Long-Term Monitoring of Field Trial Sites with Genetically Modified Oilseed Rape (Brassica napus L.) in Saxony-Anhalt, Germany. Fifteen Years Persistence to Date but No Spatial Dispersion
Abstract
:1. Introduction
GM OSR Event (Abbreviation, Traits) | Release Site (BVL File Number of the Release Approval) [15] | Duration of Release (Years sown) | Operators Follow-Up (Number of Years) | Last Official Monitoring |
---|---|---|---|---|
MS8/RF3: glufosinate resistance (bar); male sterility (barnase) × fertility restorer (barstar) | Böhnshausen (6786-01-0090) | 1999–2000 (2) | 2001; 2002 (2) | 2007 |
Krüden (6786-01-0090) | 1998 (1) | 1999; 2000 (2) | 2007 | |
Eickendorf (6786-01-0090) | 2001 (1) | 2002–2015 a (14) | 2015 | |
GM OSR Event (Abbreviation, Traits) | Release Site (BVL File Number of the Release Approval) [4] | Duration of Release (Years sown) | Operators Follow-Up (Number of Years) | Last Official Monitoring |
GS 40/90 and/or Liberator C/6Ac: glufosinate resistance (pat) | Bottmersdorf (6786-01-0043, -0052 and -0053) | 1996–1998 (3) | 1999–2006 (8) | 2008 |
Böhnshausen (6786-01-0101) | 1999–2000 (2) | 2001; 2002 (2) | 2007 | |
Rohrberg (6786-01-0101) | 1999 (1) | 2000; 2001 (2) | 2007 | |
Etzdorf (6786-01-0101) | 1999 (1) | 2000–2015 a (16) | 2015 | |
GT73: glyphosate resistance (epsps) | Rahnsdorf (6786-01-0050) | 1996–1997 (2) | 1998–2002 (5) | 2008 |
Gerbitz (6786-01-0070) | 1997–1998 (2) | 1999–2003 (5) | 2009 | |
MS1/RF1: glufosinate resistance (bar); male sterility (barnase) × fertility restorer (barstar) | Etzdorf b | 1996–1998 (3) | none | 2015 |
2. Materials and Methods
Construct or/and Detectable GM OSR Events | Forward Primer (5′ → 3′) | Reverse Primer (5′ → 3′) | PCR Products (OSR Only) | Reference |
---|---|---|---|---|
pSSUAra-bar construct (MS8; RF3; MS1; RF1/2) | PGS-bar-A2: GAAGTT GACCGTGCTTGTCT | PGS-bar-B2: CAAGTC CACCAGGCAAGTAA | 454 bp (MS8, RF3); 624 bp (MS1; RF1/2) | this work; [26,29] |
p35S-pat construct (GS40-90; Liberator C/6Ac) | CaMV-F: ATCCTTC GCAAGACCCTTCCTC | pat 3-R: CCCAACC TTTGATGCCTATGTG | 386 bp | [27] |
pFMV-epsps construct (GT73) | CP1: GACTTACGAGCA GTTGCTGGACGGCTGC | pFMV2: CCTGACAGCCC ACTCACTAATGCGTATG | 491 bp | [28] |
Construct or/and Detectable GM OSR Events | Forward Primer (5′ → 3′) | Reverse Primer (5′ → 3′) | PCR Products (OSR Only) | Reference |
---|---|---|---|---|
pSSUAra-bar construct (MS8; RF3; MS1; RF1/2) | PGS-bar-A1: GTGCTT GTCTCGATGTAGTG | PGS-bar-B1: CGATAG GGAAGTGATGTAGG | 1024 bp (MS8, RF3); 1194 bp (MS1;RF1/2) | this work * |
GS40-90: “Avalon” + “Falcon” (first p35S-pat copy); event specific | Hess-443: TTACGGC GAGTTCTGTTAGGTCC | Hess-444: TGTTCACA TGAGACCATGCACG | 266 bp (Avalon, Falcon) | [30] |
GS40-90: “Falcon” (second p35S-pat copy); event specific | Hess-316: GCCAAGCT CAGGATCAGATTGTC | Hess-337: TTGTGGACG CTCTGGTGATAGTGC | 210 bp (Falcon only) | [30] |
Liberator C/6Ac; event specific | Hess-340: GATTGTC GTTTCCCGCCTTC | Hess-341: CGCAGGAGA GATACCGATAAGACTG | 335 bp | [30] |
GT73, event specific | RT73-1: CCATATTGAC CATCATACTCATTGCT | RT73-2: GCTTATACGA AGGCAAGAAAAGGA | 108 bp | [31] |
MS1, event specific | MLD025-F: ACGCTG CGGACATCTACATT | MDB175-R: CTAGATCG GAAGCTGAAGATGG | 187 bp | [32] |
MS8, event specific | KVM085: TTAGAAAAAGTA AACAATTAATATAGCCGG | HCA048: GGAGGGT GT TTTGGTTATC | 129 bp | [33] |
RF1, event specific | MDB118-F: CTAAGGG AGGTCAAGATGTAGC | KVM170-R: CGGGCC TAACTTTTGGTGTG | 113 bp | [34] |
RF3, event specific | KVM084: AGCATTTAG CATGTACCATCAGACA | DPA165: CATAAAGGA AGATGGAGACTTGAG | 139 bp | [35] |
3. Results
3.1. Etzdorf (Steuden)
Year a | Crop Rotations | Number of OSR Volunteers in and Directly Adjacent to the FTS | ||
---|---|---|---|---|
Total Number (in Brackets: Number of Generated Composite Samples) | GM OSR: GS 40/90 (Composite Samples) | GM OSR: MS1 and/or RF1 b (Composite Samples) | ||
1999 | Winter Barley | not studied | GMO grown in 1999 | |
2000 | GM winter OSR GS 40/90 | GMO grown in 2000 | ||
2001 | Winter Wheat | not studied c | not studied | |
2002 | No info available | |||
2003 | Winter OSR | |||
2004 | Winter Wheat | 57 OSR plants (17 Composite samples) | 11 | |
2005 | Winter Barley | no OSR plants found c | 0 c | |
2006 | Beans/Peas | 44 OSR plants | 6 | 1 |
2007 | Winter Barley | 41 OSR plants (10 Composite samples) | 2 | 1 |
2008 | Winter Wheat | 25 OSR plants (1 Composite sample + 11 single plants) | 4 | 1 |
2009 | Winter Wheat | 8 OSR plants | 0 c | 1 |
2010 | Durum Wheat | 145 OSR plants (18 Composite samples) | 7 | 0 |
2011 | Beans/Peas/Soy | 52 OSR plants (11 Composite samples) | 6 | 0 |
2012 | Ribbon Grass | 174 OSR plants (17 Composite samples) | 1 | 8 |
2013 | Ribbon Grass | 21 OSR plants ( 7 Composite samples) | 1 | 0 |
2014 | RG d/WW e | 88 OSR plants (17 Composite samples) | 5 | 0 |
2015 | RG and others | 185 OSR plants (22 Composite samples) | 0 c | 7 |
3.2. Eickendorf
Year a | Crop Rotations | Number of OSR Volunteers in and Directly Adjacent to the FTS | |
---|---|---|---|
Total Number (in Brackets: Number of Generated Composite Samples) | GM OSR: MS8 and/or RF3 (Composite Samples) | ||
before | no OSR since 1945 | not studied | not studied |
2001 | Winter Wheat | ||
2002 | GM winter OSR MS8/RF3 | Analyses on the range of GMO outcrossing into the adjacent conventional OSR field (data not shown) | |
2003 | Winter Wheat | no OSR plants found b | 0 b |
2004 | Winter Wheat | no OSR plants found b | 0 b |
2005 | Potatoes | 55 OSR plants (4 Composite samples) | 4 |
2006 | Winter Wheat | 18 OSR plants | 4 |
2007 | Maize | no OSR plants found b | 0b |
2008 | Facultative Wheat | no OSR plants found b | 0b |
2009 | Winter Wheat | 236 OSR plants c (25 Composite samples) | 0b |
2010 | Potatoes | 1 OSR plant | 0b |
2011 | Winter Wheat | 395 OSR plants (39 Composite samples) | 15 |
2012 | Winter Wheat | 84 OSR plants (11 Composite samples) | 6 |
2013 | Maize | 18 stem rests and 13 OSR plants (2 Composite samples) | 0 b |
2014 | Winter Wheat | 25 OSR plants (5 Composite samples) | 3 |
2015 | Potatoes | 121 OSR plants (19 Composite samples) | 6 |
4. Discussion
5. Conclusions
Acknowledgments
Conflicts of Interest
References
- International Service for the Acquisition of Agri-biotech Applications (ISAAA), Brief 49-2014. Available online: http://isaaa.org/resources/publications/briefs/49/pptslides/pdf/B49-Slides-English.pdf (accessed on 23 October 2015).
- GMO Compass. Genetically Modified Food and Feed: Authorization in the EU. Available online: www.gmo-compass.org/eng/gmo/db/ (accessed on 23 October 2015).
- Gesetz zur Regelung der Gentechnik (Gentechnikgesetz—GenTG). Available online: http://www.gesetze-im-internet.de/bundesrecht/gentg/gesamt.pdf (accessed on 23 October 2015).
- German Federal Office for Consumer Protection and Food Safety. Description of GMO field trial projects, Status as of 2013. Available online: http://apps2.bvl.bund.de/freisetzung/index.html (accessed on 23 October 2015).
- Messѐan, A.; Sausse, C.; Gasquez, J.; Darmency, H. Occurrence of genetically modified oilseed rape seeds in the harvest of subsequent conventional oilseed rape over time. Eur. J. Agron. 2007, 27, 115–122. [Google Scholar] [CrossRef]
- Pekrun, C.; Lutman, P.J.W.; Baeumer, K. Induction of secondary dormancy in rape seeds (Brassica napus L.) by prolonged imbibition under conditions of water stress or oxygen deficiency in darkness. Eur. J. Agron. 1997, 6, 245–255. [Google Scholar] [CrossRef]
- Pekrun, C.; Hewitt, J.D.J.; Lutman, P.J.W. Cultural control of volunteer oilseed rape (Brassica napus). J. Agric. Sci. 1998, 130, 155–163. [Google Scholar] [CrossRef]
- Momoh, E.J.J.; Zhou, W.J.; Kristiansson, B. Variation in the development of secondary dormancy in oilseed rape genotypes under conditions of stress. Weed Res. 2002, 42, 446–455. [Google Scholar] [CrossRef]
- Schlink, S. 10 years survival of rape seed (Brassica napus L.) in soil. J. Plant Dis. Prot. 1998, 26, 169–172. [Google Scholar]
- Lutman, P.J.W.; Freeman, S.E.; Pekrun, C. The long-term persistence of seeds of oilseed rape (Brassica napus) in arable fields. J. Agric. Sci. 2003, 141, 231–240. [Google Scholar] [CrossRef]
- Squire, G.R.; Begg, G.S.; Askew, M. The Potential for Oilseed Rape Feral (Volunteer) Weeds to Cause Impurities in Later Oilseed Rape Crops. Final Report DEFRA project RG0114: Consequences for Agriculture of the Introduction of Genetically Modified Crops. Available online: http://www.scri.ac.uk/scri/file/EPI/Agroecology/Volunteer_impurities_in_oilseed_rape_rg0114.pdf (accessed on 14 January 2016).
- D’Hertefeldt, T.; Jørgensen, R.B.; Pettersson, L.B. Long-term persistence of GM oilseed rape in the seedbank. Biol. Lett. 2008, 4, 314–317. [Google Scholar] [CrossRef] [PubMed]
- Beckie, H.J.; Warwick, S.I. Persistence of an oilseed rape transgene in the environment. Crop Prot. 2010, 29, 509–512. [Google Scholar] [CrossRef]
- Munier, D.J.; Brittan, K.L.; Lanini, W.T. Seed bank persistence of genetically modified canola in California. Environ. Sci. Pollut. Res. Int. 2012, 19, 2281–2284. [Google Scholar] [CrossRef] [PubMed]
- Lutman, P.J.W.; Berry, K.; Payne, R.W.; Simpson, E.; Sweet, J.B.; Champion, G.T.; May, M.J.; Wightman, P.; Walker, K.; Lainsbury, M. Persistence of seeds from crops of conventional and herbicide tolerant oilseed rape (Brassica napus). Proc. Biol. Sci. 2005, 272, 1909–1915. [Google Scholar] [CrossRef] [PubMed]
- Gruber, S.; Pekrun, C.; Claupein, W. Life cycle and potential gene flow of volunteer oilseed rape in different tillage systems. Weed Res. 2005, 45, 83–93. [Google Scholar] [CrossRef]
- Pekrun, C.; Lutman, P.J.W.; Büsche, A.; Albertini, A.; Claupein, W. Reducing potential gene escape in time by appropriate post-harvest tillage—Evidence from field experiments with oilseed rape at 10 sites in Europe. Eur. J. Agron. 2006, 25, 289–298. [Google Scholar] [CrossRef]
- Gruber, S.; Bühler, A.; Möhring, J.; Claupein, W. Sleepers in the soil—Vertical distribution by tillage and long-term survival of oilseed rape seeds compared with plastic pellets. Eur. J. Agron. 2010, 33, 81–88. [Google Scholar] [CrossRef]
- Weber, E.A.; Gruber, S.; Claupein, W. Emergence and performance of volunteer oilseed rape (Brassica napus) in different crops. Eur. J. Agron. 2014, 60, 33–40. [Google Scholar] [CrossRef]
- Henne, U. Äcker haben ein langes Gedächtnis. Zunehmender Rapsdurchwuchs zwingt zu Stoppelmanagement nach der Ernte. Bauernblatt 2015, 8, 31–33. (In German) [Google Scholar]
- Middelhoff, U.; Windhorst, W. Ausbreitungsverhalten von gentechnisch verändertem (GV-) Raps—Eine Studie für Schleswig-Holstein. Beiträge der Agrar- und Ernährungswissenschaftliche Fakultät der Universität Kiel. Available online: http://www.keine-gentechnik.de/bibliothek/naturschutz/studien/uni_kiel_ausbreitung_gvraps_040201.pdf (accessed on 23 October 2015).
- Arndt, N.; Pohl, M. Analyse der bei Freisetzungen gentechnisch veränderter Pflanzen durchgeführten Sicherheitsmaßnahmen: Erhebungszeitraum 1998–2004. Available online: https://www.bfn.de/fileadmin/MDB/documents/skript147.pdf (accessed on 23 October 2015). (In German)
- 96/158/EC: Commission Decision of 6 February 1996 Concerning the Placing on the Market of a Product Consisting of a Genetically Modified Organism, Hybrid Herbicide-Tolerant Swede-Rape Seeds (Brassica napus L. oleifera Metzq. MS1Bn × RF1Bn), Pursuant to Council Directive 90/220/EEC. Available online: http://old.eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:31996D0158:EN:HTML (accessed on 23 October 2015).
- Feldversuchsführer. Versuchsstationen Bad Lauchstädt und Etzdorf, Landwirtschaftliche Fakultät der Martin-Luther-Universität Halle-Wittenberg. Hrsg. Institut für Acker-und Pflanzenbau; Diepenbrock, W., Ed.; Etzdorf: Frankfurt, Germany, 2000. (In German) [Google Scholar]
- Tinker, N.A.; Fortin, M.G.; Mather, D.E. Random amplified polymorphic DNA and pedigree relationship in spring barley. Theor. Appl. Genet. 1993, 85, 976–984. [Google Scholar] [CrossRef] [PubMed]
- German Federal Office for Consumer Protection and Food Safety (BVL). PCR Detection of pSSUAra-bar-Construct for Screening on Special GM Oilseed Rape Varieties. Construct Specific Method. PCR-Nachweis des pSSUAra-bar-Genkonstrukts zum Screening auf bestimmte gentechnisch veränderte Rapslinien. Konstruktspezifisches Verfahren. In Official Collection of Methods for Sampling and Detection; Beuth Verlag: Berlin, Germany, 2015. (In German) [Google Scholar]
- German National and Federal Länder Joint Committee on Genetic Engineering (LAG). PCR Detection of p35S-pat-Construct in transgenic crops. PCR-Nachweis der p35S-pat-Genkassette in transgenen Kulturpflanzen. Bundesgesundhbl 2002, 45, 929–931. (In German) [Google Scholar]
- German Federal Office for Consumer Protection and Food Safety (BVL). PCR Detection of pFMV-CP4-EPSPS-Construct for Screening on GM Plants. Construct specific Method. PCR-Nachweis des pFMV-CP4-EPSPS-Genkonstrukts zum Screening auf gentechnisch veränderte Pflanzen. Konstruktspezifisches Verfahren. In Official Collection of Methods for Sampling and Detection; Beuth Verlag: Berlin, Germany, 2015. (In German) [Google Scholar]
- German National and Federal Länder Joint Committee on Genetic Engineering (LAG). PCR Detection of pSSUAra-Bar-Construct in Transgenic Crops. PCR-Nachweis der pSSUAra/bar-Genkassette in transgenen Kulturpflanzen., Subcommittee for Method Development. 2001. Available online: http://www.lag-gentechnik.de/dokumente/uam-methoden/008.pdf (accessed on 23 October 2015).
- Hess, N.; Ulrich, A.; Hoffmann, T. Insertion specific detection methods for transgenic plant varieties implementing inverse PCR. Bundesgesundheitsblatt 2002, 45, 626–633. [Google Scholar] [CrossRef]
- Mazzara, M.; Grazioli, E.; Savini, C.; van den Eede, G. Event-Specific Method for the Quantification of Oilseed Rape Line RT73 Using Real-Time PCR—Validation Report and Protocol. Seeds Sampling and DNA Extraction of Oilseed Rape. 2007. Available online: http://gmo-crl.jrc.ec.europa.eu/gmomethods/docs/QT-EVE-BN-004.pdf (accessed on 23 October 2015).
- Savini, C. In-House Validation of an Event-specific Method for the Quantification of Oilseed Rape MS1 Using Real-time PCR—Validation Report and Protocol. Available online: http://gmo-crl.jrc.ec.europa.eu/gmomethods/docs/QT-EVE-BN-005.pdf (accessed on 23 October 2015).
- Mazzara, M.; Bogni, A.; Savini, C.; van den Eede, G. Event-Specific Method for the Quantification of Oilseed Rape Line Ms8 Using Real-Time PCR—Validation Report and Protocol. Seeds Sampling and DNA Extraction of Oilseed Rape. 2007. Available online: http://gmo-crl.jrc.ec.europa.eu/gmomethods/docs/QT-EVE-BN-002.pdf (accessed on 23 October 2015).
- Mazzara, M. In-House Validation of an Event-Specific Method for the Quantification of Oilseed Rape RF1 Using Real-Time PCR—Validation Report and Protocol. Available online: http://gmo-crl.jrc.ec.europa.eu/gmomethods/docs/QT-EVE-BN-006.pdf (accessed on 23 October 2015).
- Savini, C.; Bogni, A.; Mazzara, M.; van den Eede, G. Event-Specific Method for the Quantification of Oilseed Rape Line Rf3 Using Real-time PCR—Validation Report and Protocol. Seeds Sampling and DNA Extraction. Available online: http://gmo-crl.jrc.ec.europa.eu/gmomethods/docs/QT-EVE-BN-003.pdf (accessed on 23 October 2015).
- Green, M.R.; Sambrock, J. Molecular Cloning: A Laboratory Manual, 4th ed.; Cold Spring Harbour Laboratory Press: New York, NY, USA, 2012; Volume 1, pp. 94–103. [Google Scholar]
- Gesetz zur Schätzung des landwirtschaftlichen Kulturbodens (Bodenschätzungsgesetz—BodSchätzG) vom 20. Dezember 2007 (BGBl. I S. 3150, 3176). Available online: http://www.bgbl.de/xaver/bgbl/start.xav?start=%2F%2F*%5B%40attr_id%3D'bgbl114s0962.pdf'%5D#__bgbl__%2F%2F*%5B%40attr_id%3D%27bgbl114s0962.pdf%27%5D__1445595249132 (accessed on 23 October 2015).
- Gruber, S.; Weber, E.A.; Claupein, W. Which soils are comfortable for oilseed rape seeds (Brassica napus) to survive? Plant Soil Environ. 2014, 60, 280–284. [Google Scholar]
- Food and Drug Administration (FDA). Statement of Policy—Foods Derived from New Plant Varieties. Available online: http://www.fda.gov/Food/GuidanceRegulation/GuidanceDocumentsRegulatoryInformation/Biotechnology/ucm096095.htm (accessed on 23 October 2015).
- Schauzu, M. The concept of substantial equivalence in safety assessment of foods derived from genetically modified organisms. AgBiotechNet 2000, 2, 1–4. [Google Scholar]
- European Food Safety Authority (EFSA). Guidance on the environmental risk assessment of genetically modified plants. EFSA J. 2010, 8, 1–111. [Google Scholar]
- Franzaring, J.; Holz, I.; Fangmeier, A. Bislang keine Vorkommen von herbizid-tolerantem Raps in der Umgebung ehemaliger Freisetzungsflächen—Ergebnisse einer Pilotstudie zum GVO-Screening von Ruderalraps. Available online: https://ecology.uni-hohenheim.de/fileadmin/einrichtungen/ecology/Dateien_Inst-Ber_18/Franzaring_Raps_NEU.pdf (accessed on 23 October 2015).
- Yoshimura, Y.; Beckie, H.J.; Matsuo, K. Transgenic oilseed rape along transportation routes and port of Vancouver in western Canada. Environ. Biosaf. Res. 2006, 5, 67–75. [Google Scholar] [CrossRef] [PubMed]
- Knispel, A.L.; McLachlan, S.M. Landscape-scale distribution and persistence of genetically modified oilseed rape (Brassica napus) in Manitoba, Canada. Environ. Sci. Pollut. Res. 2010, 17, 13–25. [Google Scholar] [CrossRef] [PubMed]
- Saji, H.; Nobuyoshi, N.; Mitsuko, A.; Masanori, T.; Akihiro, K. Monitoring the escape of transgenic oilseed rape around Japanese ports and roadsides. Environ. Biosaf. Res. 2005, 4, 217–222. [Google Scholar] [CrossRef] [PubMed]
- Aono, M.; Seiji, W.; Masato, N.; Nobuyoshi, N.; Masanori, T. Detection of feral transgenic oilseed rape with multiple-herbicide resistance in Japan. Environ. Biosaf. Res. 2006, 5, 77–87. [Google Scholar] [CrossRef] [PubMed]
- Kawata, M.; Murakami, K.; Ishikawa, T. Dispersal and persistence of genetically modified oilseed rape around Japanese harbors. Environ. Sci. Pollut. Res. 2009, 16, 120–126. [Google Scholar] [CrossRef] [PubMed]
- Nishizawa, T.; Nakajima, N.; Aono, M.; Tamaoki, M.; Kubo, A.; Saji, H. Monitoring the occurrence of genetically modified oilseed rape growing along a Japanese roadside: 3-year observations. Environ. Biosaf. Res. 2009, 8, 33–44. [Google Scholar] [CrossRef] [PubMed]
- Pessel, F.D.; Lecomte, J.; Emeriau, V.; Krouti, M.; Messean, A.; Gouyon, P.H. Persistence of oilseed rape (Brassica napus L.) outside of cultivated fields. Theor. Appl. Genet. 2001, 102, 841–846. [Google Scholar] [CrossRef]
- Pivard, S.; Adamczyk, K.; Lecomte, J.; Lavigne, C.; Bouvier, A.; Deville, A.; Gouyon, P.H.; Huet, S. Where do the feral oilseed rape populations come from? A large-scale study of their possible origin in a farmland area. J. Appl. Ecol. 2008, 45, 476–485. [Google Scholar] [CrossRef]
- Von der Lippe, M.; Kowarik, I. Crop seed spillage along roads: A factor of uncertainty in the containment of GMO. Ecography 2007, 30, 483–490. [Google Scholar] [CrossRef]
- Schafer, M.G.; Ross, A.A.; Londo, J.P.; Burdick, C.A.; Lee, E.H.; Travers, S.E.; Van de Water, P.K.; Sagers, C.L. The establishment of genetically engineered canola populations in the U.S. PLoS ONE 2011, 6, e25736. [Google Scholar] [CrossRef] [PubMed]
- Schulze, J.; Frauenknecht, T.; Brodmann, P.; Bagutti, C. Unexpected diversity of feral genetically modified oilseed rape (Brassica napus L.) despite a cultivation and import ban in Switzerland. PLoS ONE 2014, 9, e114477. [Google Scholar] [CrossRef] [PubMed]
- Devos, Y.; Hails, R.S.; Messean, A.; Perry, J.N.; Squire, G.R. Feral genetically modified herbicide tolerant oilseed rapefrom seed import spills: Are concerns scientifically justified? Transgenic Res. 2012, 21, 1–21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Katsuta, K.; Matsuo, K.; Yoshimura, Y.; Ohsawa, R. Long-term monitoring of feral genetically modified herbicide-tolerant Brassica napus populations around unloading Japanese ports. Breed. Sci. 2015, 65, 265–275. [Google Scholar] [CrossRef] [PubMed]
© 2016 by the author; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Belter, A. Long-Term Monitoring of Field Trial Sites with Genetically Modified Oilseed Rape (Brassica napus L.) in Saxony-Anhalt, Germany. Fifteen Years Persistence to Date but No Spatial Dispersion. Genes 2016, 7, 3. https://doi.org/10.3390/genes7010003
Belter A. Long-Term Monitoring of Field Trial Sites with Genetically Modified Oilseed Rape (Brassica napus L.) in Saxony-Anhalt, Germany. Fifteen Years Persistence to Date but No Spatial Dispersion. Genes. 2016; 7(1):3. https://doi.org/10.3390/genes7010003
Chicago/Turabian StyleBelter, Anke. 2016. "Long-Term Monitoring of Field Trial Sites with Genetically Modified Oilseed Rape (Brassica napus L.) in Saxony-Anhalt, Germany. Fifteen Years Persistence to Date but No Spatial Dispersion" Genes 7, no. 1: 3. https://doi.org/10.3390/genes7010003
APA StyleBelter, A. (2016). Long-Term Monitoring of Field Trial Sites with Genetically Modified Oilseed Rape (Brassica napus L.) in Saxony-Anhalt, Germany. Fifteen Years Persistence to Date but No Spatial Dispersion. Genes, 7(1), 3. https://doi.org/10.3390/genes7010003