Editorial for the Special Issue: Bioinformatics and Computational Biology for Cancer Prediction and Prognosis
Author Contributions
Conflicts of Interest
References
- Bray, F.; Laversanne, M.; Sung, H.; Ferlay, J.; Siegel, R.L.; Soerjomataram, I.; Jemal, A. Global Cancer Statistics 2022: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA A Cancer J. Clin. 2024, 74, 229–263. [Google Scholar] [CrossRef] [PubMed]
- Hanahan, D. Hallmarks of Cancer: New Dimensions. Cancer Discov. 2022, 12, 31–46. [Google Scholar] [CrossRef] [PubMed]
- Clough, E.; Barrett, T.; Wilhite, S.E.; Ledoux, P.; Evangelista, C.; Kim, I.F.; Tomashevsky, M.; Marshall, K.A.; Phillippy, K.H.; Sherman, P.M.; et al. NCBI GEO: Archive for Gene Expression and Epigenomics Data Sets: 23-Year Update. Nucleic Acids Res 2023, 52, D138–D144. [Google Scholar] [CrossRef]
- Cerami, E.; Gao, J.; Dogrusoz, U.; Gross, B.E.; Sumer, S.O.; Aksoy, B.A.; Jacobsen, A.; Byrne, C.J.; Heuer, M.L.; Larsson, E.; et al. The cBio Cancer Genomics Portal: An Open Platform for Exploring Multidimensional Cancer Genomics Data. Cancer Discov 2012, 2, 401–404. [Google Scholar] [CrossRef]
- Goldman, M.J.; Craft, B.; Hastie, M.; Repečka, K.; McDade, F.; Kamath, A.; Banerjee, A.; Luo, Y.; Rogers, D.; Brooks, A.N.; et al. Visualizing and Interpreting Cancer Genomics Data via the Xena Platform. Nat. Biotechnol. 2020, 38, 675–678. [Google Scholar] [CrossRef]
- Győrffy, B. Integrated Analysis of Public Datasets for the Discovery and Validation of Survival-Associated Genes in Solid Tumors. Innovation 2024, 5, 100625. [Google Scholar] [CrossRef]
- Dumas, J.; Gargano, M.A.; Dancik, G.M. shinyGEO: A Web-Based Application for Analyzing Gene Expression Omnibus Datasets. Bioinformatics 2016, 32, 3679–3681. [Google Scholar] [CrossRef]
- Farrel, A.; Li, P.; Veenbergen, S.; Patel, K.; Maris, J.M.; Leonard, W.J. ROGUE: An R Shiny App for RNA Sequencing Analysis and Biomarker Discovery. BMC Bioinform. 2023, 24, 303. [Google Scholar] [CrossRef]
- Sherman, B.T.; Hao, M.; Qiu, J.; Jiao, X.; Baseler, M.W.; Lane, H.C.; Imamichi, T.; Chang, W. DAVID: A Web Server for Functional Enrichment Analysis and Functional Annotation of Gene Lists (2021 Update). Nucleic Acids Res. 2022, 50, W216–W221. [Google Scholar] [CrossRef]
- Warde-Farley, D.; Donaldson, S.L.; Comes, O.; Zuberi, K.; Badrawi, R.; Chao, P.; Franz, M.; Grouios, C.; Kazi, F.; Lopes, C.T.; et al. The GeneMANIA Prediction Server: Biological Network Integration for Gene Prioritization and Predicting Gene Function. Nucleic Acids Res. 2010, 38, W214–W220. [Google Scholar] [CrossRef]
- Basmadjian, R.B.; O’Sullivan, D.E.; Quan, M.L.; Lupichuk, S.; Xu, Y.; Cheung, W.Y.; Brenner, D.R. The Association between Mutational Signatures and Clinical Outcomes among Patients with Early-Onset Breast Cancer. Genes 2024, 15, 592. [Google Scholar] [CrossRef] [PubMed]
- Shiner, A.; Kiss, A.; Saednia, K.; Jerzak, K.J.; Gandhi, S.; Lu, F.-I.; Emmenegger, U.; Fleshner, L.; Lagree, A.; Alera, M.A.; et al. Predicting Patterns of Distant Metastasis in Breast Cancer Patients Following Local Regional Therapy Using Machine Learning. Genes 2023, 14, 1768. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Xi, J. Exploring Immune-Related Gene Profiling and Infiltration of Immune Cells in Cervical Squamous Cell Carcinoma and Endocervical Adenocarcinoma. Genes 2024, 15, 121. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharya, S.; Dunn, P.; Thomas, C.G.; Smith, B.; Schaefer, H.; Chen, J.; Hu, Z.; Zalocusky, K.A.; Shankar, R.D.; Shen-Orr, S.S.; et al. ImmPort, toward Repurposing of Open Access Immunological Assay Data for Translational and Clinical Research. Sci. Data 2018, 5, 180015. [Google Scholar] [CrossRef]
- Rohan, P.; dos Santos, E.C.; Abdelhay, E.; Binato, R. High Expression of THY1 in Intestinal Gastric Cancer as a Key Factor in Tumor Biology: A Poor Prognosis-Independent Marker Related to the Epithelial–Mesenchymal Transition Profile. Genes 2024, 15, 28. [Google Scholar] [CrossRef]
- Dancik, G.M.; Varisli, L.; Tolan, V.; Vlahopoulos, S. Aldehyde Dehydrogenase Genes as Prospective Actionable Targets in Acute Myeloid Leukemia. Genes 2023, 14, 1807. [Google Scholar] [CrossRef]
- Hu, M.; Coleman, S.; Fadlullah, M.Z.H.; Spakowicz, D.; Chung, C.H.; Tan, A.C. Deciphering the Tumor–Immune–Microbe Interactions in HPV-Negative Head and Neck Cancer. Genes 2023, 14, 1599. [Google Scholar] [CrossRef]
- Cancer Genome Atlas Research Network; Weinstein, J.N.; Collisson, E.A.; Mills, G.B.; Shaw, K.R.M.; Ozenberger, B.A.; Ellrott, K.; Shmulevich, I.; Sander, C.; Stuart, J.M. The Cancer Genome Atlas Pan-Cancer Analysis Project. Nat Genet 2013, 45, 1113–1120. [Google Scholar] [CrossRef]
- Khan, R.; Pari, B.; Puszynski, K. Comprehensive Bioinformatic Investigation of TP53 Dysregulation in Diverse Cancer Landscapes. Genes 2024, 15, 577. [Google Scholar] [CrossRef]
- Al-Jarf, R.; Karmakar, M.; Myung, Y.; Ascher, D.B. Uncovering the Molecular Drivers of NHEJ DNA Repair-Implicated Missense Variants and Their Functional Consequences. Genes 2023, 14, 1890. [Google Scholar] [CrossRef]
- Wu, X.; Luo, G.; Dong, Z.; Zheng, W.; Jia, G. Integrated Pleiotropic Gene Set Unveils Comorbidity Insights across Digestive Cancers and Other Diseases. Genes 2024, 15, 478. [Google Scholar] [CrossRef] [PubMed]
- Greco, F.; Panunzio, A.; Tafuri, A.; Bernetti, C.; Pagliarulo, V.; Beomonte Zobel, B.; Scardapane, A.; Mallio, C.A. Radiogenomic Features of GIMAP Family Genes in Clear Cell Renal Cell Carcinoma: An Observational Study on CT Images. Genes 2023, 14, 1832. [Google Scholar] [CrossRef] [PubMed]
- Vezakis, I.; Vezakis, A.; Gourtsoyianni, S.; Koutoulidis, V.; Polydorou, A.A.; Matsopoulos, G.K.; Koutsouris, D.D. An Automated Prognostic Model for Pancreatic Ductal Adenocarcinoma. Genes 2023, 14, 1742. [Google Scholar] [CrossRef] [PubMed]
- Sidak, D.; Schwarzerová, J.; Weckwerth, W.; Waldherr, S. Interpretable Machine Learning Methods for Predictions in Systems Biology from Omics Data. Front. Mol. Biosci. 2022, 9, 926623. [Google Scholar] [CrossRef] [PubMed]
- Camerer, C.F.; Dreber, A.; Holzmeister, F.; Ho, T.-H.; Huber, J.; Johannesson, M.; Kirchler, M.; Nave, G.; Nosek, B.A.; Pfeiffer, T.; et al. Evaluating the Replicability of Social Science Experiments in Nature and Science between 2010 and 2015. Nat. Hum. Behav. 2018, 2, 637–644. [Google Scholar] [CrossRef]
- Errington, T.M.; Denis, A.; Perfito, N.; Iorns, E.; Nosek, B.A. Challenges for Assessing Replicability in Preclinical Cancer Biology. eLife 2021, 10, e67995. [Google Scholar] [CrossRef]
- Ziemann, M.; Poulain, P.; Bora, A. The Five Pillars of Computational Reproducibility: Bioinformatics and Beyond. Brief Bioinform. 2023, 24, bbad375. [Google Scholar] [CrossRef]
- Cokelaer, T.; Cohen-Boulakia, S.; Lemoine, F. Reprohackathons: Promoting Reproducibility in Bioinformatics through Training. Bioinformatics 2023, 39, i11–i20. [Google Scholar] [CrossRef]
- Kahan, B.C.; Forbes, G.; Cro, S. How to Design a Pre-Specified Statistical Analysis Approach to Limit p-Hacking in Clinical Trials: The Pre-SPEC Framework. BMC Med. 2020, 18, 253. [Google Scholar] [CrossRef]
- Angelopoulos, A.; Cahoon, J.F.; Alterovitz, R. Transforming Science Labs into Automated Factories of Discovery. Sci. Robot. 2024, 9, eadm6991. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dancik, G.M.; Vlahopoulos, S.A. Editorial for the Special Issue: Bioinformatics and Computational Biology for Cancer Prediction and Prognosis. Genes 2025, 16, 167. https://doi.org/10.3390/genes16020167
Dancik GM, Vlahopoulos SA. Editorial for the Special Issue: Bioinformatics and Computational Biology for Cancer Prediction and Prognosis. Genes. 2025; 16(2):167. https://doi.org/10.3390/genes16020167
Chicago/Turabian StyleDancik, Garrett M., and Spiros A. Vlahopoulos. 2025. "Editorial for the Special Issue: Bioinformatics and Computational Biology for Cancer Prediction and Prognosis" Genes 16, no. 2: 167. https://doi.org/10.3390/genes16020167
APA StyleDancik, G. M., & Vlahopoulos, S. A. (2025). Editorial for the Special Issue: Bioinformatics and Computational Biology for Cancer Prediction and Prognosis. Genes, 16(2), 167. https://doi.org/10.3390/genes16020167