Study of the Genetic Etiology of Primary Ovarian Insufficiency: FMR1 Gene
Abstract
:1. Menopause
2. Primary Ovarian Insufficiency
- -
- Occult: normal levels of gonadotrophins, reduced fecundity and regular menses.
- -
- Biochemical: elevated levels of gonadotrophins, reduced fecundity and regular menses.
- -
- Overt: elevated levels of gonadotrophins, reduced fecundity and irregular or absent menses.
Etiology of POI
- -
- -
- FMR2 gene. It is also denominated AF4/FMR2 Family Member 2 (AFF2) and is localized in Xq28. Murray et al. in 1998 [20] found microdeletions in this gene as the cause of the 1.5% of the analyzed POI women.
- -
- BMP15, localized in Xp11.22, is part of the transforming growth factor β (TFG-β) family involved in cellular processes that occur during embryonic development and tissue formation. BMP15 protein is expressed specifically in the oocyte and its expression maintains high levels during follicular maturation and ovulation [21]. Mutations of this gene in mice and sheep have been identified that give rise to altered ovulation [21,22].
- -
- Growth differentiation factor 9 (GDF9), localized in 5q31.1, encodes a member of the transforming growth factor expressed in the oocyte and it plays its role in differentiation of the own oocyte and granulosa and thecal cells. Mutations in single nucleotide polymorphisms (SNPs) of this gene have been identified among patients with POI [23].
- -
- Luteinizing hormone receptor (LHR) and follicle-stimulating hormone receptor (FSHR) are localized in chromosome 2, in loci 2p21 and 2p21-p16 respectively. They encode receptors for gonadotropic hormones FSH and LH. These hormones are essential for the right function of menstrual activity. Both regulate the production of sex steroid hormones, estradiol and progesterone, by thecal and granulosa cells rounding the growing follicle. Alterations in these receptors could reduce the ability of these receptors to join these hormones, decreasing its activity.
- -
3. FMR1 Gene
3.1. Characteristics of the Gene
3.2. Alleles
- -
- Normal: It ranges from 5-4 CGG repeats with a mode in 30 repeats
- -
- -
- -
3.3. Transcriptional Regulation
3.4. Instability of CGG Repeat
- -
- Number of repeats: The risk of expansion increases with the length of the repeat. Normal alleles are usually transmitted from parent to offspring in a stable manner. Intermediate alleles can be unstable upon transmission, leading to a full mutation in several generations. However, some authors reported an expansion of an intermediate allele to a full mutation in only two generations [53,54,55]. Premutation alleles are associated to a high risk of expansion to full mutation in one generation [56].
- -
- Sex of the transmitting parent: Among normal and intermediate alleles, transmission from a male is less stable than from a female. However, when a premutation allele is transmitted by a female, CGG repeat suffers an expansion in almost all cases, although not always to full mutation. Moreover, among females, instability is at the same time proportional to the length of the repeat, so that alleles with more CGGs have a higher risk of expansion [56,57]. When premutation is transmitted by a male, the CGG repeat can expand, contract or remain unchanged, with the risk of expansion to full mutation being infrequent.
- -
- Purity of the repeat: CGG repeat is not pure; it is interrupted by an AGG trinucleotide. In the general population, CGG repeats are interrupted every 9–10 repeats [(CGG)9AGG(CGG)9AGG(CGG)n] [58]. Normal and intermediate alleles have usually two interruptions [59], whereas premutation alleles tend to have one or no AGGs at the 5′ end of the repeat [60,61,62]. The length of pure CGG repeats is also important. In 1994, Kunst and Warren [63] established that alleles with more than 24 pure CGG repeats will be unstably transmitted. More recently, it has been shown that there is a strong association between number of AGG interruptions and stability of the repeat [64,65].
- -
- “cis” elements: “cis” elements with the FMR1 gene can affect the stability of the repeat. The more studied are flanking microsatellites and (SNPs). Mutated alleles are in linkage disequilibrium with flanking microsatellite markers, like DXS548 and FRAXAC1 [66]. It has also been suggested that SNPs can proportionate an advance in the study of CGG repeat instability. A research from Brightwell et al. in 2002 [67] noted that association between SNP ATL1 (rs4949:A>G) and flanking microsatellite markers reflect the mutational history of CGG repeat expansion. Previous investigations of our group do not support this suggestion [68].
3.5. FMRP
3.6. Associated Pathologies
4. Fragile X-Associated Primary Ovarian Insufficiency (FXPOI)
4.1. POI and Premutation Alleles
4.2. Premutation Alleles among Women with POI
4.3. POI and Intermediate Alleles
4.4. Molecular and Cellular Mechanisms
5. Summary
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Sherman, S.L.; Taylor, K.; Allen, E. FMR1 premutation: A leading cause of inherited ovarian dysfunction. In Fragile Sites: New Discoveries and Changing Perspectives, 1st ed.; Arrieta, I., Penagarikano, O., Télez, M., Eds.; Nova Science Publishers, Inc.: New York, NY, USA, 2007; pp. 299–320. [Google Scholar]
- McKinlay, S.M.; Brambilla, D.J.; Posner, J.G. The normal menopause transition. Maturitas 1992, 14, 103–115. [Google Scholar] [CrossRef]
- Álvarez-García, E.; Labandeira, A. Estudio bioquímico de la menopausia y la perimenopausia. Ed. Cont. Lab. Clín. (SEQC) 2010, 13, 76–93. [Google Scholar]
- Amanvermez, R.; Tosun, M. An update on ovarian aging and ovarian reserve tests. Int. J. Fertil. Steril. 2016, 9, 411–415. [Google Scholar] [PubMed]
- Harlow, S.D.; Gass, M.; Hall, J.E.; Lobo, R.; Maki, P.; Rebar, R.W.; Sherman, S.; Sluss, P.M.; de Villiers, T.J. MBChB, FRCOG, FCOG (SA), for the STRAW + 10 Collaborative Group. Executive summary of the Stages of Reproductive Aging Workshop + 10: Addressing the unfinished agenda of staging reproductive aging. Menopause 2012, 19, 387–395. [Google Scholar] [CrossRef] [PubMed]
- Spanish Association for the Study of Menopause, AEEM. Available online: http://www.aeem.es/ (accessed on 10 June 2016).
- Welt, C.K. Primary ovarian insufficiency: A more accurate term for premature ovarian failure. Clin. Endocrinol. 2008, 68, 499–509. [Google Scholar] [CrossRef] [PubMed]
- De Vos, M.; Devroey, P.; Fauser, B.C.J.M. Primary ovarian insufficiency. Lancet 2010, 376, 911–921. [Google Scholar] [CrossRef]
- Panay, N.; Kalu, E. Management of premature ovarian failure. Best Pract. Res. Clin. Obstet. Gynaecol. 2009, 23, 129–140. [Google Scholar] [CrossRef] [PubMed]
- Soave, I.; Lo Monte, G.; Marci, R. POI: Premature ovarian insufficiency/pregnancy or infertility? N. Am. J. Med. Sci. 2013, 5, 71. [Google Scholar] [PubMed]
- Allen, E.G.; Grus, W.E.; Narayan, S.; Espinel, W.; Sherman, S.L. Approaches to identify genetic variants that influence the risk for onset of fragile X-associated primary ovarian insufficiency (FXPOI): A preliminary study. Front. Genet. 2014, 5, 260. [Google Scholar] [CrossRef] [PubMed]
- Sherman, S.L.; Curnow, E.C.; Easley, C.A.; Jin, P.; Hukema, R.K.; Tejada, M.I.; Willemsen, R.; Usdin, K. Use of model systems to understand the etiology of fragile X-associated primary ovarian insufficiency (FXPOI). J. Neurodev. Disord. 2014, 6, 26. [Google Scholar] [CrossRef] [PubMed]
- Hewlett, M.; Mahalingaiah, S. Update on primary ovarian insufficiency. Curr. Opin. Endocrinol. Diabetes Obes. 2015, 22, 483–489. [Google Scholar] [CrossRef] [PubMed]
- Daan, N.; Hoek, A.; Corpeleijn, E.; Eijkemans, M.J.C.; Broekmans, F.J.; Fauser, B.C.J.M.; Koster, M.P.H. Reproductive characteristics of women diagnosed with premature ovarian insufficiency. Reprod. Biomed. Online 2016, 32, 225–232. [Google Scholar] [CrossRef] [PubMed]
- Qin, Y.; Jiao, X.; Simpson, J.L.; Chen, Z.-J. Genetics of primary ovarian insufficiency: New developments and opportunities. Hum. Reprod. Update 2015, 21, 787–808. [Google Scholar] [CrossRef] [PubMed]
- Fortuño, C.; Labarta, E. Genetics of primary ovarian insufficiency: A review. J. Assist. Reprod. Genet. 2014, 31, 1573–1585. [Google Scholar] [CrossRef] [PubMed]
- Conway, G.S.; Hettiarachchi, S.; Murray, A.; Jacobs, P.A. Fragile X premutations in familial premature ovarian failure. Lancet 1995, 346, 309–310. [Google Scholar] [CrossRef]
- Sherman, S.L. Premature ovarian failure in the fragile X syndrome. Am. J. Med. Genet. 2000, 97, 189–194. [Google Scholar] [CrossRef]
- Pouresmaeili, F.; Fazeli, Z. Premature ovarian failure: A critical condition in the reproductive potential with various genetic causes. Int. J. Fertil. Steril. 2014, 8, 1–12. [Google Scholar] [PubMed]
- Murray, A.; Webb, J.; Grimley, S.; Conway, G.S.; Jacobs, P. Studies of FRAXA and FRAXE in women with premature ovarian failure. J. Med. Genet. 1998, 35, 637–640. [Google Scholar] [CrossRef] [PubMed]
- Su, Y.Q.; Wu, X.; O’Brien, M.J.; Pendola, F.L.; Denegre, J.N.; Matzuk, M.M.; Eppig, J.J. Synergistic roles of BMP15 and GDF9 in the development and function of the oocyte-cumulus cell complex in mice: Genetic evidence for an oocyte-granulosa cell regulatory loop. Dev. Biol. 2004, 276, 64–73. [Google Scholar] [CrossRef] [PubMed]
- McNatty, K.P.; Juengel, J.L.; Reader, K.L.; Lun, S.; Myllymaa, S.; Lawrence, S.B.; Western, A.; Meerasahib, M.F.; Mottershead, D.G.; Groome, N.P.; et al. Bone morphogenetic protein 15 and growth differentiation factor 9 co-operate to regulate granulosa cell function in ruminants. Reproduction 2005, 129, 481–487. [Google Scholar] [CrossRef] [PubMed]
- Palmer, J.S.; Zhao, Z.Z.; Hoekstra, C.; Hayward, N.K.; Webb, P.M.; Whiteman, D.C.; Martin, N.G.; Boomsma, D.I.; Duffy, D.L.; Montgomery, G.W. Novel variants in growth differentiation factor 9 in mothers of dizygotic twins. J. Clin. Endocrinol. Metab. 2006, 91, 4713–4716. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caburet, S.; Arboleda, V.A.; Llano, E.; Overbeek, P.A.; Barbero, J.L.; Oka, K.; Harrison, W.; Vaiman, D.; Ben-Neriah, Z.; García-Tuñón, I.; et al. Mutant cohesin in premature ovarian failure. N. Engl. J. Med. 2014, 370, 943–949. [Google Scholar] [CrossRef] [PubMed]
- Llano, E.; Gómez-H, L.; GarcÍa-Tuñón, I.; Sánchez-Martín, M.; Caburet, S.; Barbero, J.L.; Schimenti, J.C.; Veitia, R.A.; Pendas, A.M. STAG3 is a strong candidate gene for male infertility. Human Molecular Genetics. Hum. Mol. Genet. 2014, 23, 3421–3431. [Google Scholar] [CrossRef] [PubMed]
- Bachelot, A.; Rouxel, A.; Massin, N.; Dulon, J.; Courtillot, C.; Matuchansky, C.; Badachi, Y.; Fortin, A.; Paniel, B.; Lecuru, F.; et al. Phenotyping and genetic studies of 357 consecutive patients presenting with premature ovarian failure. Eur. J. Endocrinol. 2009, 161, 179–187. [Google Scholar] [CrossRef] [PubMed]
- Jin, M.; YiQi, Y.; Hefeng, H. An update on primary ovarian insufficiency. Sci. China Life Sci. 2012, 55, 677–686. [Google Scholar] [CrossRef] [PubMed]
- Forges, T.; Monnier-Barbarino, P.; Faure, G.C.; Bene, M.C. Autoinmunity and antigenic targets in ovarian pathology. Hum. Reprod. Update 2004, 10, 163–175. [Google Scholar] [CrossRef] [PubMed]
- Goswami, R.; Marwaha, R.K.; Goswami, D.; Gupta, N.; Ray, D.; Tomar, N.; Singh, S. Prevalence of thyroid autoimmunity in sporadic idiopathic hypoparathyroidism in comparison to type I diabetes and premature ovarian failure. J. Clin. Endocrinol. Metab. 2006, 91, 4256–4259. [Google Scholar] [CrossRef] [PubMed]
- Cox, L.; Liu, J.H. Primary ovarian insufficiency: An update. Int. J. Womens Health 2014, 6, 235–243. [Google Scholar] [PubMed]
- Verkerk, A.J.M.; Pieretti, M.; Sutcliffe, J.S.; Fu, Y.H.; Kuhl, D.P.A.; Pizzuti, A.; Reiner, O.; Richards, S.; Victoria, M.F.; Zhang, F.; et al. Identification of a gene FMR-1 containing a CGG repeat coincident with a breakpoint cluster region exhibiting length variation in fragile X syndrome. Cell 1991, 65, 905–914. [Google Scholar] [CrossRef]
- Yu, S.; Pritchard, M.; Kremer, E.; Lynch, M.; Nancarrow, J.; Baker, E.; Holman, K.; Mulley, J.C.; Warren, S.T.; Schlessinger, D.; et al. Fragile X genotype characterized by an unstable region of DNA. Science 1991, 252, 1179–1181. [Google Scholar] [CrossRef] [PubMed]
- Oberlé, I.; Rousseau, F.; Heitz, D.; Kretz, C.; Devys, D.; Hanauer, A.; Boué, J.; Bertheas, M.F.; Mandel, J.L. Instability of a 550-base pair DNA segment and abnormal methylation in fragile X syndrome. Science 1991, 252, 1097–1102. [Google Scholar] [CrossRef] [PubMed]
- Willemsen, R.; Levenga, J.; Oostra, B.A. CGG repeat in the FMR1 gene: Size matters. Clin. Genet. 2011, 80, 214–225. [Google Scholar] [CrossRef] [PubMed]
- Eichler, E.E.; Richards, S.; Gibbs, R.A.; Nelson, D.L. Fine structure of the human FMR1 gene. Hum. Mol. Genet. 1993, 2, 1147–1153. [Google Scholar] [CrossRef] [PubMed]
- Snow, K.; Doud, L.K.; Hagerman, R.; Pergolizzi, R.G.; Erster, S.H.; Thibideau, S.N. Analysis of a CGG sequence at the FMR1 locus in fragile X families and the general population. Am. J. Hum. Genet. 1993, 53, 1217–1228. [Google Scholar] [PubMed]
- Larsen, L.A.; Gronskov, K.; Norgaard-Pedersen, B.; Brondum-Nielsen, K.; Hasholt, L.; Vuust, J. High-throughput analysis of fragile X (CGG)n alleles in the normal and premutation range by PCR amplification and automated capillary electrophoresis. Hum. Genet. 1997, 100, 564–568. [Google Scholar] [CrossRef] [PubMed]
- Patsalis, P.C.; Sismani, C.; Hettinger, J.A.; Holden, J.; Lawson, J.S.; Chalifoux, M.; Wing, M.; Walker, M.; Leggo, J. Frequencies of “grey zone” and premutation size FMR1 CGG-repeat alleles in patients with developmental disability in Cyprus and Canada. Am. J. Med. Genet. 1999, 84, 195–197. [Google Scholar] [CrossRef]
- Dombrowski, C.; Levesque, M.L.; Morel, M.L.; Rouillard, P.; Morgan, K.; Rousseau, F. Premutation and intermediate-size FMR1 alleles in 10,572 males from the general population: Loss of an AGG interruption is a late event in the generation of fragile X syndrome alleles. Hum. Mol. Genet. 2002, 11, 371–378. [Google Scholar] [CrossRef] [PubMed]
- Hagerman, P.J. The fragile X prevalence paradox. J. Med. Genet. 2008, 45, 498–499. [Google Scholar] [CrossRef] [PubMed]
- Tassone, F. Newborn screening for fragile X syndrome. JAMA Neurol. 2014, 71, 355–359. [Google Scholar] [CrossRef] [PubMed]
- Hill, M.K.; Archibald, A.D.; Cohen, J.; Metcalfe, S.A. A systematic review of population screening for fragile X syndrome. Genet. Med. 2010, 12, 396–410. [Google Scholar] [CrossRef] [PubMed]
- Monaghan, K.G.; Lyon, E.; Spector, E.B.; American College of Medical Genetics and Genomics. ACMG Standards and Guidelines for fragile X testing: A revision to the disease-specific supplements to the Standards and Guidelines for Clinical Genetics Laboratories of the American College of Medical Genetics and Genomics. Genet. Med. 2013, 15, 575–586. [Google Scholar] [CrossRef] [PubMed]
- Genereux, D.P.; Laird, C.D. Why do fragile X carrier frequencies differ between Asian and non-Asian populations? Genes Genet. Syst. 2013, 88, 211–224. [Google Scholar] [CrossRef] [PubMed]
- Pastore, L.M.; Manichaikul, A.; Wang, X.Q.; Finkelstein, J.S. FMR1 CGG Repeats: Reference Levels and Race-Ethnic Variation in Women with Normal Fertility (Study of Women’s Health Across the Nation). Reprod. Sci. 2016, 23, 1225–1233. [Google Scholar] [CrossRef] [PubMed]
- Warren, S.T. The Epigenetics of fragile X syndrome. Cell Stem Cell 2007, 1, 488–489. [Google Scholar] [CrossRef] [PubMed]
- Peñagarikano, O.; Warren, S.T. FRAXA: The fragile X syndrome site. In Fragile Sites: New Discoveries and Changing Perspectives, 1st ed.; Arrieta, I., Penagarikano, O., Télez, M., Eds.; Nova Science Publishers, Inc.: New York, NY, USA, 2007; pp. 283–298. [Google Scholar]
- Pietrobono, R.; Tabolacci, E.; Zalfa, F.; Zito, I.; Terracciano, A.; Moscato, U.; Bagni, C.; Oostra, B.; Chiurazzi, P.; Neri, G. Molecular dissection of the events leading to inactivation of the FMR1 gene. Hum. Mol. Genet. 2005, 14, 267–277. [Google Scholar] [CrossRef] [PubMed]
- Pietrobono, R.; Pomponi, M.G.; Tabolacci, E.; Oostra, B.; Chiurazzi, P.; Neri, G. Quantitative analysis of DNA demethylation and transcriptional reactivation of the FMR1 gene in fragile X cells treated with 5-azadeoxycytidine. Nucleic Acids Res. 2002, 30, 3278–3285. [Google Scholar] [CrossRef] [PubMed]
- Oostra, B.A.; Willemsen, R. FMR1: A gene with three faces. Biochim. Biophys. Acta 2009, 1790, 467–477. [Google Scholar] [CrossRef] [PubMed]
- Pearson, C.E.; Edamura, K.N.; Cleary, J.G. Repeat instability: Mechanisms of dynamic mutations. Nat. Rev. Genet. 2005, 6, 729–742. [Google Scholar] [CrossRef] [PubMed]
- Brouwer, J.R.; Willemsen, R.; Oostra, B.A. Microsatellite repeat instability and neurological disease. BioEssays 2009, 31, 71–83. [Google Scholar] [CrossRef] [PubMed]
- Terracciano, A.; Pomponi, M.G.; Marino, G.M.; Chiurazzi, P.; Rinaldi, M.M.; Dobosz, M.; Neri, G. Expansion to full mutation of a FMR1 intermediate allele over two generations. Eur. J. Hum. Genet. 2004, 12, 333–336. [Google Scholar] [CrossRef] [PubMed]
- Zuñiga, A.; Juan, J.; Milá, M.; Guerrero, A. Expansion of an intermediate allele of the FMR1 gene in only two generations. Clin. Genet. 2005, 68, 471–473. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Carvajal, I.; López Posadas, B.; Pan, R.; Raske, C.; Hagerman, P.J.; Tassone, F. Expansion of an FMR1 grey-zone allele to a full mutation in two generations. J. Mol. Diagn. 2009, 11, 306–310. [Google Scholar] [CrossRef] [PubMed]
- Nolin, S.L.; Brown, W.T.; Glicksman, A.; Houck, G.E., Jr.; Gargano, A.D.; Sullivan, A.; Biancalana, V.; Bröndum-Nielsen, K.; Hjalgrim, H.; Holinski-Feder, E.; et al. Expansion of the fragile X CGG repeat in females with premutation or intermediate alleles. Am. J. Hum. Genet. 2003, 72, 454–464. [Google Scholar] [CrossRef] [PubMed]
- García-Alegría, E.; Ibáñez, B.; Mínguez, M.; Poch, M.; Valiente, A.; Sanz-Parra, A.; Martínez-Bouzas, C.; Beristain, E.; Tejada, M.I. Analysis of FMR1 gene expression in female premutation carriers using robust segmented linear regression models. RNA 2007, 13, 756–762. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Tang, K.; Law, H.Y.; Ng, I.S.; Lee, C.G.; Chong, S.S. FMR1 CGG repeat patterns and flanking haplotypes in three Asian populations and their relationship with repeat instability. Ann. Hum. Genet. 2006, 70, 784–796. [Google Scholar] [CrossRef] [PubMed]
- Oostra, B.A.; Willemsen, R. A fragile balance: FMR1 expression levels. Hum. Mol. Genet. 2003, 12, R249–R257. [Google Scholar] [CrossRef] [PubMed]
- Eichler, E.E.; Holden, J.J.; Popovich, B.W.; Reiss, A.L.; Snow, K.; Thibodeau, S.N.; Richards, C.S.; Ward, P.A.; Nelson, D. Length of uninterrupted CGG repeats determines instability in the FMR1 gene. Nat. Genet. 1994, 8, 88–94. [Google Scholar] [CrossRef] [PubMed]
- Zhong, N.; Yang, W.; Dobkin, C.; Brown, W.T. Fragile X gene instability: Anchoring AGGs and linked microsatellites. Am. J. Hum. Genet. 1995, 57, 351–361. [Google Scholar] [PubMed]
- Murray, A.; Macpherson, J.N.; Pound, M.; Sharrock, A.; Youings, S.A.; Dennis, N.R.; McKechnie, N.; Linehan, P.; Morton, N.E.; Jacobs, P.A. The role of size, sequence and haplotype in the stability of FRAXA and FRAXE alleles during transmission. Hum. Mol. Genet. 1997, 6, 173–184. [Google Scholar] [CrossRef] [PubMed]
- Kunst, C.B.; Warren, S.T. Cryptic and polar variation of the fragile X repeat could result in predisposing normal alleles. Cell 1994, 17, 853–861. [Google Scholar] [CrossRef]
- Yrigollen, C.M.; Martorell, L.; Durbin-Johnson, B.; Naudo, M.; Genoves, J.; Murgia, A.; Polli, R.; Zhou, L.; Barbouth, D.; Rupchock, A.; et al. AGG interruptions and maternal age affect FMR1 CGG repeat allele stability during transmission. J. Neurodev. Disord. 2014, 6, 24. [Google Scholar] [CrossRef] [PubMed]
- Nolin, S.L.; Glicksman, A.; Ersalesi, N.; Dobkin, C.; Brown, W.T.; Cao, R.; Blatt, E.; Sah, S.; Latham, G.J.; Hadd, A.G. Fragile X full mutation expansions are inhibited by one or more AGG interruptions in premutation carriers. Genet. Med. 2014, 17, 358–364. [Google Scholar] [CrossRef] [PubMed]
- Arrieta, I.; Peñagarikano, O.; Télez, M.; Ortega, B.; Flores, P.; Criado, B.; Veiga, I.; Peixoto, A.L.; Lostao, C.M. The FMR1 CGG repeat and linked microsatellite markers in two Basque valleys. Heredity 2003, 90, 206–211. [Google Scholar] [CrossRef] [PubMed]
- Brightwell, G.; Wycherley, R.; Waghorn, A. SNP genotyping using a simple and rapid single-tube modification of ARMS illustrated by analysis of 6 SNPs in a population of males with FRAXA repeat expansions. Mol. Cell. Probes 2002, 16, 297–305. [Google Scholar] [CrossRef] [PubMed]
- Barasoain, M.; Barrenetxea, G.; Ortiz-Lastra, E.; González, J.; Huerta, I.; Télez, M.; Ramírez, J.M.; Domínguez, A.; Gurtubay, P.; Criado, B.; et al. Single nucleotide polymorphism and FMR1 CGG repeat instability in two Basque valleys. Ann. Hum. Genet. 2012, 76, 110–120. [Google Scholar] [CrossRef] [PubMed]
- Schneider, A.; Hagerman, R.J.; Hessl, D. Fragile X syndrome: From gene to cognition. Dev. Disabil. Res. Rev. 2009, 15, 333–342. [Google Scholar] [CrossRef] [PubMed]
- Sidorov, M.S.; Auerbach, B.D.; Bear, M.F. Fragile X mental retardation protein and synaptic plasticity. Mol. Brain 2013, 6, 15. [Google Scholar] [CrossRef] [PubMed]
- Peñagarikano, O.; Muller, J.G.; Warren, S.T. The pathophysiology of Fragile X Syndrome. Annu. Rev. Genom. Hum. Genet. 2007, 8, 109–129. [Google Scholar] [CrossRef] [PubMed]
- Ashley, C.T., Jr.; Wilkinson, K.D.; Reines, D.; Warren, S.T. FMR1 protein: Conserved RNP family domains and selective RNA binding. Science 1993, 262, 563–566. [Google Scholar] [CrossRef] [PubMed]
- Adinolfi, S.; Ramos, A.; Martin, S.R.; Dal Piaz, F.; Pucci, P.; Bardoni, B.; Mandel, J.L.; Pastore, A. The N-terminus of the Fragile X mental retardation protein contains a novel domain involved in dimerization and RNA binding. Biochemistry 2003, 42, 10437–10444. [Google Scholar] [CrossRef] [PubMed]
- Garber, K.; Smith, K.T.; Reines, D.; Warren, S.T. Transcription, translation and fragile X syndrome. Curr. Opin. Genet. Dev. 2006, 16, 270–275. [Google Scholar] [CrossRef] [PubMed]
- Brown, V.; Jin, P.; Ceman, S.; Darnell, J.C.; O’Donell, W.T.; Tenenbaum, S.A.; Jin, X.K.; Feng, Y.; Wilkinson, K.D.; Keene, J.D.; et al. Microarray identification of FMRP-associated brain mRNAs and altered mRNA translational profiles in Fragile X syndrome. Cell 2001, 107, 477–487. [Google Scholar] [CrossRef]
- Darnell, J.C.; Jensen, K.B.; Jin, P.; Brown, V.; Warren, S.T.; Darnell, R.B. Fragile X mental retardation protein targets G quartet mRNAs important for neuronal function. Cell 2001, 107, 489–499. [Google Scholar] [CrossRef]
- Huber, K.M. The fragile X-cerebellum connection. Trends Neurosci. 2006, 29, 183–185. [Google Scholar] [CrossRef] [PubMed]
- Bear, M.F.; Huber, K.M.; Warren, S.T. The mGluR theory of Fragile X mental retardation. Trends Neurosci. 2004, 27, 370–377. [Google Scholar] [CrossRef] [PubMed]
- Yan, Q.J.; Rammal, M.; Tranfaglia, M.; Bauchwitz, R.P. Suppression of two major Fragile X syndrome mouse model phenotypes by the mGluR5 antagonist MPEP. Neuropharmacology 2005, 49, 1053–1066. [Google Scholar] [CrossRef] [PubMed]
- Tassone, F.; Hagerman, R.J.; Taylor, A.K.; Gane, L.W.; Godfrey, T.E.; Hagerman, P.J. Elevated levels of FMR1 mRNA in carrier males: A new mechanism of involvement in the fragile-X syndrome. Am. J. Hum. Genet. 2000, 66, 6–15. [Google Scholar] [CrossRef] [PubMed]
- Tassone, F.; Hagerman, R.J.; Chamberlain, W.D.; Hagerman, P.J. Transcription of the FMR1 gene in individuals with fragile X syndrome. Am. J. Med. Genet. 2000, 97, 195–203. [Google Scholar] [CrossRef]
- Tassone, F.; Hagerman, P.J. Expression of the FMR1 gene. Cytogenet. Genome Res. 2003, 100, 124–128. [Google Scholar] [CrossRef] [PubMed]
- Tassone, F.; De Rubeis, S.; Carosi, C.; La Fata, G.; Serpa, G.; Raske, C.; Willemsen, R.; Hagerman, P.J.; Bagni, C. Differential usage of transcriptional start sites and polyadenylation sites in FMR1 premutation alleles. Nucleic Acids Res. 2011, 39, 6172–6185. [Google Scholar] [CrossRef] [PubMed]
- Martin, J.; Bell, J. A pedigree of mental defect showing sex linkage. Arch. Neurol. Psychiatry 1943, 6, 154–157. [Google Scholar] [CrossRef]
- Lehrke, R.G. X-linked mental retardation and verbal disability. Birth Defects Orig. Artic. Ser. 1974, 10, 1–100. [Google Scholar] [PubMed]
- Lubs, H.A. A marker X chromosome. Am. J. Hum. Genet. 1969, 21, 231–244. [Google Scholar] [PubMed]
- Harrison, C.J.; Jack, E.M.; Allen, T.D.; Harris, R. The fragile X: A scanning electron microscope study. J. Med. Genet. 1983, 20, 280–285. [Google Scholar] [CrossRef] [PubMed]
- Richards, B.W.; Sylvester, P.E.; Brooker, C. Fragile X linked mental retardation: The Martin Bell syndrome. J. Ment. Defic. Res. 1981, 25, 253–256. [Google Scholar] [CrossRef] [PubMed]
- Sherman, S.L.; Morton, N.E.; Jacobs, P.A.; Turner, G. The marker (X) syndrome: A cytogenetic and genetic analysis. Ann. Hum. Genet. 1984, 48, 21–37. [Google Scholar] [CrossRef] [PubMed]
- Richards, R.I.; Sutherland, G.R. Simple repeat DNA is not replicated simply. Nat. Genet. 1994, 6, 114–116. [Google Scholar] [CrossRef] [PubMed]
- Tabolacci, E.; Moscato, U.; Zalfa, F.; Bagni, C.; Chiurazzi, P.; Neri, G. Epigenetic analysis reveals a euchromatic configuration in the FMR1 unmethylated full mutations. Eur. J. Hum. Genet. 2008, 16, 1487–1498. [Google Scholar] [CrossRef] [PubMed]
- Nolin, S.L.; Lewis, F.A., III; Ye, L.L.; Houck, G.E., Jr.; Glicksman, A.E.; Limprasert, P.; Li, S.Y.; Zhong, N.; Ashley, A.E.; Feingold, E.; et al. Familial transmission of the FMR1 CGG repeat. Am. J. Hum. Genet. 1996, 59, 1252–1261. [Google Scholar] [PubMed]
- Gedeon, A.K.; Baker, E.; Robinson, H.; Partington, M.W.; Gross, B.; Manca, A.; Korn, B.; Poustka, A.; Yu, S.; Sutherland, G.R.; et al. Fragile X syndrome without CCG amplification has an FMR1 deletion. Nat. Genet. 1992, 1, 341–344. [Google Scholar] [CrossRef] [PubMed]
- De Boulle, K.; Verkerk, A.J.M.H.; Rreyniers, E.; Vits, L.; Hendrickx, J.; Van Roy, B.; Van Den Bos, F.; De Graaf, E.; Oostra, B.A.; Willems, P.J. A point mutation in the FMR-1 gene associated with the Fragile X mental retardation. Nat. Genet. 1993, 3, 31–35. [Google Scholar] [CrossRef] [PubMed]
- Handt, M.; Epplen, A.; Hoffjan, S.; Mese, K.; Epplen, J.T.; Dekomien, G. Point mutation frequency in the FMR1 gene as revealed by fragile X syndrome screening. Mol. Cell. Probes 2014, 28, 279–283. [Google Scholar] [CrossRef] [PubMed]
- Myrick, L.K.; Nakamoto-Kinoshita, M.; Lindor, N.M.; Kirmani, S.; Cheng, X.; Warren, S.T. Fragile X syndrome due to a missense mutation. Eur. J. Hum. Genet. 2014, 22, 1185–1189. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Carvajal, I.; Walichiewicz, P.; Xiaosen, X.; Pan, R.; Hagerman, P.J.; Tassone, F. Screening for expanded alleles of the FMR1 gene in blood spots from newborn males in a Spanish population. J. Mol. Diagn. 2009, 11, 324–329. [Google Scholar] [CrossRef] [PubMed]
- Hagerman, R.J.; Berry-Kravis, E.; Kaufmann, W.E.; Ono, M.Y.; Tartaglia, N.; Lachiewicz, A.; Kronk, R.; Delahunty, C.; Hessl, D.; Visootsak, J.; et al. Advances in the treatment of fragile X syndrome. Pediatrics 2009, 123, 378–390. [Google Scholar] [CrossRef] [PubMed]
- Besterman, A.D.; Wilke, S.A.; Mulligan, T.E.; Allison, S.C.; Hagerman, R.; Seritan, A.L.; Bourgeois, A. Towards an understanding of neuropsychiatric manifestations in fragile X premutation carriers. Future Neurol. 2014, 9, 227–239. [Google Scholar] [CrossRef] [PubMed]
- Hagerman, R.J.; Leehey, M.; Heinrichs, W.; Tassone, F.; Wilson, R.; Hills, J.; Grigsby, J.; Gage, B.; Hagerman, P.J. Intention tremor, parkinsonism and generalized brain atrophy in male carriers of fragile X. Neurology 2001, 57, 127–130. [Google Scholar] [CrossRef] [PubMed]
- Greco, C.M.; Hagerman, R.J.; Tassone, F.; Chudley, A.E.; Del Bigio, M.R.; Jacquemont, S.; Leehey, P.; Hagerman, P.J. Neuronal intranuclear inclusions in a new cerebellar tremor/ataxia syndrome among fragile X carriers. Brain 2002, 125 Pt 8, 1760–1771. [Google Scholar] [CrossRef] [PubMed]
- Greco, C.M.; Berman, R.F.; Martin, R.M.; Tassone, F.; Schwartz, P.H.; Chang, A.; Trapp, B.D.; Iwahashi, C.; Brunberg, J.; Grigsby, J.; et al. Neuropathology of fragile X-associated tremor/ataxia syndrome (FXTAS). Brain 2006, 129, 243–255. [Google Scholar] [CrossRef] [PubMed]
- Willemsen, R.; Hoogeveen-Westerveld, M.; Reis, S.; Holstege, J.; Severijnen, L.A.; Nieuwenhuizen, I.M.; Schrier, M.; van Unen, L.; Tassone, F.; Hoogeveen, A.T.; et al. The FMR1 CGG repeat mouse displays ubiquitin-positive intranuclear neuronal inclusions; implications for the cerebellar tremor/ataxia syndrome. Hum. Mol. Genet. 2003, 12, 949–959. [Google Scholar] [CrossRef] [PubMed]
- Tassone, F.; Adams, J.; Berry-Kravis, E.M.; Cohen, S.S.; Brusco, A.; Leehey, M.A.; Li, L.; Hagerman, R.J.; Hagerman, P.J. CGG repeat length correlates with age of onset of motor signs of the fragile C-associated tremor/ataxia syndrome (FXTAS). Am. J. Med. Genet. B Neuropsychiatr. Genet. 2007, 144, 566–569. [Google Scholar] [CrossRef] [PubMed]
- Hagerman, R.J.; Hagerman, P.J. The fragile x premutation: Into the phenotypic fold. Curr. Opin. Genet. Dev. 2002, 12, 278–283. [Google Scholar] [CrossRef]
- Hall, D.; Tassone, F.; Klepitskaya, O.; Leehey, M. Fragile X-associated tremor ataxia syndrome in FMR1 gray zone allele carriers. Mov. Disord. 2012, 27, 296–300. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Winarni, T.; Zhang, L.; Tassone, F.; Hagerman, R. Fragile X-associated tremor/ataxia syndrome (FXTAS) in grey zone carriers. Clin. Genet. 2013, 84, 74–77. [Google Scholar] [CrossRef] [PubMed]
- Hagerman, R.J.; Hagerman, P.J. Fragile-X-associated tremor/ataxia syndrome (FXTAS) in females with the FMR1 premutation. Am. J. Hum. Genet. 2004, 74, 1051–1056. [Google Scholar] [CrossRef] [PubMed]
- Cronister, A.; Schreiner, R.; Wittenberger, M.; Amiri, K.; Harris, K.; Hagerman, R.J. Heterozygous fragile X female: Historical, physical, cognitive and cytogenetic features. Am. J. Med. Genet. 1991, 38, 269–274. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, C.E.; Dean, J.; Howard-Peebles, P.N.; Bugge, M.; Mikkelsen, M.; Tommerup, N.; Hull, C.; Hagerman, R.; Holden, J.J.; Stevenson, R.E. Obstetrical and gynecological complications in fragile X carriers: A multicenter study. Am. J. Med. Genet. 1994, 51, 400–402. [Google Scholar] [CrossRef] [PubMed]
- Allingham-Hawkins, D.J.; Babul-Hirji, R.; Chitayat, D.; Holden, J.J.; Yang, K.T.; Lee, C.; Hudson, R.; Gorwill, H.; Nolin, S.L.; Glicksman, A.; et al. Fragile X premutation is a significant risk factor for premature ovarian failure: The International Collaborative POF in Fragile X study—Preliminary data. Am. J. Med. Genet. 1999, 83, 322–325. [Google Scholar] [CrossRef]
- Vianna-Morgante, A.M.; Costa, S.S.; Pavanello, R.C.; Otto, P.A.M. Mingroni-Netto, R.C. Premature ovarian failure (POF) in Brazilian fragile X carriers. Genet. Mol. Biol. 1999, 22, 471–474. [Google Scholar] [CrossRef]
- Murray, A.; Ennis, S.; MacSwiney, F.; Webb, J.; Morton, N.E. Reproductive and menstrual history of females with fragile X expansions. Eur. J. Hum. Genet. 2000, 8, 247–252. [Google Scholar] [CrossRef] [PubMed]
- Mallolas, J.; Duran, M.; Sánchez, A.; Jimenez, D.; Castellvi-Bel, S.; Rife, M.; Milá, M. Implications of the FMR1 gene in menopause: Study of 147 Spanish women. Menopause 2001, 8, 106–110. [Google Scholar] [CrossRef] [PubMed]
- Hundscheid, R.D.; Smits, A.O.; Thomas, C.M.; Kiemeney, L.A.; Braat, D.D. Female carriers of fragile X premutations have no increased risk for additional diseases other than premature ovarian failure. Am. J. Med. Genet. 2003, 117A, 6–9. [Google Scholar] [CrossRef] [PubMed]
- Sullivan, A.K.; Marcus, M.; Epstein, M.P.; Allen, E.G.; Anido, A.E.; Paquin, J.J.; Yadav-Shah, M.; Sherman, S.L. Association of FMR1 repeat size with ovarian dysfunction. Hum. Reprod. 2005, 20, 402–412. [Google Scholar] [CrossRef] [PubMed]
- Wittenberger, M.D.; Hagerman, R.J.; Sherman, S.L.; McConkie-Rosell, A.; Welt, C.K.; Rebar, R.W.; Corrigan, E.C.; Simpson, J.L.; Nelson, L.M. The FMR1 premutation and reproduction. Fertil. Steril. 2007, 87, 456–465. [Google Scholar] [CrossRef] [PubMed]
- Streuli, I.; Fraisse, T.; Ibecheole, V.; Moix, I.; Morris, M.A.; de Ziegler, D. Intermediate and premutation FMR1 alleles in women with occult primary ovarian insufficiency. Fertil. Steril. 2009, 92, 464–470. [Google Scholar] [CrossRef] [PubMed]
- Allen, E.G.; Sullivan, A.K.; Marcus, M.; Small, C.; Dominguez, C.; Epstein, M.P.; Charen, K.; He, W.; Taylor, K.C.; Sherman, S.L. Examination of reproductive aging milestones among women who carry the FMR1 premutation. Hum. Reprod. 2007, 22, 2142–2152. [Google Scholar] [CrossRef] [PubMed]
- Ennis, S.; Ward, D.; Murray, A. A Non-linear association between CGG repeat number and age of menopause in FMR1 premutation carriers. Eur. J. Hum. Genet. 2006, 14, 253–255. [Google Scholar] [CrossRef] [PubMed]
- Hundscheid, R.D.; Sistermans, E.A.; Thomas, C.M.; Braat, D.D.; Straatman, H.; Kiemeney, L.A.; Oostra, B.A.; Smits, A.P. Imprinting effect in premature ovarian failure confined to paternally inherited fragile X premutations. Am. J. Hum. Genet. 2000, 66, 413–418. [Google Scholar] [CrossRef] [PubMed]
- Van Esch, H.; Buekenhout, L.; Race, V.; Matthijs, G. Very early premature ovarianfailure in two sisters compound heterozygous for the FMR1 premutation. Eur. J. Med. Genet. 2009, 52, 37–40. [Google Scholar] [CrossRef] [PubMed]
- Hundscheid, R.D.; Braat, D.D.; Kiemeney, L.A.; Smits, A.P.; Thomas, C.M. Increased serum FSH in female fragile X premutation carriers with either regular menstrual cycles or on oral contraceptives. Hum. Reprod. 2001, 16, 457–462. [Google Scholar] [CrossRef] [PubMed]
- Murray, A.; Webb, J.; MacSwiney, F.; Shipley, E.L.; Morton, N.E.; Conway, G.S. Serum concentrations of follicle stimulating hormone may predict premature ovarian failure in FRAXA premutation women. Hum. Reprod. 1999, 14, 1217–1218. [Google Scholar] [CrossRef] [PubMed]
- Welt, C.K.; Smith, P.C.; Taylor, A.E. Evidence of early ovarian aging in fragile X premutation carriers. J. Clin. Endocrinol. Metab. 2004, 89, 4569–4574. [Google Scholar] [CrossRef] [PubMed]
- De Caro, J.J.; Dominguez, C.; Sherman, S.L. Reproductive health of adolescent girls who carry the FMR1 premutation: Expected phenotype based on current knowledge of fragile x-associated primary ovarian insufficiency. Ann. N. Y. Acad. Sci. 2008, 1135, 99–111. [Google Scholar] [CrossRef] [PubMed]
- Bretherick, K.L.; Fluker, M.R.; Robinson, W.P. FMR1 repeat sizes in the gray zone and high end of the normal range are associated with premature ovarian failure. Hum. Genet. 2005, 117, 376–382. [Google Scholar] [CrossRef] [PubMed]
- Bodega, B.; Bione, S.; Dalprà, L.; Toniolo, D.; Ornaghi, F.; Vegetti, W.; Ginelli, E.; Marozzi, A. Influence of intermediate and uninterrupted FMR1 CGG expansions in premature ovarian failure manifestation. Hum. Reprod. 2006, 21, 952–957. [Google Scholar] [CrossRef] [PubMed]
- Pastore, L.M.; Young, S.L.; Baker, V.L.; Karns, L.B.; Williams, C.D.; Silverman, L.M. Elevated prevalence of 35–44 FMR1 trinucleotide repeats in women with diminished ovarian reserve. Reprod. Sci. 2012, 19, 1226–1231. [Google Scholar] [CrossRef] [PubMed]
- Karimov, C.B.; Moragianni, V.A.; Cronister, A.; Srouji, S.; Petrozza, J.; Racowsky, C.; Ginsburg, E.; Thornton, K.L.; Welt, C.K. Increased frequency of occult fragile X-associated primary ovarian insufficiency in infertile women with evidence of impaired ovarian function. Hum. Reprod. 2011, 26, 2077–2083. [Google Scholar] [CrossRef] [PubMed]
- Bennett, C.E.; Conway, G.S.; Macpherson, J.N.; Jacobs, P.A.; Murray, A. Intermediate sized CGG repeat are not a common cause of idiopathic premature ovarian failure. Hum. Reprod. 2010, 25, 1335–1338. [Google Scholar] [CrossRef] [PubMed]
- Murray, A.; Schoemaker, M.J.; Bennett, C.E.; Ennis, S.; Macpherson, J.N.; Jones, M.; Morris, D.H.; Orr, N.; Ashworth, A.; Jacobs, P.A.; et al. Population-based estimates of the prevalence of FMR1 expansion mutations in women with early menopause and primary ovarian insufficiency. Genet. Med. 2014, 16, 19–24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Voorhuis, M.; Onland-Moret, N.C.; Janse, F.; Ploos van Amstel, H.K.; Goverde, A.J.; Lambalk, C.B.; Laven, J.S.; van der Schouw, Y.T.; Broekmans, F.J.; Fauser, B.C. Dutch Primary Ovarian Insufficiency Consortium. The significance of fragile X mental retardation gene 1 CGG repeat sizes in the normal and intermediate range in women with primary ovarian insufficiency. Hum. Reprod. 2014, 29, 1585–1593. [Google Scholar] [CrossRef] [PubMed]
- Tejada, M.I.; García-Alegría, E.; Bilbao, A.; Martínez-Bouzas, C.; Beristain, E.; Poch, M.; Ramos-Arroyo, M.A.; López, B.; Fernández-Carvajal, I.; Ribate, M.P.; et al. Analysis of the molecular parameters that could predict the risk of manifesting premature ovarian failure in female premutation carriers of fragile X syndrome. Menopause 2008, 15, 945–949. [Google Scholar] [CrossRef] [PubMed]
- Schuettler, J.; Peng, Z.; Zimmer, J.; Sinn, P.; von Hagens, C.; Strowitzki, T.; Vogt, P.H. Variable expression of the Fragile X Mental Retardation I (FMR1) gene in patients with premature ovarian failure syndrome is not dependent on number of (CGG)n triplets in exon I. Hum. Reprod. 2011, 26, 1241–1251. [Google Scholar] [CrossRef] [PubMed]
- Lu, C.; Lin, L.; Tan, H.; Wu, H.; Sherman, S.L.; Gao, F.; Jin, P.; Chen, D. Fragile X premutation RNA is sufficient to cause primary ovarian insufficiency in mice. Hum. Mol. Genet. 2012, 21, 5039–5047. [Google Scholar] [CrossRef] [PubMed]
- Hoffman, G.E.; Le, W.W.; Entezam, A.; Otsuka, N.; Tong, Z.B.; Nelson, L.; Flaws, J.A.; McDonald, J.H.; Jafar, S.; Usdin, K. Ovarian abnormalities in a mouse model of fragile X primary ovarian insufficiency. J. Histochem. Cytochem. 2012, 60, 439–456. [Google Scholar] [CrossRef] [PubMed]
- Rife, M.; Nadal, A.; Mila, M.; Willemsen, R. Immunohistochemical FMRP studies in a full mutated female fetus. Am. J. Med. Genet. 2004, 124A, 129–132. [Google Scholar] [CrossRef] [PubMed]
- Elizur, S.E.; Lebovitz, O.; Derech-Haim, S.; Dratviman-Storobinsky, O.; Feldman, B.; Dor, J.; Orvieto, R.; Cohen, Y. Elevated levels of FMR1 mRNA in granulosa cells are associated with low ovarian reserve in FMR1 premutation carriers. PLoS ONE 2014, 9, e105121. [Google Scholar] [CrossRef] [PubMed]
- Gleicher, N.; Weghofer, A.; Oktay, K.; Barad, D.H. Relevance of triple CGG repeats in the FMR1 gene to ovarian reserve. Reprod. Biomed. Online 2009, 19, 385–390. [Google Scholar] [CrossRef]
- Gleicher, N.; Weghofer, A.; Barad, D.H. Ovarian reserve determinations suggest new function of FMR1 (fragile X gene) in regulating ovarian ageing. Reprod. Biomed. Online 2010, 20, 768–775. [Google Scholar] [CrossRef] [PubMed]
Gene | Localization |
---|---|
BMP15—Bone morphogenetic protein 15 | Xp11.22 |
AR—Androgen receptor | Xq12 |
FOXO4—Forkhead box O4 | Xq13.1 |
POF1B—Premature ovarian failure, 1B | Xq21.2 |
DACH2—Dachshund family transcription factor 2 | Xq21.3 |
PGRMC1—Progesterone receptor membrane component 1 | Xq22-q24 |
FMR1—Fragile X mental retardation 1 | Xq27.3 |
FMR2—Fragile X mental retardation 2 | Xq28 |
FIGLA—Folliculogenesis specific bHLH transcription factor | 2p13.3 |
LHR—Luteinizing hormone receptor | 2p21 |
FSHR—Follicle-stimulating hormone receptor | 2p21-p16 |
INHA—Inhibin A | 2q35 |
GDF9—Growth differentiation factor 9 | 5q31.1 |
FOXO3a—Forkhead box O3 | 6q21 |
NOBOX—Newborn ovary homeobox gene | 7q35 |
STAG3—Stromal Antigen 3 | 7q22.1 |
AMHR2—Anti-Mullerian hormone receptor, type II | 12q13 |
FOXO1—Forkhead box O1 | 13q14.1 |
SPO11—Meiotic protein covalently bound to DSB | 20q13.31 |
DMC1—DNA meiotic recombinase 1 | 22q13.1 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barasoain, M.; Barrenetxea, G.; Huerta, I.; Télez, M.; Criado, B.; Arrieta, I. Study of the Genetic Etiology of Primary Ovarian Insufficiency: FMR1 Gene. Genes 2016, 7, 123. https://doi.org/10.3390/genes7120123
Barasoain M, Barrenetxea G, Huerta I, Télez M, Criado B, Arrieta I. Study of the Genetic Etiology of Primary Ovarian Insufficiency: FMR1 Gene. Genes. 2016; 7(12):123. https://doi.org/10.3390/genes7120123
Chicago/Turabian StyleBarasoain, Maitane, Gorka Barrenetxea, Iratxe Huerta, Mercedes Télez, Begoña Criado, and Isabel Arrieta. 2016. "Study of the Genetic Etiology of Primary Ovarian Insufficiency: FMR1 Gene" Genes 7, no. 12: 123. https://doi.org/10.3390/genes7120123
APA StyleBarasoain, M., Barrenetxea, G., Huerta, I., Télez, M., Criado, B., & Arrieta, I. (2016). Study of the Genetic Etiology of Primary Ovarian Insufficiency: FMR1 Gene. Genes, 7(12), 123. https://doi.org/10.3390/genes7120123