N.; Liu, H.; Koros, C.; Simitsi, A.; Stamelou, M.; Maniati, M.; Buena-Atienza, E.; Kartanou, C.; Karadima, G.; Makrythanasis, P.; et al. Parkin mRNA Expression Levels in Peripheral Blood Mononuclear Cells in Parkin-Related Parkinson’s Disease. Mov. Disord. 2024, 39, 715–722. [Google Scholar] [CrossRef] [PubMed]
- Mastrokolias, A.; Pool, R.; Mina, E.; Hettne, K.M.; van Duijn, E.; van der Mast, R.C.; van Ommen, G.; ’t Hoen, P.A.C.; Prehn, C.; Adamski, J.; et al. Integration of Targeted Metabolomics and Transcriptomics Identifies Deregulation of Phosphatidylcholine Metabolism in Huntington’s Disease Peripheral Blood Samples. Metabolomics Off. J. Metabolomic Soc. 2016, 12, 137. [Google Scholar] [CrossRef] [PubMed]
- Krokidis, M.G. Transcriptomics and Metabolomics in Amyotrophic Lateral Sclerosis. In GeNeDis 2018; Vlamos, P., Ed.; Advances in Experimental Medicine and Biology; Springer International Publishing: Cham, Switzerland, 2020; Volume 1195, pp. 205–212. ISBN 978-3-030-32632-6. [Google Scholar]
- Griciuc, A.; Patel, S.; Federico, A.N.; Choi, S.H.; Innes, B.J.; Oram, M.K.; Cereghetti, G.; McGinty, D.; Anselmo, A.; Sadreyev, R.I.; et al. TREM2 Acts Downstream of CD33 in Modulating Microglial Pathology in Alzheimer’s Disease. Neuron 2019, 103, 820–835.e7. [Google Scholar] [CrossRef]
- Broadway, B.J.; Boneski, P.K.; Bredenberg, J.M.; Kolicheski, A.; Hou, X.; Soto-Beasley, A.I.; Ross, O.A.; Springer, W.; Fiesel, F.C. Systematic Functional Analysis of PINK1 and PRKN Coding Variants. Cells 2022, 11, 2426. [Google Scholar] [CrossRef] [PubMed]
- Behl, T.; Kaur, I.; Sehgal, A.; Singh, S.; Albarrati, A.; Albratty, M.; Najmi, A.; Meraya, A.M.; Bungau, S. The Road to Precision Medicine: Eliminating the “One Size Fits All” Approach in Alzheimer’s Disease. Biomed. Pharmacother. 2022, 153, 113337. [Google Scholar] [CrossRef]
- Maiuri, T.; Suart, C.E.; Hung, C.L.K.; Graham, K.J.; Barba Bazan, C.A.; Truant, R. DNA Damage Repair in Huntington’s Disease and Other Neurodegenerative Diseases. Neurother. J. Am. Soc. Exp. Neurother. 2019, 16, 948–956. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.-M.; Huang, Y.; Orth, M.; Gillis, T.; Siciliano, J.; Hong, E.; Mysore, J.S.; Lucente, D.; Wheeler, V.C.; Seong, I.S.; et al. Genetic Modifiers of Huntington Disease Differentially Influence Motor and Cognitive Domains. Am. J. Hum. Genet. 2022, 109, 885–899. [Google Scholar] [CrossRef] [PubMed]
- Smith, L.; Schapira, A.H.V. GBA Variants and Parkinson Disease: Mechanisms and Treatments. Cells 2022, 11, 1261. [Google Scholar] [CrossRef]
- Vinagre-Aragón, A.; Campo-Caballero, D.; Mondragón-Rezola, E.; Pardina-Vilella, L.; Hernandez Eguiazu, H.; Gorostidi, A.; Croitoru, I.; Bergareche, A.; Ruiz-Martinez, J. A More Homogeneous Phenotype in Parkinson’s Disease Related to R1441G Mutation in the LRRK2 Gene. Front. Neurol. 2021, 12, 635396. [Google Scholar] [CrossRef] [PubMed]
- Fan, X.; Li, H. Integration of Single-Cell and Spatial Transcriptomic Data Reveals Spatial Architecture and Potential Biomarkers in Alzheimer’s Disease. Mol. Neurobiol. 2024. [Google Scholar] [CrossRef] [PubMed]
- Gao, C.; Jiang, J.; Tan, Y.; Chen, S. Microglia in Neurodegenerative Diseases: Mechanism and Potential Therapeutic Targets. Signal Transduct. Target. Ther. 2023, 8, 359. [Google Scholar] [CrossRef]
- Shwab, E.K.; Gingerich, D.C.; Man, Z.; Gamache, J.; Garrett, M.E.; Crawford, G.E.; Ashley-Koch, A.E.; Serrano, G.E.; Beach, T.G.; Lutz, M.W.; et al. Single-Nucleus Multi-Omics of Parkinson’s Disease Reveals a Glutamatergic Neuronal Subtype Susceptible to Gene Dysregulation via Alteration of Transcriptional Networks. Acta Neuropathol. Commun. 2024, 12, 111. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Li, T.; Wang, Z.; Yin, Y.; Zhang, S.; Wang, C.; Hu, X.; Lu, S. Bibliometric Analysis of Research on Neurodegenerative Diseases and Single-Cell RNA Sequencing: Opportunities and Challenges. iScience 2023, 26, 107833. [Google Scholar] [CrossRef] [PubMed]
- Clark, K.; Leung, Y.Y.; Lee, W.-P.; Voight, B.; Wang, L.-S. Polygenic Risk Scores in Alzheimer’s Disease Genetics: Methodology, Applications, Inclusion, and Diversity. J. Alzheimers Dis. JAD 2022, 89, 1–12. [Google Scholar] [CrossRef]
- McLaughlin, R.L.; Schijven, D.; Van Rheenen, W.; Van Eijk, K.R.; O’Brien, M.; Kahn, R.S.; Ophoff, R.A.; Goris, A.; Bradley, D.G.; Al-Chalabi, A.; et al. Genetic Correlation between Amyotrophic Lateral Sclerosis and Schizophrenia. Nat. Commun. 2017, 8, 14774. [Google Scholar] [CrossRef] [PubMed]
- Guhathakurta, S.; Kim, J.; Adams, L.; Basu, S.; Song, M.K.; Adler, E.; Je, G.; Fiadeiro, M.B.; Kim, Y.-S. Targeted Attenuation of Elevated Histone Marks at SNCA Alleviates α-Synuclein in Parkinson’s Disease. EMBO Mol. Med. 2021, 13, e12188. [Google Scholar] [CrossRef]
- Boros, B.D.; Schoch, K.M.; Kreple, C.J.; Miller, T.M. Antisense Oligonucleotides for the Study and Treatment of ALS. Neurother. J. Am. Soc. Exp. Neurother. 2022, 19, 1145–1158. [Google Scholar] [CrossRef] [PubMed]
- Tabrizi, S.J.; Leavitt, B.R.; Landwehrmeyer, G.B.; Wild, E.J.; Saft, C.; Barker, R.A.; Blair, N.F.; Craufurd, D.; Priller, J.; Rickards, H.; et al. Targeting Huntingtin Expression in Patients with Huntington’s Disease. N. Engl. J. Med. 2019, 380, 2307–2316. [Google Scholar] [CrossRef]
- Abeliovich, A.; Hefti, F.; Sevigny, J. Gene Therapy for Parkinson’s Disease Associated with GBA1 Mutations. J. Park. Dis. 2021, 11, S183–S188. [Google Scholar] [CrossRef] [PubMed]
- Nouri Nojadeh, J.; Bildiren Eryilmaz, N.S.; Ergüder, B.I. CRISPR/Cas9 Genome Editing for Neurodegenerative Diseases. EXCLI J. 2023, 22, 567–582. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.-M.; Chao, M.J.; Harold, D.; Abu Elneel, K.; Gillis, T.; Holmans, P.; Jones, L.; Orth, M.; Myers, R.H.; Kwak, S.; et al. A Modifier of Huntington’s Disease Onset at the MLH1 Locus. Hum. Mol. Genet. 2017, 26, 3859–3867. [Google Scholar] [CrossRef] [PubMed]
- Goold, R.; Flower, M.; Moss, D.H.; Medway, C.; Wood-Kaczmar, A.; Andre, R.; Farshim, P.; Bates, G.P.; Holmans, P.; Jones, L.; et al. FAN1 Modifies Huntington’s Disease Progression by Stabilizing the Expanded HTT CAG Repeat. Hum. Mol. Genet. 2019, 28, 650–661. [Google Scholar] [CrossRef] [PubMed]
- Keren-Shaul, H.; Spinrad, A.; Weiner, A.; Matcovitch-Natan, O.; Dvir-Szternfeld, R.; Ulland, T.K.; David, E.; Baruch, K.; Lara-Astaiso, D.; Toth, B.; et al. A Unique Microglia Type Associated with Restricting Development of Alzheimer’s Disease. Cell 2017, 169, 1276–1290.e17. [Google Scholar] [CrossRef]
- Maniatis, S.; Äijö, T.; Vickovic, S.; Braine, C.; Kang, K.; Mollbrink, A.; Fagegaltier, D.; Andrusivová, Ž.; Saarenpää, S.; Saiz-Castro, G.; et al. Spatiotemporal Dynamics of Molecular Pathology in Amyotrophic Lateral Sclerosis. Science 2019, 364, 89–93. [Google Scholar] [CrossRef]
- Porro, A.; Mohiuddin, M.; Zurfluh, C.; Spegg, V.; Dai, J.; Iehl, F.; Ropars, V.; Collotta, G.; Fishwick, K.M.; Mozaffari, N.L.; et al. FAN1-MLH1 Interaction Affects Repair of DNA Interstrand Cross-Links and Slipped-CAG/CTG Repeats. Sci. Adv. 2021, 7, eabf7906. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Vidal, J.M.; Aracil-Bolaños, I.; García-Sánchez, C.; Campolongo, A.; Curell, M.; Rodríguez-Rodriguez, R.; Aibar-Duran, J.Á.; Kulisevsky, J.; Pascual-Sedano, B. Cognitive Phenotyping of GBA1-Parkinson’s Disease: A Study on Deep Brain Stimulation Outcomes. Park. Relat. Disord. 2024, 128, 107127. [Google Scholar] [CrossRef]
- Shi, Q.; Chang, C.; Saliba, A.; Bhat, M.A. Microglial mTOR Activation Upregulates Trem2 and Enhances β-Amyloid Plaque Clearance in the 5XFAD Alzheimer’s Disease Model. J. Neurosci. Off. J. Soc. Neurosci. 2022, 42, 5294–5313. [Google Scholar] [CrossRef]
- Lantero-Rodriguez, J.; Montoliu-Gaya, L.; Benedet, A.L.; Vrillon, A.; Dumurgier, J.; Cognat, E.; Brum, W.S.; Rahmouni, N.; Stevenson, J.; Servaes, S.; et al. CSF P-Tau205: A Biomarker of Tau Pathology in Alzheimer’s Disease. Acta Neuropathol. 2024, 147, 12. [Google Scholar] [CrossRef]
- Pang, S.Y.-Y.; Lo, R.C.N.; Ho, P.W.-L.; Liu, H.-F.; Chang, E.E.S.; Leung, C.-T.; Malki, Y.; Choi, Z.Y.-K.; Wong, W.Y.; Kung, M.H.-W.; et al. LRRK2, GBA and Their Interaction in the Regulation of Autophagy: Implications on Therapeutics in Parkinson’s Disease. Transl. Neurodegener. 2022, 11, 5. [Google Scholar] [CrossRef] [PubMed]
- Kubick, N.; Henckell Flournoy, P.C.; Klimovich, P.; Manda, G.; Mickael, M.-E. What Has Single-Cell RNA Sequencing Revealed about Microglial Neuroimmunology? Immun. Inflamm. Dis. 2020, 8, 825–839. [Google Scholar] [CrossRef] [PubMed]
Disease | Gene(s) | Clinical Synopsis | Inheritance Pattern | OMIM Phenotype Number |
---|---|---|---|---|
Alzheimer’s Disease (AD) | APP (EO), PSEN1 (EO), PSEN2 (EO) [22,23], APOE ≤4 (LO) [26] | Progressive memory loss, cognitive decline, language and visuospatial deficits, β-amyloid plaque accumulation, neurofibrillary tangles | Autosomal dominant | 104,300 |
Parkinson’s Disease (PD) | PARK2 (EO), SNCA (EO/LO), LRRK2 (LO) [24] | Resting tremors, bradykinesia, rigidity, postural instability, Lewy bodies formation, loss and degeneration of brain tissue | Autosomal dominant/recessive | 168,600 |
Huntington’s Disease (HD) | HTT (EO) [27,28] | Chorea, cognitive impairment, psychiatric symptoms | Autosomal dominant | 143,100 |
Amyotrophic Lateral Sclerosis (ALS) | C9orf72 (EO/LO), SOD1 (EO/LO) [29] | Progressive muscle weakness, spasticity, fasciculations, respiratory failure, upper and lower motor neuron degeneration | Autosomal dominant/recessive | 105,400 |
Lewy Body Dementia (LBD) | SNCA (EO/LO), GBA (LO) [30] | Cognitive decline, visual hallucinations, Parkinsonism, Lewy body formation | Autosomal dominant | 127,750 |
Diagnostic Method | Approach | Utility | Limitations |
---|---|---|---|
Clinical Evaluation | Comprehensive history taking, neurological, and physical exams. | Identifies hallmark symptoms of diseases (e.g., bradykinesia for PD, chorea for HD, and memory loss for AD). | Lacks precision for early-stage or overlapping symptoms in neurodegenerative diseases. |
Genetic testing (e.g., CAG repeat expansion in HTT for HD; SOD1 and C9orf72 mutations for ALS). | Confirms familial disease cases. | Limited availability, cost, and ethical considerations in predictive testing. | |
Neuropsychological Testing | Cognitive function tests (e.g., MMSE, MoCA). | Detects cognitive impairment patterns specific to diseases (e.g., memory deficits in AD, executive dysfunction in FTD). | Insufficient for detecting structural or molecular changes. |
Neurophysiological studies (e.g., EMG, nerve conduction studies). | Assesses neuromuscular diseases like ALS. | Limited diagnostic specificity for other neurodegenerative disorders. | |
Biomarker Analysis | CSF biomarkers (e.g., Aβ42, t-tau, p-tau for AD; α-synuclein for PD and LBD). | Detects molecular changes. | Invasive collection methods; overlapping markers across diseases. |
Blood biomarkers (e.g., plasma Aβ, tau, NfL). | Less invasive, scalable, and potential for early diagnosis. | Requires further validation for sensitivity and specificity. | |
Neuroimaging | Structural imaging (e.g., MRI: hippocampal atrophy in AD; CT: rule out alternative causes like tumors or hemorrhages). | Identifies structural and molecular changes in the brain. | Limited sensitivity for early molecular changes; MRI is costly and time-consuming. |
Functional imaging (e.g., PET: tau imaging for AD, DT-PET for PD). | Provides insights into network disruptions (e.g., fMRI for AD and PD). | Expensive, limited availability (radioactive tracers for PET), and variability in results. | |
Genetic and Transcriptomic | Next-generation sequencing (NGS), microarray analysis | Identifies genetic variants (e.g., APOE ε4 for AD, TARDBP for ALS). | High cost and technical expertise required; limited to research or specialized centers. |
Transcriptomic profiling (e.g., RNA sequencing). | Helps understand disease-specific pathways, aiding in early diagnosis and targeted treatment. | Requires integration with other diagnostic tools for clinical applicability. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Z.; Song, S.-Y. Genomic and Transcriptomic Approaches Advance the Diagnosis and Prognosis of Neurodegenerative Diseases. Genes 2025, 16, 135. https://doi.org/10.3390/genes16020135
Liu Z, Song S-Y. Genomic and Transcriptomic Approaches Advance the Diagnosis and Prognosis of Neurodegenerative Diseases. Genes. 2025; 16(2):135. https://doi.org/10.3390/genes16020135
Chicago/Turabian StyleLiu, Zheng, and Si-Yuan Song. 2025. "Genomic and Transcriptomic Approaches Advance the Diagnosis and Prognosis of Neurodegenerative Diseases" Genes 16, no. 2: 135. https://doi.org/10.3390/genes16020135
APA StyleLiu, Z., & Song, S.-Y. (2025). Genomic and Transcriptomic Approaches Advance the Diagnosis and Prognosis of Neurodegenerative Diseases. Genes, 16(2), 135. https://doi.org/10.3390/genes16020135