Causal Associations Between Remnant Cholesterol Levels and Atherosclerosis-Related Cardiometabolic Risk Factors: A Bidirectional Mendelian Randomization Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Cohort
2.2. Clinical Characteristics and Laboratory Examinations
2.3. Genomic DNA Extraction, Genotyping, and GWAS
2.4. Genomic Locus Definition and Functional Annotation
2.5. Statistical Analysis
2.6. MR Analysis
2.7. Sensitivity Analysis
3. Results
3.1. Associations of RC Levels with Participants’ Clinical Characteristics and Laboratory Data
3.2. Associations of RC Levels with the Prevalence of Cardiometabolic and Vascular Risk Factors and New-Onset Cardiometabolic Risk Factors
3.3. GWAS of the Associations of Genetic Variants with RC Levels and Cardiometabolic and Vascular Risk Factors
3.4. Summary of GWAS and FUMA Results
3.5. Results of Stepwise Linear Regression
3.6. Results of Bidirectional MR Analysis and 2SLS
3.7. Results of Sensitivity Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
2SLS | Two-stage least squares |
ASCVD | Atherosclerotic cardiovascular disease |
BMI | Body mass index |
CIMT | Carotid intima–media thickness |
CKD | Chronic kidney disease |
DM | Diabetes mellitus |
FUMA | Functional mapping and annotation |
GWAS | genome-wide association study |
HDL-C | High-density lipoprotein cholesterol |
IVs | Instrumental variables |
IVW | Inverse-variance weighting |
LD | Linkage disequilibrium |
LDL-C | Low-density lipoprotein cholesterol |
MAFLD | Metabolic dysfunction-associated fatty liver disease |
MASLD | Metabolic dysfunction-associated steatotic liver disease |
MR | Mendelian randomization |
NAFLD | Nonalcoholic fatty liver disease |
RC | Remnant cholesterol |
TC | Total cholesterol |
TWB | Taiwan Biobank |
WGRSs | Weighted genetic risk scores |
References
- Nordestgaard, B.G.; Varbo, A. Triglycerides and cardiovascular disease. Lancet 2014, 384, 626–635. [Google Scholar] [CrossRef] [PubMed]
- Sandesara, P.B.; Virani, S.S.; Fazio, S.; Shapiro, M.D. The Forgotten Lipids: Triglycerides, Remnant Cholesterol, and Atherosclerotic Cardiovascular Disease Risk. Endocr. Rev. 2019, 40, 537–557. [Google Scholar] [CrossRef] [PubMed]
- Ting, H.J.; Stice, J.P.; Schaff, U.Y.; Hui, D.Y.; Rutledge, J.C.; Knowlton, A.A.; Passerini, A.G.; Simon, S.I. Triglyceride-rich lipoproteins prime aortic endothelium for an enhanced inflammatory response to tumor necrosis factor-α. Circ. Res. 2007, 100, 381–390. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Gill, R.; Pedersen, T.L.; Higgins, L.J.; Newman, J.W.; Rutledge, J.C. Triglyceride-rich lipoprotein lipolysis releases neutral and oxidized FFAs that induce endothelial cell inflammation. J. Lipid Res. 2009, 50, 204–213. [Google Scholar] [CrossRef]
- Hotamisligil, G.S. Inflammation, metaflammation and immunometabolic disorders. Nature 2017, 542, 177–185. [Google Scholar] [CrossRef]
- Minihane, A.M.; Vinoy, S.; Russell, W.R.; Baka, A.; Roche, H.M.; Tuohy, K.M.; Teeling, J.L.; Blaak, E.E.; Fenech, M.; Vauzour, D.; et al. Low-grade inflammation, diet composition and health: Current research evidence and its translation. Br. J. Nutr. 2015, 114, 999–1012. [Google Scholar] [CrossRef]
- Varbo, A.; Benn, M.; Tybjærg-Hansen, A.; Jørgensen, A.B.; Frikke-Schmidt, R.; Nordestgaard, B.G. Remnant cholesterol as a causal risk factor for ischemic heart disease. J. Am. Coll. Cardiol. 2013, 61, 427–436. [Google Scholar] [CrossRef]
- Varbo, A.; Benn, M.; Tybjærg-Hansen, A.; Nordestgaard, B.G. Elevated remnant cholesterol causes both low-grade inflammation and ischemic heart disease, whereas elevated low-density lipoprotein cholesterol causes ischemic heart disease without inflammation. Circulation 2013, 128, 1298–1309. [Google Scholar] [CrossRef]
- Chait, A.; Ginsberg, H.N.; Vaisar, T.; Heinecke, J.W.; Goldberg, I.J.; Bornfeldt, K.E. Remnants of the Triglyceride-Rich Lipoproteins, Diabetes, and Cardiovascular Disease. Diabetes 2020, 69, 508–516. [Google Scholar] [CrossRef]
- Chen, M.M.; Huang, X.; Xu, C.; Song, X.H.; Liu, Y.M.; Yao, D.; Lu, H.; Wang, G.; Zhang, G.L.; Chen, Z.; et al. High Remnant Cholesterol Level Potentiates the Development of Hypertension. Front. Endocrinol. 2022, 13, 830347. [Google Scholar] [CrossRef]
- Hoogeveen, R.C.; Ballantyne, C.M. Residual Cardiovascular Risk at Low LDL: Remnants, Lipoprotein(a), and Inflammation. Clin. Chem. 2021, 67, 143–153. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Liu, Q.; Guo, X.; Wang, W.; Yu, B.; Liang, B.; Zhou, Y.; Dong, H.; Lin, J. The role of remnant cholesterol beyond low-density lipoprotein cholesterol in diabetes mellitus. Cardiovasc. Diabetol. 2022, 21, 117. [Google Scholar] [CrossRef] [PubMed]
- Tong, J.; Li, X.; Liang, X.; Tang, F.; Ren, Y.; Hao, G.; Peng, X.; Luo, S.; Feng, Y.; Huang, D.; et al. The relationship of remnant cholesterol and abdominal obesity in children: A cross-sectional study. Front. Cardiovasc. Med. 2022, 9, 929560. [Google Scholar] [CrossRef] [PubMed]
- Bernelot Moens, S.J.; Verweij, S.L.; Schnitzler, J.G.; Stiekema, L.C.A.; Bos, M.; Langsted, A.; Kuijk, C.; Bekkering, S.; Voermans, C.; Verberne, H.J.; et al. Remnant Cholesterol Elicits Arterial Wall Inflammation and a Multilevel Cellular Immune Response in Humans. Arterioscler. Thromb. Vasc. Biol. 2017, 37, 969–975. [Google Scholar] [CrossRef]
- Guan, B.; Wang, A.; Xu, H. Causal associations of remnant cholesterol with cardiometabolic diseases and risk factors: A mendelian randomization analysis. Cardiovasc. Diabetol. 2023, 22, 207. [Google Scholar] [CrossRef]
- Zhong, L.; Xie, B.; Wang, H.L.; Ji, X.W. Causal association between remnant cholesterol level and risk of cardiovascular diseases: A bidirectional two sample mendelian randomization study. Sci. Rep. 2024, 14, 27038. [Google Scholar] [CrossRef]
- Ginsberg, H.N.; Packard, C.J.; Chapman, M.J.; Borén, J.; Aguilar-Salinas, C.A.; Averna, M.; Ference, B.A.; Gaudet, D.; Hegele, R.A.; Kersten, S.; et al. Triglyceride-rich lipoproteins and their remnants: Metabolic insights, role in atherosclerotic cardiovascular disease, and emerging therapeutic strategies-a consensus statement from the European Atherosclerosis Society. Eur. Heart J. 2021, 42, 4791–4806. [Google Scholar] [CrossRef]
- Li, W.; Huang, Z.; Fang, W.; Wang, X.; Cai, Z.; Chen, G.; Wu, W.; Chen, Z.; Wu, S.; Chen, Y. Remnant Cholesterol Variability and Incident Ischemic Stroke in the General Population. Stroke 2022, 53, 1934–1941. [Google Scholar] [CrossRef]
- Liu, H.H.; Guo, Y.L.; Zhu, C.G.; Wu, N.Q.; Gao, Y.; Xu, R.X.; Dong, Q.; Qian, J.; Dou, K.F.; Li, J.J. Synergistic effect of the commonest residual risk factors, remnant cholesterol, lipoprotein(a), and inflammation, on prognosis of statin-treated patients with chronic coronary syndrome. J. Transl. Med. 2022, 20, 243. [Google Scholar] [CrossRef]
- Quispe, R.; Martin, S.S.; Michos, E.D.; Lamba, I.; Blumenthal, R.S.; Saeed, A.; Lima, J.; Puri, R.; Nomura, S.; Tsai, M.; et al. Remnant cholesterol predicts cardiovascular disease beyond LDL and ApoB: A primary prevention study. Eur. Heart J. 2021, 42, 4324–4332. [Google Scholar] [CrossRef]
- Tall, A.R.; Thomas, D.G.; Gonzalez-Cabodevilla, A.G.; Goldberg, I.J. Addressing dyslipidemic risk beyond LDL-cholesterol. J. Clin. Investig. 2022, 132, e148559. [Google Scholar] [CrossRef] [PubMed]
- Raggi, P.; Becciu, M.L.; Navarese, E.P. Remnant cholesterol as a new lipid-lowering target to reduce cardiovascular events. Curr. Opin. Lipidol. 2024, 35, 110–116. [Google Scholar] [CrossRef] [PubMed]
- Davey Smith, G.; Hemani, G. Mendelian randomization: Genetic anchors for causal inference in epidemiological studies. Hum. Mol. Genet. 2014, 23, R89–R98. [Google Scholar] [CrossRef] [PubMed]
- Jang, S.-J.; Tuan, W.-L.; Hsu, L.-A.; Er, L.-K.; Teng, M.-S.; Wu, S.; Ko, Y.-L. Pleiotropic Effects of APOB Variants on Lipid Profiles, Metabolic Syndrome, and the Risk of Diabetes Mellitus. Int. J. Mol. Sci. 2022, 23, 14963. [Google Scholar] [CrossRef] [PubMed]
- Kaltoft, M.; Langsted, A.; Nordestgaard, B.G. Triglycerides and remnant cholesterol associated with risk of aortic valve stenosis: Mendelian randomization in the Copenhagen General Population Study. Eur. Heart J. 2020, 41, 2288–2299. [Google Scholar] [CrossRef]
- Ooi, E.M.; Afzal, S.; Nordestgaard, B.G. Elevated remnant cholesterol in 25-hydroxyvitamin D deficiency in the general population: Mendelian randomization study. Circ. Cardiovasc. Genet. 2014, 7, 650–658. [Google Scholar] [CrossRef]
- Jørgensen, A.B.; Frikke-Schmidt, R.; West, A.S.; Grande, P.; Nordestgaard, B.G.; Tybjærg-Hansen, A. Genetically elevated non-fasting triglycerides and calculated remnant cholesterol as causal risk factors for myocardial infarction. Eur. Heart J. 2013, 34, 1826–1833. [Google Scholar] [CrossRef]
- Sarwar, N.; Sandhu, M.S.; Ricketts, S.L.; Butterworth, A.S.; Di Angelantonio, E.; Boekholdt, S.M.; Ouwehand, W.; Watkins, H.; Samani, N.J.; Saleheen, D.; et al. Triglyceride-mediated pathways and coronary disease: Collaborative analysis of 101 studies. Lancet 2010, 375, 1634–1639. [Google Scholar] [CrossRef]
- Si, S.; Hou, L.; Chen, X.; Li, W.; Liu, X.; Liu, C.; Li, Y.; Yuan, T.; Li, J.; Wang, B.; et al. Exploring the Causal Roles of Circulating Remnant Lipid Profile on Cardiovascular and Cerebrovascular Diseases: Mendelian Randomization Study. J. Epidemiol. 2022, 32, 205–214. [Google Scholar] [CrossRef]
- Lu, S.; Xie, Q.; Kuang, M.; Hu, C.; Li, X.; Yang, H.; Sheng, G.; Xie, G.; Zou, Y. Lipid metabolism, BMI and the risk of nonalcoholic fatty liver disease in the general population: Evidence from a mediation analysis. J. Transl. Med. 2023, 21, 192. [Google Scholar] [CrossRef]
- Zhang, S.; Cheng, S.; He, X.; Wang, W.; Yun, K.; Man, D.; Ding, H.; Li, P.; Chu, Z.; Yang, X.; et al. Remnant Lipoprotein Cholesterol as a Factor Related to Adult Fatty Liver Disease. J. Clin. Endocrinol. Metab. 2022, 107, e1598–e1609. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, K.; Taskesen, E.; van Bochoven, A.; Posthuma, D. Functional mapping and annotation of genetic associations with FUMA. Nat. Commun. 2017, 8, 1826. [Google Scholar] [CrossRef]
- Benn, M.; Nordestgaard, B.G. From genome-wide association studies to Mendelian randomization: Novel opportunities for understanding cardiovascular disease causality, pathogenesis, prevention, and treatment. Cardiovasc. Res. 2018, 114, 1192–1208. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Wang, X.; Lin, L.; Huan, J.; Li, Y.; Zhang, L.; Li, Y. Association of remnant cholesterol with frailty: Findings from observational and Mendelian randomization analyses. Lipids Health Dis. 2023, 22, 115. [Google Scholar] [CrossRef] [PubMed]
- Navarese, E.P.; Vine, D.; Proctor, S.; Grzelakowska, K.; Berti, S.; Kubica, J.; Raggi, P. Independent Causal Effect of Remnant Cholesterol on Atherosclerotic Cardiovascular Outcomes: A Mendelian Randomization Study. Arterioscler. Thromb. Vasc. Biol. 2023, 43, e373–e380. [Google Scholar] [CrossRef]
- Choi, C.S.; Savage, D.B.; Abu-Elheiga, L.; Liu, Z.X.; Kim, S.; Kulkarni, A.; Distefano, A.; Hwang, Y.J.; Reznick, R.M.; Codella, R.; et al. Continuous fat oxidation in acetyl-CoA carboxylase 2 knockout mice increases total energy expenditure, reduces fat mass, and improves insulin sensitivity. Proc. Natl. Acad. Sci. USA 2007, 104, 16480–16485. [Google Scholar] [CrossRef]
- Takagi, H.; Tanimoto, K.; Shimazaki, A.; Tonomura, Y.; Momosaki, S.; Sakamoto, S.; Abe, K.; Notoya, M.; Yukioka, H. A Novel Acetyl-CoA Carboxylase 2 Selective Inhibitor Improves Whole-Body Insulin Resistance and Hyperglycemia in Diabetic Mice through Target-Dependent Pathways. J. Pharmacol. Exp. Ther. 2020, 372, 256–263. [Google Scholar] [CrossRef]
- Cerqua, C.; Anesti, V.; Pyakurel, A.; Liu, D.; Naon, D.; Wiche, G.; Baffa, R.; Dimmer, K.S.; Scorrano, L. Trichoplein/mitostatin regulates endoplasmic reticulum-mitochondria juxtaposition. EMBO Rep. 2010, 11, 854–860. [Google Scholar] [CrossRef]
- Yamakawa, D.; Katoh, D.; Kasahara, K.; Shiromizu, T.; Matsuyama, M.; Matsuda, C.; Maeno, Y.; Watanabe, M.; Nishimura, Y.; Inagaki, M. Primary cilia-dependent lipid raft/caveolin dynamics regulate adipogenesis. Cell Rep. 2021, 34, 108817. [Google Scholar] [CrossRef]
- Barton, A.R.; Sherman, M.A.; Mukamel, R.E.; Loh, P.R. Whole-exome imputation within UK Biobank powers rare coding variant association and fine-mapping analyses. Nat. Genet. 2021, 53, 1260–1269. [Google Scholar] [CrossRef]
- Sinnott-Armstrong, N.; Tanigawa, Y.; Amar, D.; Mars, N.; Benner, C.; Aguirre, M.; Venkataraman, G.R.; Wainberg, M.; Ollila, H.M.; Kiiskinen, T.; et al. Genetics of 35 blood and urine biomarkers in the UK Biobank. Nat. Genet. 2021, 53, 185–194. [Google Scholar] [CrossRef] [PubMed]
- Oliveri, A.; Rebernick, R.J.; Kuppa, A.; Pant, A.; Chen, Y.; Du, X.; Cushing, K.C.; Bell, H.N.; Raut, C.; Prabhu, P.; et al. Comprehensive genetic study of the insulin resistance marker TG:HDL-C in the UK Biobank. Nat. Genet. 2024, 56, 212–221. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.B.; Choi, J.E.; Park, B.; Cha, M.Y.; Hong, K.W.; Jung, D.H. Dyslipidaemia-Genotype Interactions with Nutrient Intake and Cerebro-Cardiovascular Disease. Biomedicines 2022, 10, 1615. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Jiang, Y.; Guo, Z.; Li, P.; Zheng, Y.; Wang, Y.; Zhang, H.; Balmer, L.; Li, X.; Tao, L.; et al. Remnant cholesterol traits and risk of stroke: A multivariable Mendelian randomization study. Proc. Natl. Acad. Sci. Nexus 2024, 3, pgae033. [Google Scholar] [CrossRef]
- Huh, J.H.; Han, K.D.; Cho, Y.K.; Roh, E.; Kang, J.G.; Lee, S.J.; Ihm, S.H. Remnant cholesterol and the risk of cardiovascular disease in type 2 diabetes: A nationwide longitudinal cohort study. Cardiovasc. Diabetol. 2022, 21, 228. [Google Scholar] [CrossRef]
- Ciardullo, S.; Carbone, M.; Invernizzi, P.; Perseghin, G. Exploring the landscape of steatotic liver disease in the general US population. Liver Int. Off. J. Int. Assoc. Study Liver 2023, 43, 2425–2433. [Google Scholar] [CrossRef]
- Perazzo, H.; Pacheco, A.G.; Griep, R.H. Changing from NAFLD through MAFLD to MASLD: Similar prevalence and risk factors in a large Brazilian cohort. J. Hepatol. 2024, 80, e72–e74. [Google Scholar] [CrossRef]
- Yang, A.; Zhu, X.; Zhang, L.; Ding, Y. Transitioning from NAFLD to MAFLD and MASLD: Consistent prevalence and risk factors in a Chinese cohort. J. Hepatol. 2024, 80, e154–e155. [Google Scholar] [CrossRef]
N | Remnant Cholesterol Levels (mmol/L) | p Value | ||
---|---|---|---|---|
Sex | Male | 38,423 | 0.56 (0.39–0.82) | 3.16 × 10−299 |
Female | 70,329 | 0.43 (0.31–0.62) | ||
Current smoking | No | 87,969 | 0.45 (0.32–0.65) | 1.52 × 10−97 |
Yes | 20,783 | 0.57 (0.39–0.84) | ||
Hypertension | No | 75,673 | 0.43 (0.31–0.62) | 1.51 × 10−199 |
Yes | 33,203 | 0.58 (0.41–0.83) | ||
Diabetes mellitus | No | 100,236 | 0.46 (0.33–0.67) | 5.82 × 10−264 |
Yes | 8516 | 0.66 (0.47–0.95) | ||
Metabolic syndrome | No | 86,731 | 0.42 (0.31–0.57) | <10−307 |
Yes | 22,021 | 0.86 (0.62–1.13) | ||
Alcohol drinking | No | 102,549 | 0.47 (0.33–0.68) | 4.70 × 10−30 |
Yes | 6203 | 0.57 (0.39–0.88) | ||
Exercise | No | 66,017 | 0.47 (0.33–0.70) | 2.32 × 10−107 |
Yes | 42,735 | 0.47 (0.33–0.67) | ||
Microalbuminuria | No | 97,222 | 0.46 (0.33–0.67) | 2.11 × 10−112 |
Yes | 11,476 | 0.57 (0.38–0.86) | ||
NAFLD | No | 8345 | 0.40 (0.30–0.55) | 1.51 × 10−149 |
Yes | 6257 | 0.58 (0.41–0.84) | ||
MAFLD | No | 10,375 | 0.40 (0.30–0.55) | 5.87 × 10−241 |
Yes | 7671 | 0.63 (0.45–0.89) | ||
MASLD | No | 8804 | 0.40 (0.29–0.55) | 1.82 × 10−175 |
Yes | 5798 | 0.61 (0.43–0.86) | ||
CKD | No | 107,424 | 0.47 (0.33–0.69) | 4.08 × 10−38 |
Yes | 1450 | 0.63 (0.44–0.92) | ||
Carotid plaque | No | 13,036 | 0.45 (0.33–0.65) | 9.30 × 10−5 |
Yes | 5578 | 0.05 (0.36–0.72) | ||
Abnormal CIMT | No | 13,635 | 0.45 (0.32–0.64) | 1.91 × 10−9 |
Yes | 4979 | 0.53 (0.39–0.76) |
β | se | r2 | p Value | |
---|---|---|---|---|
Waist–hip ratio | 0.6685 | 0.0138 | 0.1677 | <10−307 |
Body mass index | 0.0126 | 0.0002 | 0.0428 | <10−307 |
Mean BP | 0.0021 | 0.0001 | 0.0188 | 2.05 × 10−211 |
RC-WGRS | 0.9311 | 0.0213 | 0.018 | <10−307 |
Fasting plasma glucose | 0.0013 | 0 | 0.0114 | 1.34 × 10−231 |
eGFR | −0.0007 | 0 | 0.0062 | 1.25 × 10−93 |
Current smoking | 0.0302 | 0.0021 | 0.0035 | 6.25 × 10−47 |
Exercise | −0.0267 | 0.0016 | 0.002 | 5.55 × 10−65 |
Age | 0.0009 | 0.0001 | 0.001 | 1.15 × 10−27 |
Alcohol drinking | 0.024 | 0.0032 | 0.0006 | 1.20 × 10−13 |
Sex | −0.0066 | 0.0019 | 0.0001 | 5.49 × 10−4 |
TA | TB | GA ** | TA–TB | GA–TA | GA–TB | IVA–TB | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
β | SE | p a | β | SE | p a | β | SE | p a | β | SE | p a | p b | p c | |||
RC | DM # | 47 * | 1.893 | 0.055 | 5.82 × 10−264 | 0.968 | 0.022 | <10−307 | 1.558 | 0.421 | 2.0 × 10−4 | 1.610 | 0.435 | 2.0 × 10−4 | 0.002 | 0.392 |
DM | RC # | 16 † | 0.070 | 0.002 | 4.56 × 10−180 | 1.027 | 0.033 | 3.7 × 10−213 | 0.009 | 0.002 | 1.6 × 10−7 | 0.009 | 0.002 | 1.6 × 10−7 | 1.2 × 10−5 | 0.026 |
RC | HTN # | 53 * | 1.065 | 0.035 | 1.51 × 10−199 | 0.986 | 0.013 | <10−307 | 1.197 | 0.158 | 3.7 × 10−14 | 1.213 | 0.160 | 3.7 × 10−14 | 5.3 × 10−11 | 0.236 |
HTN | RC # | 22 † | 0.040 | 0.002 | 7.81 × 10−149 | 0.903 | 0.027 | 1.7 × 10−239 | −0.001 | 0.002 | 0.812 | −0.001 | 0.003 | 0.812 | 0.845 | 0.041 |
RC | MA # | 53 * | 1.041 | 0.046 | 2.11 × 10−112 | 0.989 | 0.014 | <10−307 | 0.890 | 0.225 | 7.8 × 10−5 | 0.899 | 0.228 | 7.8 × 10−5 | 8.9 × 10−5 | 0.264 |
MA | RC # | 2 † | 0.044 | 0.002 | 4.24 × 10−99 | 1.003 | 0.124 | 6.2 × 10−16 | 0.011 | 0.008 | 0.163 | 0.011 | 0.008 | 0.163 | 0.175 | 0.253 |
RC | NAFLD ## | 56 * | 2.480 | 0.095 | 1.51 × 10−149 | 0.973 | 0.016 | <10−307 | 2.530 | 0.457 | 3.2 × 10−8 | 2.600 | 0.470 | 3.2 × 10−8 | 6.6 × 10−7 | 0.551 |
RC | MAFLD ### | 52 * | 3.177 | 0.096 | 5.87 × 10−241 | 0.977 | 0.017 | <10−307 | 2.997 | 0.485 | 6.5 × 10−10 | 3.068 | 0.497 | 6.5 × 10−10 | 2.0 × 10−8 | 0.593 |
RC | MASLD ## | 53 * | 2.827 | 0.100 | 1.82 × 10−175 | 0.973 | 0.016 | <10−307 | 2.466 | 0.482 | 3.1 × 10−7 | 2.535 | 0.495 | 3.1 × 10−7 | 5.0 × 10−6 | 0.877 |
RC | CKD # | 58 * | 1.577 | 0.122 | 4.08 × 10−38 | 0.986 | 0.013 | <10−307 | 0.276 | 0.583 | 0.636 | 0.279 | 0.591 | 0.636 | -- | -- |
RC | Carotid plaque #### | 61 * | 0.321 | 0.082 | 9.30 × 10−5 | 0.922 | 0.028 | 3.5 × 10−226 | 0.147 | 0.331 | 0.656 | 0.160 | 0.359 | 0.656 | -- | -- |
RC | Abnormal CIMT #### | 59 * | 0.550 | 0.092 | 1.91 × 10−9 | 0.983 | 0.013 | <10−307 | 0.288 | 0.390 | 0.460 | 0.031 | 0.424 | 0.460 | -- | -- |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ko, Y.-S.; Hsu, L.-A.; Wu, S.; Liao, M.-S.; Teng, M.-S.; Chou, H.-H.; Ko, Y.-L. Causal Associations Between Remnant Cholesterol Levels and Atherosclerosis-Related Cardiometabolic Risk Factors: A Bidirectional Mendelian Randomization Analysis. Genes 2025, 16, 157. https://doi.org/10.3390/genes16020157
Ko Y-S, Hsu L-A, Wu S, Liao M-S, Teng M-S, Chou H-H, Ko Y-L. Causal Associations Between Remnant Cholesterol Levels and Atherosclerosis-Related Cardiometabolic Risk Factors: A Bidirectional Mendelian Randomization Analysis. Genes. 2025; 16(2):157. https://doi.org/10.3390/genes16020157
Chicago/Turabian StyleKo, Yu-Shien, Lung-An Hsu, Semon Wu, Mei-Siou Liao, Ming-Sheng Teng, Hsin-Hua Chou, and Yu-Lin Ko. 2025. "Causal Associations Between Remnant Cholesterol Levels and Atherosclerosis-Related Cardiometabolic Risk Factors: A Bidirectional Mendelian Randomization Analysis" Genes 16, no. 2: 157. https://doi.org/10.3390/genes16020157
APA StyleKo, Y.-S., Hsu, L.-A., Wu, S., Liao, M.-S., Teng, M.-S., Chou, H.-H., & Ko, Y.-L. (2025). Causal Associations Between Remnant Cholesterol Levels and Atherosclerosis-Related Cardiometabolic Risk Factors: A Bidirectional Mendelian Randomization Analysis. Genes, 16(2), 157. https://doi.org/10.3390/genes16020157