Genome-Wide Survey Reveals Transcriptional Differences Underlying the Contrasting Trichome Phenotypes of Two Sister Desert Poplars
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials and Growth Conditions
2.2. Total RNA Extraction and Sequencing
2.3. Identification of Genes Involved in Trichome Formation
2.4. Phylogenetic Analyses and Structure of Candidate Genes
2.5. dN/dS Calculation and Inference of Divergence Time
2.6. Gene Expression Data
2.7. Identification and Functional Analysis of Differentially Expressed Genes (DEGs)
2.8. Validation of Genes Related to Trichome Formation with Quantitative Real-Time PCR (qRT-PCR)
3. Results and Discussion
3.1. Trichome Differences in Two Sister Desert Poplars
3.2. Identification of Genes Related to Trichome Formation
3.3. Expression of Candidate Trichome-Formation Genes
3.4. Other Genes Identified among DEGs Potentially Related to Differences in Trichome Formation between the Two Species
4. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Tian, B.; Liu, T.-L.; Liu, J.-Q. Ostryopsis intermedia, a new species of betulaceae from yunnan, China. Bot. Stud. 2010, 51, 257–262. [Google Scholar]
- Lu, Z.Q.; Tian, B.; Liu, B.B.; Yang, C.; Liu, J.Q. Origin of Ostryopsis intermedia (betulaceae) in the southeast qinghai–tibet plateau through hybrid speciation. J. Syst. Evol. 2014, 52, 250–259. [Google Scholar] [CrossRef]
- Larkin, J.C.; Brown, M.L.; Schiefelbein, J. How do cells know what they want to be when they grow up? Lessons from epidermal patterning in Arabidopsis. Annu. Rev. Plant Biol. 2003, 54, 403–430. [Google Scholar] [CrossRef] [PubMed]
- Martin, C.; Glover, B.J. Functional aspects of cell patterning in aerial epidermis. Curr. Opin. Plant Biol. 2007, 10, 70–82. [Google Scholar] [CrossRef] [PubMed]
- Szymanski, D.B.; Lloyd, A.M.; Marks, M.D. Progress in the molecular genetic analysis of trichome initiation and morphogenesis in Arabidopsis. Trends Plant Sci. 2000, 5, 214–219. [Google Scholar] [CrossRef]
- Tominaga-Wada, R.; Nukumizu, Y.; Sato, S.; Wada, T. Control of Plant Trichome and Root-Hair Development by a Tomato (Solanum lycopersicum) R3 MYB Transcription Factor. PLoS ONE 2013, 8, e54019. [Google Scholar] [CrossRef] [PubMed]
- Yan, A.; Wu, M.; Zhao, Y.; Zhang, A.; Liu, B.; Schiefelbein, J.; Gan, Y. Involvement of C2H2 zinc finger proteins in the regulation of epidermal cell fate determination in Arabidopsis. J. Integr. Plant Boil. 2014, 56, 1112–1117. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.M.; Zheng, K.J.; Wang, X.Y.; Tian, H.N.; Wang, X.L.; Wang, S.C. Control of trichome formation in Arabidopsis by poplar single-repeat R3 MYB transcription factors. Front. Plant Sci. 2014. [Google Scholar] [CrossRef] [PubMed]
- Payne, C.T.; Zhang, F.; Lloyd, A.M. GL3 encodes a bHLH protein that regulates trichome development in arabidopsis through interaction with GL1 and TTG1. Genetics 2000, 156, 1349–1362. [Google Scholar] [PubMed]
- Bernhardt, C.; Lee, M.M.; Gonzalez, A.; Zhang, F.; Lloyd, A.; Schiefelbein, J. The bHLH genes GLABRA3 (GL3) and ENHANCER OF GLABRA3 (EGL3) specify epidermal cell fate in the Arabidopsis root. Development 2003, 130, 6431–6439. [Google Scholar] [CrossRef] [PubMed]
- Schellmann, S.; Schnittger, A.; Kirik, V.; Wada, T.; Okada, K.; Beermann, A.; Thumfahrt, J.; Jürgens, G.; Hülskamp, M. TRIPTYCHON and CAPRICE mediate lateral inhibition during trichome and root hair patterning in Arabidopsis. EMBO J. 2002, 21, 5036–5046. [Google Scholar] [CrossRef] [PubMed]
- Esch, J.J.; Chen, M.A.; Hillestad, M.; David Marks, M. Comparison of TRY and the closely related At1g01380 gene in controlling Arabidopsis trichome patterning. Plant J. 2004, 40, 860–869. [Google Scholar] [CrossRef] [PubMed]
- Kirik, V.; Simon, M.; Huelskamp, M.; Schiefelbein, J. The enhancer of try and cpc1 gene acts redundantly with triptychon and caprice in trichome and root hair cell patterning in arabidopsis. Dev. Boil. 2004, 268, 506–513. [Google Scholar] [CrossRef] [PubMed]
- Kirik, V.; Simon, M.; Wester, K.; Schiefelbein, J.; Hulskamp, M. The ENHANCER OF TRY AND CPC1 gene acts redundantly with TRIPTYCHON and CAPRICE in trichome and root hair cell patterning in Arabidopsis. Plant Mol. Boil. 2004, 55, 389–398. [Google Scholar] [CrossRef] [PubMed]
- Kirik, V.; Lee, M.M.; Wester, K.; Herrmann, U.; Zheng, Z.; Oppenheimer, D.; Schiefelbein, J.; Hulskamp, M. Functional diversification of MYB23 and GL1 genes in trichome morphogenesis and initiation. Development 2005, 132, 1477–1485. [Google Scholar] [CrossRef] [PubMed]
- Jakoby, M.J.; Falkenhan, D.; Mader, M.T.; Brininstool, G.; Wischnitzki, E.; Platz, N.; Hudson, A.; Hülskamp, M.; Larkin, J.; Schnittger, A. Transcriptional Profiling of Mature Arabidopsis Trichomes Reveals That NOECK Encodes the MIXTA-Like Transcriptional Regulator MYB106. Plant Physiol. 2008, 148, 1583–1602. [Google Scholar] [CrossRef] [PubMed]
- Bloomer, R.H.; Juenger, T.E.; Symonds, V.V. Natural variation in GL1 and its effects on trichome density in Arabidopsis thaliana. Mol. Ecol. 2012, 21, 3501–3515. [Google Scholar] [CrossRef] [PubMed]
- Liang, G.; He, H.; Li, Y.; Ai, Q.; Yu, D. MYB82 functions in regulation of trichome development in Arabidopsis. J. Exp. Bot. 2014, 65, 3215–3223. [Google Scholar] [CrossRef] [PubMed]
- Gan, Y.; Kumimoto, R.; Liu, C.; Ratcliffe, O.; Yu, H.; Broun, P. GLABROUS INFLORESCENCE STEMS modulates the regulation by gibberellins of epidermal differentiation and shoot maturation in Arabidopsis. Plant Cell 2006, 18, 1383–1395. [Google Scholar] [CrossRef] [PubMed]
- Gan, Y.; Liu, C.; Yu, H.; Broun, P. Integration of cytokinin and gibberellin signalling by Arabidopsis transcription factors GIS, ZFP8 and GIS2 in the regulation of epidermal cell fate. Development 2007, 134, 2073–2081. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; An, L.; Sun, L.; Zhu, S.; Xi, W.; Broun, P.; Yu, H.; Gan, Y. Zinc finger protein5 is required for the control of trichome initiation by acting upstream of zinc finger protein8 in Arabidopsis. Plant Physiol. 2011, 157, 673–682. [Google Scholar] [CrossRef] [PubMed]
- Glauser, G.; Grata, E.; Dubugnon, L.; Rudaz, S.; Farmer, E.E.; Wolfender, J.-L. Spatial and temporal dynamics of jasmonate synthesis and accumulation in Arabidopsis in response to wounding. J. Biol. Chem. 2008, 283, 16400–16407. [Google Scholar] [CrossRef] [PubMed]
- Gan, Y.; Yu, H.; Peng, J.; Broun, P. Genetic and molecular regulation by DELLA proteins of trichome development in Arabidopsis. Plant Physiol. 2007, 145, 1031–1042. [Google Scholar] [CrossRef] [PubMed]
- Zhao, M.; Morohashi, K.; Hatlestad, G.; Grotewold, E.; Lloyd, A. The TTG1-bHLH-MYB complex controls trichome cell fate and patterning through direct targeting of regulatory loci. Development 2008, 135, 1991–1999. [Google Scholar] [CrossRef] [PubMed]
- Guan, X.Y.; Li, Q.J.; Shan, C.M.; Wang, S.; Mao, Y.B.; Wang, L.J.; Chen, X.Y. The HD-Zip IV gene GaHOX1 from cotton is a functional homologue of the Arabidopsis GLABRA2. Physiol. Plant. 2008, 134, 174–182. [Google Scholar] [CrossRef] [PubMed]
- Shangguan, X.-X.; Xu, B.; Yu, Z.-X.; Wang, L.-J.; Chen, X.-Y. Promoter of a cotton fibre MYB gene functional in trichomes of Arabidopsis and glandular trichomes of tobacco. J. Exp. Bot. 2008, 59, 3533–3542. [Google Scholar] [CrossRef] [PubMed]
- Scoville, A.G.; Barnett, L.L.; Bodbyl-Roels, S.; Kelly, J.K.; Hileman, L.C. Differential regulation of a MYB transcription factor is correlated with transgenerational epigenetic inheritance of trichome density in Mimulus guttatus. New Phytol. 2011, 191, 251–263. [Google Scholar] [CrossRef] [PubMed]
- Vendramin, E.; Pea, G.; Dondini, L.; Pacheco, I.; Dettori, M.T.; Gazza, L.; Scalabrin, S.; Strozzi, F.; Tartarini, S.; Bassi, D. A Unique Mutation in a MYB Gene Cosegregates with the Nectarine Phenotype in Peach. PLoS ONE 2014, 9, e90574. [Google Scholar] [CrossRef] [PubMed]
- Plett, J.M.; Wilkins, O.; Campbell, M.M.; Ralph, S.G.; Regan, S. Endogenous overexpression of Populus MYB186 increases trichome density, improves insect pest resistance, and impacts plant growth. Plant J. 2010, 64, 419–432. [Google Scholar] [CrossRef] [PubMed]
- Ma, H.-C.; Fung, L.; Wang, S.-S.; Altman, A.; Hüttermann, A. Photosynthetic response of Populus euphratica to salt stress. For. Ecol. Manag. 1997, 93, 55–61. [Google Scholar] [CrossRef]
- Ottow, E.A.; Polle, A.; Brosche, M.; Kangasjärvi, J.; Dibrov, P.; Zörb, C.; Teichmann, T. Molecular characterization of PeNhaD1: The first member of the NhaD Na+/H+ antiporter family of plant origin. Plant Mol. Boil. 2005, 58, 75–88. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Kallman, T.; Liu, J.; Guo, Q.; Wu, Y.; Lin, K.; Lascoux, M. Speciation of two desert poplar species triggered by Pleistocene climatic oscillations. Heredity 2014, 112, 156–164. [Google Scholar] [CrossRef] [PubMed]
- Qiu, Q.; Ma, T.; Hu, Q.; Liu, B.; Wu, Y.; Zhou, H.; Wang, Q.; Wang, J.; Liu, J. Genome-scale transcriptome analysis of the desert poplar, Populus euphratica. Tree Physiol. 2011, 31, 452–461. [Google Scholar] [CrossRef] [PubMed]
- Ma, T.; Wang, J.; Zhou, G.; Yue, Z.; Hu, Q.; Chen, Y.; Liu, B.; Qiu, Q.; Wang, Z.; Zhang, J. Genomic insights into salt adaptation in a desert poplar. Nat. Commun. 2013. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Feng, J.; Lu, J.; Yang, Y.; Zhang, X.; Wan, D.; Liu, J. Transcriptome differences between two sister desert poplar species under salt stress. BMC Genomics 2014. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Jiang, D.; Liu, B.; Luo, W.; Lu, J.; Ma, T.; Wan, D. T Transcriptome dynamics of a desert poplar (Populus pruinosa) in response to continuous salinity stress. Plant Cell Rep. 2014, 33, 1565–1579. [Google Scholar] [CrossRef] [PubMed]
- Chang, S.; Puryear, J.; Cairney, J. A simple and efficient method for isolating RNA from pine trees. Plant Mol. Biol. Rep. 1993, 11, 113–116. [Google Scholar] [CrossRef]
- Tuskan, G.A.; Difazio, S.; Jansson, S.; Bohlmann, J.; Grigoriev, I.; Hellsten, U.; Putnam, N.; Ralph, S.; Rombauts, S.; Salamov, A. The genome of black cottonwood, Populus trichocarpa (torr. & gray). Science 2006, 313, 1596–1604. [Google Scholar] [PubMed]
- Altschul, S.F.; Madden, T.L.; Schaffer, A.A.; Zhang, J.; Zhang, Z.; Miller, W.; Lipman, D.J. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Res. 1997, 25, 3389–3402. [Google Scholar] [CrossRef] [PubMed]
- Finn, R.D.; Clements, J.; Eddy, S.R. HMMER web server: Interactive sequence similarity searching. Nucleic Acids Res. 2011, 39, W29–W37. [Google Scholar] [CrossRef] [PubMed]
- Edgar, R.C. MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004, 32, 1792–1797. [Google Scholar] [CrossRef] [PubMed]
- Darriba, D.; Taboada, G.L.; Doallo, R.; Posada, D. ProtTest 3: Fast selection of best-fit models of protein evolution. Bioinformatics 2011, 27, 1164–1165. [Google Scholar] [CrossRef] [PubMed]
- Stamatakis, A. RAxML-VI-HPC: Maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 2006, 22, 2688–2690. [Google Scholar] [CrossRef] [PubMed]
- Tamura, K.; Stecher, G.; Peterson, D.; Filipski, A.; Kumar, S. MEGA6: Molecular evolutionary genetics analysis version 6.0. Mol. Boil. Evol. 2013, 30, 2725–2729. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Lu, J.; Xu, J.; Duan, B.; He, X.; Liu, J. Genome-wide identification of WRKY genes in the desert poplar Populus euphratica and adaptive evolution of the genes in response to salt stress. Evol. Bioinform. Online 2015. [Google Scholar] [CrossRef]
- Löytynoja, A.; Goldman, N. An algorithm for progressive multiple alignment of sequences with insertions. Proc. Natl. Acad. Sci. USA 2005, 102, 10557–10562. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z. PAML 4: Phylogenetic analysis by maximum likelihood. Mol. Biol. Evol. 2007, 24, 1586–1591. [Google Scholar] [CrossRef] [PubMed]
- Lynch, M.; Conery, J.S. The evolutionary fate and consequences of duplicate genes. Science 2000, 290, 1151–1155. [Google Scholar] [CrossRef] [PubMed]
- Langmead, B.; Trapnell, C.; Pop, M.; Salzberg, S.L. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Boil. 2009. [Google Scholar] [CrossRef] [PubMed]
- Roberts, A.; Pachter, L. Streaming fragment assignment for real-time analysis of sequencing experiments. Nat. Methods 2013, 10, 71–73. [Google Scholar] [CrossRef] [PubMed]
- Trapnell, C.; Williams, B.A.; Pertea, G.; Mortazavi, A.; Kwan, G.; Van Baren, M.J.; Salzberg, S.L.; Wold, B.J.; Pachter, L. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat. Biotechnol. 2010, 28, 511–515. [Google Scholar] [CrossRef] [PubMed]
- Clarke, K.; Gorley, R. PRIMER v5: User Manual/Tutorial; PRIMER-E: Plymouth, UK, 2001; p. 91. [Google Scholar]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Ning, P.; Wang, J.; Zhou, Y.; Gao, L.; Wang, J.; Gong, C. Adaptional evolution of trichome in Caragana korshinskii to natural drought stress on the Loess Plateau, China. Ecol. Evol. 2016, 6, 3786–3795. [Google Scholar] [CrossRef]
- Ng, P.C.; Henikoff, S. Predicting the effects of amino acid substitutions on protein function. Annu. Rev. Genomics Hum. Genet. 2006, 7, 61–80. [Google Scholar] [CrossRef] [PubMed]
- Li, S.F.; Milliken, O.N.; Pham, H.; Seyit, R.; Napoli, R.; Preston, J.; Koltunow, A.M.; Parish, R.W. The Arabidopsis MYB5 Transcription Factor Regulates Mucilage Synthesis, Seed Coat Development, and Trichome Morphogenesis. Plant Cell 2009, 21, 72–89. [Google Scholar] [CrossRef] [PubMed]
- Lescot, M.; Déhais, P.; Thijs, G.; Marchal, K.; Moreau, Y.; Van de Peer, Y.; Rouzé, P.; Rombauts, S. PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res. 2002, 30, 325–327. [Google Scholar] [CrossRef] [PubMed]
- Walford, S.A.; Wu, Y.; Llewellyn, D.J.; Dennis, E.S. GhMYB25-like: A key factor in early cotton fibre development. Plant J. 2011, 65, 785–797. [Google Scholar] [CrossRef] [PubMed]
- Ho, M.-H.; Saha, S.; Jenkins, J.N.; Ma, D.-P. Characterization and Promoter Analysis of a Cotton RING-Type Ubiquitin Ligase (E3) Gene. Mol. Biotechnol. 2010, 46, 140–148. [Google Scholar] [CrossRef] [PubMed]
- Ye, J.; Fang, L.; Zheng, H.; Zhang, Y.; Chen, J.; Zhang, Z.; Wang, J.; Li, S.; Li, R.; Bolund, L.; et al. Wego: A web tool for plotting go annotations. Nucleic Acids Res. 2006, 34, W293–W297. [Google Scholar] [CrossRef] [PubMed]
- Traw, M.B.; Bergelson, J. Interactive effects of jasmonic acid, salicylic acid, and gibberellin on induction of trichomes in Arabidopsis. Plant Physiol. 2003, 133, 1367–1375. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Sun, L.; Zhao, Y.; An, L.; Yan, A.; Meng, X.; Gan, Y. Zinc Finger Protein 6 (ZFP6) regulates trichome initiation by integrating gibberellin and cytokinin signaling in Arabidopsis thaliana. New Phytol. 2013, 198, 699–708. [Google Scholar] [CrossRef] [PubMed]
- Agren, J.; Schemske, D.W. The Cost of Defense against Herbivores–An Experimental-Study of Trichome Production In Brassica rapa. Am. Nat. 1993, 141, 338–350. [Google Scholar] [CrossRef] [PubMed]
P. euphratica | P. pruinosa | Fold Change (Log2) | Description | FDR |
---|---|---|---|---|
CCG018012.1 | PPR012085.1 | 12.09 | RING/U-box superfamily protein | 1.86 × 10−26 |
CCG022412.1 | PPR012270.1 | 11.58 | phloem protein 2-A9 | 1.79 × 10−6 |
CCG008934.1 | PPR034607.1 | 10.76 | NAD(P)-linked oxidoreductase superfamily protein | 1.80 × 10−9 |
CCG007202.1 | PPR022993.1 | 10.62 | cytochrome P450, family 76, subfamily C, polypeptide 1 | 2.93 × 10−11 |
CCG029108.1 | PPR006882.1 | 9.67 | NAD(P)-binding Rossmann-fold superfamily protein | 3.68 × 10−24 |
CCG018958.1 | PPR009435.1 | 7.10 | Integrase-type DNA-binding superfamily protein | 6.32 × 10−4 |
CCG015488.1 | PPR011118.1 | 5.68 | GDSL lipase 1 | 4.51 × 10-18 |
CCG018718.1 | PPR024143.1 | 5.51 | galacturonosyltransferase 4 | 1.74 × 10-5 |
CCG027592.1 | PPR008974.1 | 5.01 | kinase interacting family protein | 1.11 × 10-12 |
CCG031474.1 | PPR002601.2 | 4.63 | peroxisomal 3-ketoacyl-CoA thiolase 3 | 1.53 × 10−5 |
CCG011904.1 | PPR009473.1 | 4.54 | photosystem I light harvesting complex gene 2 | 8.72 × 10−7 |
CCG009982.1 | PPR018746.1 | 4.29 | UDP-glucosyl transferase 85A3 | 7.02 × 10−8 |
CCG023470.1 | PPR009451.1 | 3.99 | acyl-CoA oxidase 2 | 2.53 × 10−13 |
CCG029588.1 | PPR033783.1 | 3.60 | glycosyl hydrolase 9A1 | 4.76 × 10−5 |
CCG010637.1 | PPR021244.1 | 2.86 | cyclin-dependent kinase D1;1 | 2.52 × 10−4 |
CCG025296.1 | PPR010369.1 | −3.16 | heat stable protein 1 | 1.86 × 10−5 |
CCG025295.1 | PPR010368.1 | −3.72 | heat stable protein 1 | 1.76 × 10−5 |
CCG033444.1 | PPR004735.1 | −4.48 | wall-associated kinase 2 | 1.01 × 10−6 |
CCG004931.2 | PPR029777.1 | −4.51 | basic chitinase | 1.99 × 10−6 |
CCG023084.1 | PPR032261.1 | −5.46 | chitinase A | 7.02 × 10−6 |
CCG015551.1 | PPR027501.1 | −5.64 | myb domain protein 5 | 1.31 × 10−6 |
CCG020573.1 | PPR005272.1 | −5.73 | membrane bound O-acyl transferase family protein | 4.47 × 10−34 |
CCG025292.1 | PPR010363.1 | −6.09 | heat stable protein 1 | 2.35 × 10-7 |
CCG024468.1 | PPR019009.1 | −6.87 | osmotin 34 | 1.07 × 10−4 |
CCG025293.1 | PPR010365.1 | −7.26 | heat stable protein 1 | 1.84 × 10−16 |
CCG028100.1 | PPR009517.1 | −8.56 | Matrixin family protein | 1.534 × 10−13 |
CCG025849.2 | PPR014894.1 | −9.36 | glucuronidase 3 | 2.03 × 10−4 |
CCG009602.1 | PPR019463.1 | −9.37 | FAD/NAD(P)-binding oxidoreductase family protein | 7.89 × 10−7 |
CCG006080.1 | PPR019259.1 | −10.16 | amino acid transporter 1 | 1.95 × 10−8 |
CCG021502.1 | PPR031281.1 | −11.87 | Esterase/lipase/thioesterase family protein | 4.60 × 10−7 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, J.; He, X.; Bai, X.; Niu, Z.; Duan, B.; Chen, N.; Shao, X.; Wan, D. Genome-Wide Survey Reveals Transcriptional Differences Underlying the Contrasting Trichome Phenotypes of Two Sister Desert Poplars. Genes 2016, 7, 111. https://doi.org/10.3390/genes7120111
Ma J, He X, Bai X, Niu Z, Duan B, Chen N, Shao X, Wan D. Genome-Wide Survey Reveals Transcriptional Differences Underlying the Contrasting Trichome Phenotypes of Two Sister Desert Poplars. Genes. 2016; 7(12):111. https://doi.org/10.3390/genes7120111
Chicago/Turabian StyleMa, Jianchao, Xiaodong He, Xiaotao Bai, Zhimin Niu, Bingbing Duan, Ningning Chen, Xuemin Shao, and Dongshi Wan. 2016. "Genome-Wide Survey Reveals Transcriptional Differences Underlying the Contrasting Trichome Phenotypes of Two Sister Desert Poplars" Genes 7, no. 12: 111. https://doi.org/10.3390/genes7120111
APA StyleMa, J., He, X., Bai, X., Niu, Z., Duan, B., Chen, N., Shao, X., & Wan, D. (2016). Genome-Wide Survey Reveals Transcriptional Differences Underlying the Contrasting Trichome Phenotypes of Two Sister Desert Poplars. Genes, 7(12), 111. https://doi.org/10.3390/genes7120111