Polymorphisms in Fatty Acid Desaturase (FADS) Gene Cluster: Effects on Glycemic Controls Following an Omega-3 Polyunsaturated Fatty Acids (PUFA) Supplementation
Abstract
:1. Introduction
2. Experimental Section
2.1. Study Population
2.2. Study Design and Diets
2.3. Anthropometric Measurements
2.4. Biochemical Parameters
2.5. SNP Selection and Genotyping
2.6. Statistical Analyses
3. Results and Discussion
All 1 | Men 1 | Women 1 | |
---|---|---|---|
Population. Men/Women | 208 | 96 (46.2%) | 112 (53.8%) |
Age (years) | 30.8 ± 8.7 | 31.2 ± 8.1 | 30.5 ± 9.1 |
Weight (kg) 3 | 81.4 ± 13.9 | 87.2 ± 13.4 | 76.4 ± 12.3 |
BMI (kg/m2) 2,3 | 27.8 ± 3.7 | 27.5 ± 3.6 | 28.2 ± 3.8 |
Waist circumference (cm) 3 | 93.3 ± 10.8 | 94.8 ± 11.0 | 92.0 ± 10.4 |
Cholesterol (mM) 4 | |||
Total | 4.82 ± 1.00 | 4.80 ± 1.00 | 4.83 ± 1.02 |
HDL | 1.46 ± 0.39 | 1.29 ± 0.31 | 1.61 ± 0.39 |
LDL | 2.79 ± 0.87 | 2.91 ± 0.87 | 2.69 ± 0.86 |
Total chol./HDL ratio 4 | 3.49 ± 1.04 | 3.91 ± 1.13 | 3.12 ± 0.80 |
Triacylglycerols (mM) 2,4 | 1.23 ± 0.64 | 1.32 ± 0.74 | 1.15 ± 0.53 |
ApoB100 (g/L) 4 | 0.86 ± 0.25 | 0.89 ± 0.25 | 0.84 ± 0.25 |
CRP (mg/L) 2,4 | 3.13 ± 7.10 | 1.66 ± 2.45 | 4.39 ± 9.24 |
Glycemic controls | |||
Glucose (mM) 4 | 4.95 ± 0.52 | 5.09 ± 0.44 | 4.83 ± 0.56 |
Insulin (ρ/L) 4 | 82.51 ± 35.61 | 79.50 ± 32.19 | 85.04 ± 38.20 |
FG | FI 1 | HOMA-IS | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Genotype | Suppl. | Interaction | Genotype | Suppl. | Interaction | Genotype | Suppl. | Interaction | ||
rs174456 | 0.28 | 0.06 | 0.42 | 0.04 | 0.14 | 0.16 | 0.84 | 0.77 | 0.84 | |
rs174627 | 0.81 | 0.002 | 0.93 | 0.98 | 0.97 | 0.74 | 0.89 | 0.52 | 0.90 | |
rs482548 | 0.05 | <0.0001 | 0.008 | 0.18 | 0.59 | 0.16 | 0.11 | 0.13 | 0.07 | |
rs2072114 | 0.07 | 0.05 | 0.11 | 0.25 | 0.36 | 0.23 | 0.65 | 0.49 | 0.71 | |
rs12807005 | 0.66 | 0.04 | 0.38 | 0.30 | 0.41 | 0.33 | 0.90 | 0.83 | 0.99 | |
rs174448 | 0.79 | 0.002 | 0.65 | 0.85 | 0.66 | 0.84 | 0.61 | 0.27 | 0.45 | |
rs2845573 | 0.35 | 0.03 | 0.55 | 0.67 | 0.81 | 0.92 | 0.41 | 0.19 | 0.24 | |
rs7394871 | 0.58 | 0.05 | 0.44 | 0.41 | 0.55 | 0.29 | 0.05 | 0.04 | 0.03 | |
rs7942717 | 0.93 | 0.004 | 0.83 | 0.27 | 0.67 | 0.67 | 0.99 | 0.40 | 0.61 | |
rs7482316 | 0.48 | 0.003 | 0.83 | 0.05 | 0.39 | 0.08 | 0.03 | 0.09 | 0.05 | |
rs174602 | 0.88 | 0.0006 | 0.79 | 0.46 | 0.72 | 0.11 | 0.09 | 0.12 | 0.01 | |
rs498793 | 0.60 | <0.0001 | 0.16 | 0.50 | 0.84 | 0.63 | 0.26 | 0.33 | 0.25 | |
rs174546 | 0.34 | 0.03 | 0.52 | 0.44 | 0.58 | 0.74 | 0.42 | 0.28 | 0.42 | |
rs174570 | 0.67 | 0.004 | 0.80 | 0.33 | 0.61 | 0.18 | 0.07 | 0.08 | 0.03 | |
rs174579 | 0.58 | 0.0004 | 0.77 | 0.97 | 0.88 | 0.71 | 0.38 | 0.39 | 0.35 | |
rs174611 | 0.88 | 0.004 | 0.73 | 0.75 | 0.86 | 0.82 | 0.54 | 0.44 | 0.65 | |
rs174616 | 0.49 | 0.0003 | 0.27 | 0.44 | 0.45 | 0.35 | 0.21 | 0.61 | 0.11 | |
rs968567 | 0.74 | 0.0007 | 0.84 | 0.51 | 0.71 | 0.68 | 0.68 | 0.45 | 0.71 |
Pre-n-3 PUFA | Post-n-3 PUFA | P 1 | β-values ± SE | ||||
---|---|---|---|---|---|---|---|
11 | 12 + 22 | 11 | 12 + 22 | ||||
HOMA-IS | 0.067 ± 0.025 | 0.063 ± 0.027 | 0.068 ± 0.030 | 0.056 ± 0.022 | 0.01 | 11 | 0.4169 ± 0.0375 |
rs174602 | 12 + 22 | 0.4391 ± 0.0379 | |||||
HOMA-IS | 0.066 ± 0.025 | 0.065 ± 0.029 | 0.066 ± 0.029 | 0.057 ± 0.025 | 0.03 | 11 | 0.4106 ± 0.0378 |
rs174570 | 12 + 22 | 0.4248 ± 0.0384 | |||||
HOMA-IS | 0.065 ± 0.025 | 0.068 ± 0.033 | 0.065 ± 0.028 | 0.059 ± 0.025 | 0.03 | 11 | 0.4150 ± 0.0378 |
rs7394871 | 12 + 22 | 0.4319 ± 0.0391 | |||||
FG | 4.96 ± 0.43 | 4.92 ± 0.54 | 5.02 ± 0.48 | 5.15 ± 0.52 | 0.008 | 11 | 1.5753 ± 0.7327 |
rs482548 | 12 + 22 | 1.2278 ± 0.7443 |
Gene | dbSNP No. 1 | Sequence 2 | Position | MAF | Genotype/Frequency | ||
---|---|---|---|---|---|---|---|
11 | 12 | 22 | |||||
FADS3 | rs174456 | CTAC[A/C]TGGC | Intron | 0.299 | A/A (n = 102) | A/C (n = 89) | C/C (n = 18) |
0.488 | 0.426 | 0.086 | |||||
Intergenic FADS2-FADS3 | rs174627 | TCTG[C/T]GTAG | Intergenic | 0.124 | G/G (n = 159) | A/G (n = 48) | A/A (n = 2) |
0.761 | 0.230 | 0.010 | |||||
FADS2 | rs482548 | ACAC[C/T]GTGG | 3' UTR | 0.126 | C/C (n = 161) | C/T (n = 40) | T/T (n = 6) |
0.778 | 0.193 | 0.029 | |||||
FADS2 | rs2072114 | GTTC[A/G]GGTC | Intron | 0.110 | A/A (n = 167) | A/G (n = 38) | G/G (n = 4) |
0.799 | 0.182 | 0.019 | |||||
Intergenic FADS1-FADS2 | rs12807005 | CATG[A/G]ATCA | Intergenic | 0.012 | G/G (n = 204) | A/G (n = 5) | A/A (n = 0) |
0.976 | 0.024 | 0.000 | |||||
Intergenic FADS2-FADS3 | rs174448 | CTGA[C/T]TTCT | Intergenic | 0.363 | A/A (n = 78) | A/G (n = 109) | G/G (n = 21) |
0.375 | 0.524 | 0.101 | |||||
FADS2 | rs2845573 | CTCA[C/T]GTTA | Intron | 0.081 | A/A (n = 177) | A/G (n = 30) | G/G (n = 2) |
0.847 | 0.144 | 0.010 | |||||
FADS3 | rs7394871 | GGAC[A/C]CCTG | Intron | 0.072 | C/C (n = 181) | A/C (n = 26) | A/A (n = 2) |
0.866 | 0.124 | 0.010 | |||||
FADS3 | rs7942717 | AACG[A/G]GTGC | Intron | 0.117 | A/A (n = 161) | A/G (n = 47) | G/G (n = 1) |
0.770 | 0.225 | 0.005 | |||||
Intergenic FADS2-FADS3 | rs7482316 | TCAA[A/G]CTGC | Intergenic | 0.103 | A/A (n = 168) | A/G (n = 39) | G/G (n = 2) |
0.804 | 0.187 | 0.010 | |||||
FADS2 | rs174602 | ACCC[A/G]TCCT | Intron | 0.184 | T/T (n = 141) | C/T (n = 59) | C/C (n = 9) |
0.675 | 0.282 | 0.043 | |||||
FADS2 | rs498793 | TAAC[A/G]CAGG | Intron | 0.456 | C/C (n = 62) | C/T (n = 99) | T/T (n = 43) |
0.098 | 0.717 | 0.186 | |||||
FADS2 | rs7935946 | GTTC[C/T]GGGA | Intron | 0.041 | C/C (n = 195) | C/T (n = 11) | T/T (n = 3) |
0.933 | 0.053 | 0.014 | |||||
FADS1 | rs174546 | CTGC[C/T]TTGG | 3' UTR | 0.297 | C/C (n = 103) | C/T (n = 86) | T/T (n = 19) |
0.498 | 0.412 | 0.091 | |||||
FADS2 | rs174570 | TTGA[C/T]GTAG | Intron | 0.125 | C/C (n = 159) | C/T (n = 46) | T/T (n = 3) |
0.764 | 0.221 | 0.014 | |||||
FADS2 | rs174579 | CTTT[C/T]CAGG | Intron | 0.202 | C/C (n = 127) | C/T (n = 78) | T/T (n = 3) |
0.611 | 0.375 | 0.014 | |||||
FADS2 | rs174611 | TGGA[C/T]CCTG | Intron | 0.258 | T/T (n = 113) | C/T (n = 84) | C/C (n = 12) |
0.541 | 0.402 | 0.057 | |||||
FADS2 | rs174616 | CTCA[C/T]GTTC | Intron | 0.498 | A/A (n = 51) | A/G (n = 108) | G/G (n = 50) |
0.244 | 0.517 | 0.239 | |||||
FADS2 | rs968567 | CCGG[A/G]AGCT | 5' UTR | 0.160 | G/G (n = 144) | A/G (n = 63) | A/A (n = 2) |
0.689 | 0.301 | 0.010 |
4. Conclusions
Acknowledgments
Conflicts of Interest
References
- National Diabetes Fact Sheet. Available online: http://www.cdc.gov/diabetes/pubs/factsheet11.htm/ (accessed on 7 May 2013).
- Wilson, J.F. In the clinic. Type 2 diabetes. Ann. Intern. Med. 2007, 146, ITC1-1. [Google Scholar] [CrossRef]
- Harris, W.S.; Bulchandani, D. Why do omega-3 fatty acids lower serum triglycerides? Curr. Opin. Lipidol. 2006, 17, 387–393. [Google Scholar] [CrossRef]
- McEwen, B.; Morel-Kopp, M.C.; Tofler, G.; Ward, C. Effect of omega-3 fish oil on cardiovascular risk in diabetes. Diabetes Educ. 2010, 36, 565–584. [Google Scholar] [CrossRef]
- Thifault, E.; Cormier, H.; Bouchard-Mercier, A.; Rudkowska, I.; Paradis, A.M.; Garneau, V.; Ouellette, C.; Lemieux, S.; Couture, P.; Vohl, M.C. Effects of age, sex, body mass index and APOE genotype on cardiovascular biomarker response to an n-3 polyunsaturated fatty acid supplementation. J. Nutrigenet. Nutrigenomics 2013, 6, 73–82. [Google Scholar]
- Montori, V.M.; Farmer, A.; Wollan, P.C.; Dinneen, S.F. Fish oil supplementation in type 2 diabetes: A quantitative systematic review. Diabetes Care 2000, 23, 1407–1415. [Google Scholar] [CrossRef]
- Matthews, D.R.; Hosker, J.P.; Rudenski, A.S.; Naylor, B.A.; Treacher, D.F.; Turner, R.C. Homeostasis model assessment: Insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 1985, 28, 412–419. [Google Scholar] [CrossRef]
- Kim, O.Y.; Lim, H.H.; Yang, L.I.; Chae, J.S.; Lee, J.H. Fatty acid desaturase (fads) gene polymorphisms and insulin resistance in association with serum phospholipid polyunsaturated fatty acid composition in healthy korean men: Cross-sectional study. Nutr. Metab. (Lond.) 2011, 8, 24. [Google Scholar] [CrossRef]
- Martinelli, N.; Girelli, D.; Malerba, G.; Guarini, P.; Illig, T.; Trabetti, E.; Sandri, M.; Friso, S.; Pizzolo, F.; Schaeffer, L.; et al. Fads genotypes and desaturase activity estimated by the ratio of arachidonic acid to linoleic acid are associated with inflammation and coronary artery disease. Am. J. Clin. Nutr. 2008, 88, 941–949. [Google Scholar]
- Warensjo, E.; Rosell, M.; Hellenius, M.L.; Vessby, B.; de Faire, U.; Riserus, U. Associations between estimated fatty acid desaturase activities in serum lipids and adipose tissue in humans: Links to obesity and insulin resistance. Lipids Health Dis. 2009, 8, 37. [Google Scholar] [CrossRef]
- Kroger, J.; Zietemann, V.; Enzenbach, C.; Weikert, C.; Jansen, E.H.; Doring, F.; Joost, H.G.; Boeing, H.; Schulze, M.B. Erythrocyte membrane phospholipid fatty acids, desaturase activity, and dietary fatty acids in relation to risk of type 2 diabetes in the european prospective investigation into cancer and nutrition (epic)-potsdam study. Am. J. Clin. Nutr. 2011, 93, 127–142. [Google Scholar] [CrossRef]
- Hodge, A.M.; English, D.R.; O’Dea, K.; Sinclair, A.J.; Makrides, M.; Gibson, R.A.; Giles, G.G. Plasma phospholipid and dietary fatty acids as predictors of type 2 diabetes: Interpreting the role of linoleic acid. Am. J. Clin. Nutr. 2007, 86, 189–197. [Google Scholar]
- Cormier, H.; Rudkowska, I.; Paradis, A.M.; Thifault, E.; Garneau, V.; Lemieux, S.; Couture, P.; Vohl, M.C. Association between polymorphisms in the fatty acid desaturase gene cluster and the plasma triacylglycerol response to an n-3 pufa supplementation. Nutrients 2012, 4, 1026–1041. [Google Scholar] [CrossRef]
- Vohl, M.C. Genes, Omega-3 Fatty Acids and Cardiovascular Disease Risk Factors (fas); Institute of Nutrition and Functional Foods (INAF), Laval University: Quebec City, QC, Canada, 2011. [Google Scholar]
- Eating Well with Canada’s Food Guide; Health Canada: Ottawa, ON, Canada, 2007.
- Callaway, C.W. Cwbc Standardization of Anthropometric Measurements. The Airlie (va) Consensus Conference; Human Kinetics Publishers: Champaign, IL, USA, 1988. [Google Scholar]
- Genest, J.; McPherson, R.; Frohlich, J.; Anderson, T.; Campbell, N.; Carpentier, A.; Couture, P.; Dufour, R.; Fodor, G.; Francis, G.A.; et al. 2009 canadian cardiovascular society/canadian guidelines for the diagnosis and treatment of dyslipidemia and prevention of cardiovascular disease in the adult—2009 recommendations. Can. J. Cardiol. 2009, 25, 567–579. [Google Scholar] [CrossRef]
- Desbuquois, B.; Aurbach, G.D. Use of polyethylene glycol to separate free and antibody-bound peptide hormones in radioimmunoassays. J. Clin. Endocrinol. Metab. 1971, 33, 732–738. [Google Scholar] [CrossRef]
- Richterich, R.; Kuffer, H.; Lorenz, E.; Colombo, J.P. The determination of glucose in plasma and serum (hexokinase-glucose-6-phosphate dehydrogenase method) with the greiner electronic selective analyzer gsa ii (author’s transl). Z. Klin. Chem. Klin. Biochem. 1974, 12, 5–13. [Google Scholar]
- Pirro, M.; Bergeron, J.; Dagenais, G.R.; Bernard, P.M.; Cantin, B.; Despres, J.P.; Lamarche, B. Age and duration of follow-up as modulators of the risk for ischemic heart disease associated with high plasma c-reactive protein levels in men. Arch. Intern. Med. 2001, 161, 2474–2480. [Google Scholar] [CrossRef]
- McNamara, J.R.; Schaefer, E.J. Automated enzymatic standardized lipid analyses for plasma and lipoprotein fractions. Clin. Chim. Acta Int. J. Clin. Chem. 1987, 166, 1–8. [Google Scholar] [CrossRef]
- Albers, J.J.; Warnick, G.R.; Wiebe, D.; King, P.; Steiner, P.; Smith, L.; Breckenridge, C.; Chow, A.; Kuba, K.; Weidman, S.; et al. Multi-laboratory comparison of three heparin-mn2+ precipitation procedures for estimating cholesterol in high-density lipoprotein. Clin. Chem. 1978, 24, 853–856. [Google Scholar]
- Friedewald, W.T.; Levy, R.I.; Fredrickson, D.S. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin. Chem. 1972, 18, 499–502. [Google Scholar]
- Laurell, C.B. Quantitative estimation of proteins by electrophoresis in agarose gel containing antibodies. Anal. Biochem. 1966, 15, 45–52. [Google Scholar] [CrossRef]
- Cartegni, L.; Wang, J.; Zhu, Z.; Zhang, M.Q.; Krainer, A.R. Esefinder: A web resource to identify exonic splicing enhancers. Nucleic Acids Res. 2003, 31, 3568–3571. [Google Scholar] [CrossRef]
- Henkin, L.; Bergman, R.N.; Bowden, D.W.; Ellsworth, D.L.; Haffner, S.M.; Langefeld, C.D.; Mitchell, B.D.; Norris, J.M.; Rewers, M.; Saad, M.F.; et al. Genetic epidemiology of insulin resistance and visceral adiposity. The iras family study design and methods. Ann. Epidemiol. 2003, 13, 211–217. [Google Scholar]
- Connor, W.E.; Prince, M.J.; Ullmann, D.; Riddle, M.; Hatcher, L.; Smith, F.E.; Wilson, D. The hypotriglyceridemic effect of fish oil in adult-onset diabetes without adverse glucose control. Ann. N. Y. Acad. Sci. 1993, 683, 337–340. [Google Scholar] [CrossRef]
- Simopoulos, A. Fatty acid composition of the skeletal muscle membrane phospholipids, insulin resistance and obesity. Nutr. Today 1994, 2, 12–16. [Google Scholar] [CrossRef]
- Grunfeld, C.; Baird, K.L.; Kahn, C.R. Maintenance of 3t3-l1 cells in culture media containing saturated fatty acids decreases insulin binding and insulin action. Biochem. Biophys. Res. Commun. 1981, 103, 219–226. [Google Scholar] [CrossRef]
- Ginsberg, B.H.; Jabour, J.; Spector, A.A. Effect of alterations in membrane lipid unsaturation on the properties of the insulin receptor of ehrlich ascites cells. Biochim. Biophys. Acta 1982, 690, 157–164. [Google Scholar] [CrossRef]
- Riserus, U. Trans fatty acids and insulin resistance. Atheroscler. Suppl. 2006, 7, 37–39. [Google Scholar] [CrossRef]
- Das, U.N. Essential fatty acids: Biochemistry, physiology and pathology. Biotechnol. J. 2006, 1, 420–439. [Google Scholar] [CrossRef]
- Simopoulos, A.P. Genetic variants in the metabolism of omega-6 and omega-3 fatty acids: Their role in the determination of nutritional requirements and chronic disease risk. Exp. Biol. Med. (Maywood) 2010, 235, 785–795. [Google Scholar] [CrossRef]
- Simopoulos, A.P. The omega-6/omega-3 fatty acid ratio, genetic variation, and cardiovascular disease. Asia Pac. J. Clin. Nutr. 2008, 17, 131–134. [Google Scholar]
- Brenner, R.R. Hormonal modulation of delta6 and delta5 desaturases: Case of diabetes. Prostaglandins Leukot. Essent. Fatty Acids 2003, 68, 151–162. [Google Scholar] [CrossRef]
- Kroger, J.; Schulze, M.B. Recent insights into the relation of delta5 desaturase and delta6 desaturase activity to the development of type 2 diabetes. Curr. Opin. Lipidol. 2012, 23, 4–10. [Google Scholar] [CrossRef]
- Simopoulos, A.P. Evolutionary aspects of the dietary omega-6:Omega-3 fatty acid ratio: Medical implications. World Rev. Nutr. Diet. 2009, 100, 1–21. [Google Scholar] [CrossRef]
- Manning, A.K.; Hivert, M.F.; Scott, R.A.; Grimsby, J.L.; Bouatia-Naji, N.; Chen, H.; Rybin, D.; Liu, C.T.; Bielak, L.F.; Prokopenko, I.; et al. A genome-wide approach accounting for body mass index identifies genetic variants influencing fasting glycemic traits and insulin resistance. Nat. Genet. 2012, 44, 659–669. [Google Scholar] [CrossRef]
- Ding, K.; Kullo, I.J. Geographic differences in allele frequencies of susceptibility snps for cardiovascular disease. BMC Med. Genet. 2011, 12, 55. [Google Scholar] [CrossRef]
- Park, M.H.; Kim, N.; Lee, J.Y.; Park, H.Y. Genetic loci associated with lipid concentrations and cardiovascular risk factors in the korean population. J. Med. Genet. 2011, 48, 10–15. [Google Scholar] [CrossRef]
- Zietemann, V.; Kroger, J.; Enzenbach, C.; Jansen, E.; Fritsche, A.; Weikert, C.; Boeing, H.; Schulze, M.B. Genetic variation of the fads1 fads2 gene cluster and n-6 pufa composition in erythrocyte membranes in the european prospective investigation into cancer and nutrition-potsdam study. Br. J. Nutr. 2010, 104, 1748–1759. [Google Scholar] [CrossRef]
© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Cormier, H.; Rudkowska, I.; Thifault, E.; Lemieux, S.; Couture, P.; Vohl, M.-C. Polymorphisms in Fatty Acid Desaturase (FADS) Gene Cluster: Effects on Glycemic Controls Following an Omega-3 Polyunsaturated Fatty Acids (PUFA) Supplementation. Genes 2013, 4, 485-498. https://doi.org/10.3390/genes4030485
Cormier H, Rudkowska I, Thifault E, Lemieux S, Couture P, Vohl M-C. Polymorphisms in Fatty Acid Desaturase (FADS) Gene Cluster: Effects on Glycemic Controls Following an Omega-3 Polyunsaturated Fatty Acids (PUFA) Supplementation. Genes. 2013; 4(3):485-498. https://doi.org/10.3390/genes4030485
Chicago/Turabian StyleCormier, Hubert, Iwona Rudkowska, Elisabeth Thifault, Simone Lemieux, Patrick Couture, and Marie-Claude Vohl. 2013. "Polymorphisms in Fatty Acid Desaturase (FADS) Gene Cluster: Effects on Glycemic Controls Following an Omega-3 Polyunsaturated Fatty Acids (PUFA) Supplementation" Genes 4, no. 3: 485-498. https://doi.org/10.3390/genes4030485
APA StyleCormier, H., Rudkowska, I., Thifault, E., Lemieux, S., Couture, P., & Vohl, M. -C. (2013). Polymorphisms in Fatty Acid Desaturase (FADS) Gene Cluster: Effects on Glycemic Controls Following an Omega-3 Polyunsaturated Fatty Acids (PUFA) Supplementation. Genes, 4(3), 485-498. https://doi.org/10.3390/genes4030485