Epigenetic Biomarkers of Preterm Birth and Its Risk Factors
Abstract
:1. Introduction
2. Preterm Birth
2.1. Health Burden of Preterm Birth
2.2. Epigenetics and Preterm Birth
3. Developmental Origins of Health and Disease
4. Nutrition
4.1. Maternal BMI
4.2. Folate
4.3. Vitamin D
5. Substance Use
5.1. Maternal Smoking during Pregnancy
5.2. Alcohol
6. Prenatal Stress
Support during Pregnancy
7. Health Disparities
Maternal Weathering
8. Accelerated Aging
8.1. Telomere Length and Cellular Senescence
8.2. Epigenetic Clock
9. Conclusions and Recommendations
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations
25-OHD | 1,25-dihydroxyvitamin D |
ACTH | adrenocorticotrophin |
AED | Antiepileptic drugs |
BMI | Body Mass Index |
CBP | Cortisol binding protein |
CpG | Cytosine Guanine dinucleotide |
CRH | Corticotrophin-releasing hormone |
DMR | Differentially methylated region |
DNAm age | DNA methylation age |
EWAS | Epigenome-wide association study |
GFI1 | Growth factor independent 1 transcription repressor |
HPA axis | Hypothalamic-pituitary-adrenal axis |
HSD11B2 | Hydroxysteroid dehydrogenase type 2 |
IGF2 | Insulin-like growth factor 2 |
IPV | Intimate partner violence |
LBW | Low birth weight |
MECP2 | Methyl CpG binding protein 2 |
MEST | Mesoderm Specific Transcript |
miRNA | microRNA |
NR3C1 | Glucocorticoid receptor |
PEG3 | Paternally Expressed 3 |
pPROM | Preterm, premature rupture of membranes |
PSS | Perceived stress scale |
PTB | Preterm birth |
RAR | Retinoic acid receptor |
SES | Socioeconomic status |
VDBP | Vitamin D Binding Protein |
VDR | Vitamin D Receptor |
VTRNA2-1 | Vault RNA 2-1 |
References
- World Health Organization. WHO Recommendations on Interventions to Improve Preterm Birth Outcomes; WHO: Geneva, Switzerland, 2015. [Google Scholar]
- Alhusen, J.L.; Ray, E.; Sharps, P.; Bullock, L. Intimate partner violence during pregnancy: Maternal and neonatal outcomes. J. Women’s Health 2015, 24, 100–106. [Google Scholar] [CrossRef] [PubMed]
- Aliyu, M.H.; Lynch, O.; Wilson, R.E.; Alio, A.P.; Kristensen, S.; Marty, P.J.; Whiteman, V.E.; Salihu, H.M. Association between tobacco use in pregnancy and placenta-associated syndromes: A population-based study. Arch. Gynecol. Obstet. 2011, 283, 729–734. [Google Scholar] [CrossRef] [PubMed]
- Antipova, A.; Curtis, A. The post-disaster negative health legacy: Pregnancy outcomes in louisiana after hurricane andrew. Disasters 2015, 39, 665–686. [Google Scholar] [CrossRef] [PubMed]
- Duthie, L.; Reynolds, R.M. Changes in the maternal hypothalamic-pituitary-adrenal axis in pregnancy and postpartum: Influences on maternal and fetal outcomes. Neuroendocrinology 2013, 98, 106–115. [Google Scholar] [CrossRef] [PubMed]
- El Kady, D.; Gilbert, W.M.; Xing, G.; Smith, L.H. Maternal and neonatal outcomes of assaults during pregnancy. Obstet. Gynecol. 2005, 105, 357–363. [Google Scholar] [CrossRef] [PubMed]
- Emes, R.D.; Clifford, H.; Haworth, K.E.; Farrell, W.E.; Fryer, A.A.; Carroll, W.D.; Ismail, K.M. Antiepileptic drugs and the fetal epigenome. Epilepsia 2013, 54, e16–e19. [Google Scholar] [CrossRef] [PubMed]
- Smith, A.K.; Conneely, K.N.; Newport, D.J.; Kilaru, V.; Schroeder, J.W.; Pennell, P.B.; Knight, B.T.; Cubells, J.C.; Stowe, Z.N.; Brennan, P.A. Prenatal antiepileptic exposure associates with neonatal DNA methylation differences. Epigenetics Off. J. DNA Methylation Soc. 2012, 7, 458–463. [Google Scholar] [CrossRef] [PubMed]
- Sharp, G.C.; Lawlor, D.A.; Richmond, R.C.; Fraser, A.; Simpkin, A.; Suderman, M.; Shihab, H.A.; Lyttleton, O.; McArdle, W.; Ring, S.M.; et al. Maternal pre-pregnancy bmi and gestational weight gain, offspring DNA methylation and later offspring adiposity: Findings from the avon longitudinal study of parents and children. Int. J. Epidemiol. 2015, 44, 1288–1304. [Google Scholar] [PubMed]
- Shenker, N.S.; Polidoro, S.; van Veldhoven, K.; Sacerdote, C.; Ricceri, F.; Birrell, M.A.; Belvisi, M.G.; Brown, R.; Vineis, P.; Flanagan, J.M. Epigenome-wide association study in the european prospective investigation into cancer and nutrition (epic-turin) identifies novel genetic loci associated with smoking. Hum. Mol. Genet. 2013, 22, 843–851. [Google Scholar] [CrossRef] [PubMed]
- Simpkin, A.J.; Suderman, M.; Gaunt, T.R.; Lyttleton, O.; McArdle, W.L.; Ring, S.M.; Tilling, K.; Smith, G.D.; Relton, C.L. Longitudinal analysis of DNA methylation associated with birth weight and gestational age. Hum. Mol. Genet. 2015, 24, 3752–3763. [Google Scholar] [CrossRef] [PubMed]
- Soubry, A.; Murphy, S.; Huang, Z.; Murtha, A.; Schildkraut, J.; Jirtle, R.; Wang, F.; Kurtzberg, J.; Demark-Wahnefried, W.; Forman, M.; et al. The effects of depression and use of antidepressive medicines during pregnancy on the methylation status of the IGF2 imprinted control regions in the offspring. Clin. Epigenetics 2011. [Google Scholar] [CrossRef]
- Stroud, L.R.; Papandonatos, G.D.; Rodriguez, D.; McCallum, M.; Salisbury, A.L.; Phipps, M.G.; Lester, B.; Huestis, M.A.; Niaura, R.; Padbury, J.F.; et al. Maternal smoking during pregnancy and infant stress response: Test of a prenatal programming hypothesis. Psychoneuroendocrinology 2014, 48, 29–40. [Google Scholar] [PubMed]
- Colburn, W.A.; DeGruttola, V.G.; DeMets, D.L.; Downing, G.J.; Hoth, D.F.; Oates, J.A.; Peck, C.C.; Schooley, R.T.; Spilker, B.A.; Woodcock, J.; et al. Biomarkers and surrogate endpoints: Preferred definitions and conceptual framework. Clin. Pharmacol. Ther. 2001, 69, 89–95. [Google Scholar]
- Holsboer, F. How can we realize the promise of personalized antidepressant medicines? Nat. Rev. Neurosci. 2008, 9, 638–646. [Google Scholar] [CrossRef] [PubMed]
- Peedicayil, J. Epigenetic biomarkers in psychiatric disorders. Br. J. Pharmacol. 2008, 155, 795–796. [Google Scholar] [CrossRef] [PubMed]
- Alliance, N.B.D. Biomarker Validation. Available online: http://nbdabiomarkers.org/about/what-we-do/pipeline-overview/biomarker-validation (accessed on 12 February 2016).
- Hamilton, B.E.; Martin, J.A.; Ventura, S.J. Births: Preliminary data for 2011. Natl. Vital Stat. Rep. 2012, 61, 1–20. [Google Scholar] [PubMed]
- Callaghan, W.M.; MacDorman, M.F.; Rasmussen, S.A.; Qin, C.; Lackritz, E.M. The contribution of preterm birth to infant mortality rates in the united states. Pediatrics 2006, 118, 1566–1573. [Google Scholar] [CrossRef] [PubMed]
- Beck, S.; Wojdyla, D.; Say, L.; Betran, A.P.; Merialdi, M.; Requejo, J.H.; Rubens, C.; Menon, R.; van Look, P.F. The worldwide incidence of preterm birth: A systematic review of maternal mortality and morbidity. Bull. World Health Organ. 2010, 88, 31–38. [Google Scholar] [CrossRef] [PubMed]
- Behrman, R.E.; Butler, A.S. Preterm Birth: Causes, Consequences, and Prevention; The National Academies Press: Washington, DC, USA, 2007; p. 792. [Google Scholar]
- Yuan, W.; Basso, O.; Sorensen, H.T.; Olsen, J. Indicators of fetal growth and infectious disease in childhood—A birth cohort with hospitalization as outcome. Eur. J. Epidemiol. 2001, 17, 829–834. [Google Scholar] [CrossRef] [PubMed]
- Bhutta, A.T.; Cleves, M.A.; Casey, P.H.; Cradock, M.M.; Anand, K.J. Cognitive and behavioral outcomes of school-aged children who were born preterm: A meta-analysis. JAMA 2002, 288, 728–737. [Google Scholar] [CrossRef] [PubMed]
- Burdge, G.C.; Hanson, M.A.; Slater-Jefferies, J.L.; Lillycrop, K.A. Epigenetic regulation of transcription: A mechanism for inducing variations in phenotype (fetal programming) by differences in nutrition during early life? Br. J. Nutr. 2007, 97, 1036–1046. [Google Scholar] [CrossRef] [PubMed]
- Kajantie, E.; Osmond, C.; Barker, D.J.; Eriksson, J.G. Preterm birth—A risk factor for type 2 diabetes? The helsinki birth cohort study. Diabetes Care 2010, 33, 2623–2625. [Google Scholar] [PubMed]
- Kessous, R.; Shoham-Vardi, I.; Pariente, G.; Holcberg, G.; Sheiner, E. An association between preterm delivery and long-term maternal cardiovascular morbidity. Am. J. Obstet. Gynecol. 2013. [Google Scholar] [CrossRef]
- James-Todd, T.; Wise, L.; Boggs, D.; Rich-Edwards, J.; Rosenberg, L.; Palmer, J. Preterm birth and subsequent risk of type 2 diabetes in black women. Epidemiology 2014, 25, 805–810. [Google Scholar] [CrossRef] [PubMed]
- Melbye, M.; Wohlfahrt, J.; Andersen, A.M.; Westergaard, T.; Andersen, P.K. Preterm delivery and risk of breast cancer. Br. J. Cancer 1999, 80, 609–613. [Google Scholar] [CrossRef] [PubMed]
- Lykke, J.A.; Paidas, M.J.; Damm, P.; Triche, E.W.; Kuczynski, E.; Langhoff-Roos, J. Preterm delivery and risk of subsequent cardiovascular morbidity and type-ii diabetes in the mother. BJOG 2010, 117, 274–281. [Google Scholar] [CrossRef] [PubMed]
- Goldenberg, R.L.; Culhane, J.F.; Iams, J.D.; Romero, R. Epidemiology and causes of preterm birth. Lancet 2008, 371, 75–84. [Google Scholar] [CrossRef]
- Parets, S.E.; Knight, A.K.; Smith, A.K. Insights into genetic susceptibility in the etiology of spontaneous preterm birth. Appl. Clin. Genet. 2015, 8, 283–290. [Google Scholar] [PubMed]
- Moutquin, J.M. Classification and heterogeneity of preterm birth. BJOG 2003, 110, 30–33. [Google Scholar] [CrossRef]
- Ananth, C.V.; Vintzileos, A.M. Epidemiology of preterm birth and its clinical subtypes. J. Matern.-Fetal Neonatal Med. 2006, 19, 773–782. [Google Scholar] [CrossRef] [PubMed]
- Gimenez, L.G.; Krupitzki, H.B.; Momany, A.M.; Gili, J.A.; Poletta, F.A.; Campana, H.; Cosentino, V.R.; Saleme, C.; Pawluk, M.; Murray, J.C.; et al. Maternal and neonatal epidemiological features in clinical subtypes of preterm birth. J. Matern.-Fetal Neonatal Med. 2015, 15, 1–9. [Google Scholar]
- Liu, Y.; Hoyo, C.; Murphy, S.; Huang, Z.; Overcash, F.; Thompson, J.; Brown, H.; Murtha, A.P. DNA methylation at imprint regulatory regions in preterm birth and infection. Am. J. Obstet. Gynecol. 2013. [Google Scholar] [CrossRef] [PubMed]
- Parets, S.E.; Bedient, C.E.; Menon, R.; Smith, A.K. Preterm birth and its long-term effects: Methylation to mechanisms. Biology 2014, 3, 498–513. [Google Scholar] [CrossRef] [PubMed]
- Voltolini, C.; Torricelli, M.; Conti, N.; Vellucci, F.L.; Severi, F.M.; Petraglia, F. Understanding spontaneous preterm birth: From underlying mechanisms to predictive and preventive interventions. Reprod. Sci. 2013, 20, 1274–1292. [Google Scholar] [CrossRef] [PubMed]
- Parizek, A.; Koucky, M.; Duskova, M. Progesterone, inflammation and preterm labor. J. Steroid Biochem. Mol. Biol. 2014, 139, 159–165. [Google Scholar] [CrossRef] [PubMed]
- Blencowe, H.; Cousens, S.; Chou, D.; Oestergaard, M.; Say, L.; Moller, A.B.; Kinney, M.; Lawn, J. Born too soon: The global epidemiology of 15 million preterm births. Reprod. Health 2013. [Google Scholar] [CrossRef] [PubMed]
- Bonasio, R.; Tu, S.; Reinberg, D. Molecular signals of epigenetic states. Science 2010, 330, 612–616. [Google Scholar] [CrossRef] [PubMed]
- Maunakea, A.K.; Nagarajan, R.P.; Bilenky, M.; Ballinger, T.J.; D’Souza, C.; Fouse, S.D.; Johnson, B.E.; Hong, C.; Nielsen, C.; Zhao, Y.; et al. Conserved role of intragenic DNA methylation in regulating alternative promoters. Nature 2010, 466, 253–257. [Google Scholar] [PubMed]
- Parets, S.E.; Conneely, K.N.; Kilaru, V.; Fortunato, S.J.; Syed, T.A.; Saade, G.; Smith, A.K.; Menon, R. Fetal DNA methylation associates with early spontaneous preterm birth and gestational age. PLoS ONE 2013, 8, e67489. [Google Scholar] [CrossRef] [PubMed]
- Cruickshank, M.N.; Oshlack, A.; Theda, C.; Davis, P.G.; Martino, D.; Sheehan, P.; Dai, Y.; Saffery, R.; Doyle, L.W.; Craig, J.M. Analysis of epigenetic changes in survivors of preterm birth reveals the effect of gestational age and evidence for a long term legacy. Genome Med. 2013, 5, 96. [Google Scholar] [CrossRef] [PubMed]
- Fernando, F.; Keijser, R.; Henneman, P.; van der Kevie, A.M.F.; Mannens, M.M.; van der Post, J.A.; Afink, G.B.; Ris-Stalpers, C. The idiopathic preterm delivery methylation profile in umbilical cord blood DNA. BMC Genom. 2015. [Google Scholar] [CrossRef] [PubMed]
- Parets, S.E.; Conneely, K.N.; Kilaru, V.; Menon, R.; Smith, A.K. DNA methylation provides insight into intergenerational risk for preterm birth in african americans. Epigenetics Off. J. DNA Methylation Soc. 2015, 10, 784–792. [Google Scholar] [CrossRef] [PubMed]
- Heng, Y.J.; Pennell, C.E.; Chua, H.N.; Perkins, J.E.; Lye, S.J. Whole blood gene expression profile associated with spontaneous preterm birth in women with threatened preterm labor. PLoS ONE 2014, 9, e96901. [Google Scholar] [CrossRef] [PubMed]
- Menon, R.; Bhat, G.; Saade, G.R.; Spratt, H. Multivariate adaptive regression splines analysis to predict biomarkers of spontaneous preterm birth. Acta Obstet. Gynecol. Scand. 2014, 93, 382–391. [Google Scholar] [CrossRef] [PubMed]
- Jelliffe-Pawlowski, L.L.; Baer, R.J.; Blumenfeld, Y.J.; Ryckman, K.K.; O’Brodovich, H.M.; Gould, J.B.; Druzin, M.L.; El-Sayed, Y.Y.; Lyell, D.J.; Stevenson, D.K.; et al. Maternal characteristics and mid-pregnancy serum biomarkers as risk factors for subtypes of preterm birth. BJOG 2015, 122, 1484–1493. [Google Scholar] [PubMed]
- Wallenstein, M.B.; Jelliffe-Pawlowski, L.L.; Yang, W.; Carmichael, S.L.; Stevenson, D.K.; Ryckman, K.K.; Shaw, G.M. Inflammatory biomarkers and spontaneous preterm birth among obese women. J. Matern.-Fetal Neonatal Med. 2015, 18, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Jelliffe-Pawlowski, L.L.; Ryckman, K.K.; Bedell, B.; O’Brodovich, H.M.; Gould, J.B.; Lyell, D.J.; Borowski, K.S.; Shaw, G.M.; Murray, J.C.; Stevenson, D.K. Combined elevated midpregnancy tumor necrosis factor alpha and hyperlipidemia in pregnancies resulting in early preterm birth. Am. J. Obstet. Gynecol. 2014. [Google Scholar] [CrossRef] [PubMed]
- Smith, G.C.; Shah, I.; White, I.R.; Pell, J.P.; Crossley, J.A.; Dobbie, R. Maternal and biochemical predictors of spontaneous preterm birth among nulliparous women: A systematic analysis in relation to the degree of prematurity. Int. J. Epidemiol. 2006, 35, 1169–1177. [Google Scholar] [CrossRef] [PubMed]
- Tancrede, S.; Bujold, E.; Giguere, Y.; Renald, M.H.; Girouard, J.; Forest, J.C. Mid-trimester maternal serum afp and hcg as markers of preterm and term adverse pregnancy outcomes. J. Obstet. Gynaecol. Can. 2015, 37, 111–116. [Google Scholar] [CrossRef]
- Yuan, W.; Chen, L.; Bernal, A.L. Is elevated maternal serum alpha-fetoprotein in the second trimester of pregnancy associated with increased preterm birth risk? A systematic review and meta-analysis. Eur. J. Obstet. Gynecol. Reprod. Biol. 2009, 145, 57–64. [Google Scholar] [CrossRef] [PubMed]
- Menon, R.; Conneely, K.N.; Smith, A.K. DNA methylation: An epigenetic risk factor in preterm birth. Reprod. Sci. 2012, 19, 6–13. [Google Scholar] [CrossRef] [PubMed]
- Tendl, K.A.; Schulz, S.M.; Mechtler, T.P.; Bohn, A.; Metz, T.; Greber-Platzer, S.; Kasper, D.C.; Herkner, K.R.; Item, C.B. DNA methylation pattern of calca in preterm neonates with bacterial sepsis as a putative epigenetic biomarker. Epigenetics Off. J. DNA Methylation Soc. 2013, 8, 1261–1267. [Google Scholar] [CrossRef] [PubMed]
- Anderson, C.M.; Ralph, J.L.; Wright, M.L.; Linggi, B.; Ohm, J.E. DNA methylation as a biomarker for preeclampsia. Biol. Res. Nurs. 2014, 16, 409–420. [Google Scholar] [CrossRef] [PubMed]
- Barker, D.J. The origins of the developmental origins theory. J. Intern. Med. 2007, 261, 412–417. [Google Scholar] [CrossRef] [PubMed]
- Ravelli, G.P.; Stein, Z.A.; Susser, M.W. Obesity in young men after famine exposure in utero and early infancy. N. Engl. J. Med. 1976, 295, 349–353. [Google Scholar] [CrossRef] [PubMed]
- Hoek, H.W.; Brown, A.S.; Susser, E. The dutch famine and schizophrenia spectrum disorders. Soc. Psychiatry Psychiatr. Epidemiol. 1998, 33, 373–379. [Google Scholar] [CrossRef] [PubMed]
- de Rooij, S.R.; Painter, R.C.; Phillips, D.I.; Osmond, C.; Michels, R.P.; Godsland, I.F.; Bossuyt, P.M.; Bleker, O.P.; Roseboom, T.J. Impaired insulin secretion after prenatal exposure to the dutch famine. Diabetes Care 2006, 29, 1897–1901. [Google Scholar] [CrossRef] [PubMed]
- Yarde, F.; Broekmans, F.J.; van der Pal-de Bruin, K.M.; Schonbeck, Y.; te Velde, E.R.; Stein, A.D.; Lumey, L.H. Prenatal famine, birthweight, reproductive performance and age at menopause: The dutch hunger winter families study. Hum. Reprod. 2013, 28, 3328–3336. [Google Scholar] [CrossRef] [PubMed]
- Franzek, E.J.; Sprangers, N.; Janssens, A.C.; Van Duijn, C.M.; Van De Wetering, B.J. Prenatal exposure to the 1944–45 dutch “hunger winter” and addiction later in life. Addiction 2008, 103, 433–438. [Google Scholar] [CrossRef] [PubMed]
- Wadhwa, P.D.; Buss, C.; Entringer, S.; Swanson, J.M. Developmental origins of health and disease: Brief history of the approach and current focus on epigenetic mechanisms. Semin. Reprod. Med. 2009, 27, 358–368. [Google Scholar] [CrossRef] [PubMed]
- Tobi, E.W.; Lumey, L.H.; Talens, R.P.; Kremer, D.; Putter, H.; Stein, A.D.; Slagboom, P.E.; Heijmans, B.T. DNA methylation differences after exposure to prenatal famine are common and timing- and sex-specific. Hum. Mol. Genet. 2009, 18, 4046–4053. [Google Scholar] [CrossRef] [PubMed]
- Murphy, S.K.; Huang, Z.; Hoyo, C. Differentially methylated regions of imprinted genes in prenatal, perinatal and postnatal human tissues. PLoS ONE 2012, 7, e40924. [Google Scholar] [CrossRef] [PubMed]
- Silver, M.J.; Kessler, N.J.; Hennig, B.J.; Dominguez-Salas, P.; Laritsky, E.; Baker, M.S.; Coarfa, C.; Hernandez-Vargas, H.; Castelino, J.M.; Routledge, M.N.; et al. Independent genomewide screens identify the tumor suppressor vtrna2-1 as a human epiallele responsive to periconceptional environment. Genome Biol. 2015. [Google Scholar] [CrossRef]
- Salihu, H.M.; Mbah, A.K.; Alio, A.P.; Clayton, H.B.; Lynch, O. Low pre-pregnancy body mass index and risk of medically indicated versus spontaneous preterm singleton birth. Eur. J. Obstet. Gynecol. Reprod. Biol. 2009, 144, 119–123. [Google Scholar] [CrossRef] [PubMed]
- Hendler, I.; Goldenberg, R.L.; Mercer, B.M.; Iams, J.D.; Meis, P.J.; Moawad, A.H.; MacPherson, C.A.; Caritis, S.N.; Miodovnik, M.; Menard, K.M.; et al. The preterm prediction study: Association between maternal body mass index and spontaneous and indicated preterm birth. Am. J. Obstet. Gynecol. 2005, 192, 882–886. [Google Scholar] [PubMed]
- Doherty, D.A.; Magann, E.F.; Francis, J.; Morrison, J.C.; Newnham, J.P. Pre-pregnancy body mass index and pregnancy outcomes. Int. J. Gynaecol. Obstet. 2006, 95, 242–247. [Google Scholar] [CrossRef] [PubMed]
- Hayward, C.E.; Higgins, L.; Cowley, E.J.; Greenwood, S.L.; Mills, T.A.; Sibley, C.P.; Wareing, M. Chorionic plate arterial function is altered in maternal obesity. Placenta 2013, 34, 281–287. [Google Scholar] [CrossRef] [PubMed]
- Luiza, J.W.; Gallaher, M.J.; Powers, R.W. Urinary cortisol and depression in early pregnancy: Role of adiposity and race. BMC Pregnancy Childbirth 2015. [Google Scholar] [CrossRef] [PubMed]
- Madan, J.C.; Davis, J.M.; Craig, W.Y.; Collins, M.; Allan, W.; Quinn, R.; Dammann, O. Maternal obesity and markers of inflammation in pregnancy. Cytokine 2009, 47, 61–64. [Google Scholar] [CrossRef] [PubMed]
- Meenakshi; Srivastava, R.; Sharma, N.R.; Kushwaha, K.P.; Aditya, V. Obstetric behavior and pregnancy outcome in overweight and obese women: Maternal and fetal complications and risks in relation to maternal overweight and obesity. J. Obstet. Gynaecol. India 2012, 62, 276–280. [Google Scholar] [CrossRef] [PubMed]
- Ovesen, P.; Rasmussen, S.; Kesmodel, U. Effect of prepregnancy maternal overweight and obesity on pregnancy outcome. Obstet. Gynecol. 2011, 118, 305–312. [Google Scholar] [CrossRef] [PubMed]
- Persson, M.; Johansson, S.; Villamor, E.; Cnattingius, S. Maternal overweight and obesity and risks of severe birth-asphyxia-related complications in term infants: A population-based cohort study in sweden. PLoS Med. 2014, 11, e1001648. [Google Scholar] [CrossRef] [PubMed]
- Crisham Janik, M.D.; Newman, T.B.; Cheng, Y.W.; Xing, G.; Gilbert, W.M.; Wu, Y.W. Maternal diagnosis of obesity and risk of cerebral palsy in the child. J. Pediatr. 2013, 163, 1307–1312. [Google Scholar] [CrossRef] [PubMed]
- Oteng-Ntim, E.; Kopeika, J.; Seed, P.; Wandiembe, S.; Doyle, P. Impact of obesity on pregnancy outcome in different ethnic groups: Calculating population attributable fractions. PLoS ONE 2013, 8, e53749. [Google Scholar]
- Nomura, Y.; Lambertini, L.; Rialdi, A.; Lee, M.; Mystal, E.Y.; Grabie, M.; Manaster, I.; Huynh, N.; Finik, J.; Davey, M.; et al. Global methylation in the placenta and umbilical cord blood from pregnancies with maternal gestational diabetes, preeclampsia, and obesity. Reprod. Sci. 2014, 21, 131–137. [Google Scholar] [PubMed]
- Michels, K.B.; Harris, H.R.; Barault, L. Birthweight, maternal weight trajectories and global DNA methylation of line-1 repetitive elements. PLoS ONE 2011, 6, e25254. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Chen, Q.; Tsai, H.J.; Wang, G.; Hong, X.; Zhou, Y.; Zhang, C.; Liu, C.; Liu, R.; Wang, H.; et al. Maternal preconception body mass index and offspring cord blood DNA methylation: Exploration of early life origins of disease. Environ. Mol. Mutagen. 2014, 55, 223–230. [Google Scholar] [PubMed]
- Jasoni, C.L.; Sanders, T.R.; Kim, D.W. Do all roads lead to rome? The role of neuro-immune interactions before birth in the programming of offspring obesity. Front. Neurosci. 2014. [Google Scholar] [CrossRef]
- Kim, D.W.; Young, S.L.; Grattan, D.R.; Jasoni, C.L. Obesity during pregnancy disrupts placental morphology, cell proliferation, and inflammation in a sex-specific manner across gestation in the mouse. Biol. Reprod. 2014. [Google Scholar] [CrossRef] [PubMed]
- Parker, V.J.; Solano, M.E.; Arck, P.C.; Douglas, A.J. Diet-induced obesity may affect the uterine immune environment in early-mid pregnancy, reducing nk-cell activity and potentially compromising uterine vascularization. Int. J. Obes. 2014, 38, 766–774. [Google Scholar] [CrossRef] [PubMed]
- Sen, S.; Iyer, C.; Klebenov, D.; Histed, A.; Aviles, J.A.; Meydani, S.N. Obesity impairs cell-mediated immunity during the second trimester of pregnancy. Am. J. Obstet. Gynecol. 2013. [Google Scholar] [CrossRef] [PubMed]
- Puzziferri, N.; Roshek, T.B., 3rd; Mayo, H.G.; Gallagher, R.; Belle, S.H.; Livingston, E.H. Long-term follow-up after bariatric surgery: A systematic review. JAMA 2014, 312, 934–942. [Google Scholar]
- Guenard, F.; Deshaies, Y.; Cianflone, K.; Kral, J.G.; Marceau, P.; Vohl, M.C. Differential methylation in glucoregulatory genes of offspring born before vs. After maternal gastrointestinal bypass surgery. Proc. Natl. Acad. Sci. USA 2013, 110, 11439–11444. [Google Scholar] [CrossRef] [PubMed]
- Bramham, K.; Parnell, B.; Nelson-Piercy, C.; Seed, P.T.; Poston, L.; Chappell, L.C. Chronic hypertension and pregnancy outcomes: Systematic review and meta-analysis. BMJ 2014. [Google Scholar] [CrossRef] [PubMed]
- Barbour, L.A. Changing perspectives in pre-existing diabetes and obesity in pregnancy: Maternal and infant short- and long-term outcomes. Curr. Opin. Endocrinol. Diabetes Obes. 2014, 21, 257–263. [Google Scholar] [CrossRef] [PubMed]
- Salameh, W.A.; Mastrogiannis, D.S. Maternal hyperlipidemia in pregnancy. Clin. Obstet. Gynecol. 1994, 37, 66–77. [Google Scholar] [CrossRef] [PubMed]
- Bestwick, J.P.; Huttly, W.J.; Morris, J.K.; Wald, N.J. Prevention of neural tube defects: A cross-sectional study of the uptake of folic acid supplementation in nearly half a million women. PLoS ONE 2014, 9, e89354. [Google Scholar] [CrossRef] [PubMed]
- Prevention of neural tube defects: Results of the medical research council vitamin study. Mrc vitamin study research group. Lancet 1991, 338, 131–137.
- Li, Z.; Ye, R.; Zhang, L.; Li, H.; Liu, J.; Ren, A. Folic acid supplementation during early pregnancy and the risk of gestational hypertension and preeclampsia. Hypertension 2013, 61, 873–879. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhao, N.; Qiu, J.; He, X.; Zhou, M.; Cui, H.; Lv, L.; Lin, X.; Zhang, C.; Zhang, H.; et al. Folic acid supplementation and dietary folate intake, and risk of preeclampsia. Eur. J. Clin. Nutr. 2015, 69, 1145–1150. [Google Scholar] [PubMed]
- Scholl, T.O.; Hediger, M.L.; Schall, J.I.; Khoo, C.S.; Fischer, R.L. Dietary and serum folate: Their influence on the outcome of pregnancy. Am. J. Clin. Nutr. 1996, 63, 520–525. [Google Scholar] [PubMed]
- Kim, M.W.; Ahn, K.H.; Ryu, K.J.; Hong, S.C.; Lee, J.S.; Nava-Ocampo, A.A.; Oh, M.J.; Kim, H.J. Preventive effects of folic acid supplementation on adverse maternal and fetal outcomes. PLoS ONE 2014, 9, e97273. [Google Scholar] [CrossRef] [PubMed]
- Chong, M.F.; Wong, J.X.; Colega, M.; Chen, L.W.; van Dam, R.M.; Tan, C.S.; Lim, A.L.; Cai, S.; Broekman, B.F.; Lee, Y.S.; et al. Relationships of maternal folate and vitamin b12 status during pregnancy with perinatal depression: The gusto study. J. Psychiatr. Res. 2014, 55, 110–116. [Google Scholar] [PubMed]
- Siega-Riz, A.M.; Savitz, D.A.; Zeisel, S.H.; Thorp, J.M.; Herring, A. Second trimester folate status and preterm birth. Am. J. Obstet. Gynecol. 2004, 191, 1851–1857. [Google Scholar] [CrossRef] [PubMed]
- Naimi, A.I.; Auger, N. Population-wide folic acid fortification and preterm birth: Testing the folate depletion hypothesis. Am. J. Public Health 2015, 105, 793–795. [Google Scholar] [CrossRef] [PubMed]
- Dunlop, A.L.; Kramer, M.R.; Hogue, C.J.; Menon, R.; Ramakrishan, U. Racial disparities in preterm birth: An overview of the potential role of nutrient deficiencies. Acta Obstet. Gynecol. Scand. 2011, 90, 1332–1341. [Google Scholar] [CrossRef] [PubMed]
- Rozendaal, A.M.; van Essen, A.J.; te Meerman, G.J.; Bakker, M.K.; van der Biezen, J.J.; Goorhuis-Brouwer, S.M.; Vermeij-Keers, C.; de Walle, H.E. Periconceptional folic acid associated with an increased risk of oral clefts relative to non-folate related malformations in the northern netherlands: A population based case-control study. Eur. J. Epidemiol. 2013, 28, 875–887. [Google Scholar] [CrossRef] [PubMed]
- Veeranki, S.P.; Gebretsadik, T.; Dorris, S.L.; Mitchel, E.F.; Hartert, T.V.; Cooper, W.O.; Tylavsky, F.A.; Dupont, W.; Hartman, T.J.; Carroll, K.N. Association of folic acid supplementation during pregnancy and infant bronchiolitis. Am. J. Epidemiol. 2014, 179, 938–946. [Google Scholar] [CrossRef] [PubMed]
- McKay, J.A.; Wong, Y.K.; Relton, C.L.; Ford, D.; Mathers, J.C. Maternal folate supply and sex influence gene-specific DNA methylation in the fetal gut. Mol. Nutr. Food Res. 2011, 55, 1717–1723. [Google Scholar] [CrossRef] [PubMed]
- Hoyo, C.; Murtha, A.P.; Schildkraut, J.M.; Jirtle, R.L.; Demark-Wahnefried, W.; Forman, M.R.; Iversen, E.S.; Kurtzberg, J.; Overcash, F.; Huang, Z.; et al. Methylation variation at igf2 differentially methylated regions and maternal folic acid use before and during pregnancy. Epigenetics Off. J. DNA Methylation Soc. 2011, 6, 928–936. [Google Scholar]
- McKay, J.A.; Waltham, K.J.; Williams, E.A.; Mathers, J.C. Folate depletion during pregnancy and lactation reduces genomic DNA methylation in murine adult offspring. Genes Nutr. 2011, 6, 189–196. [Google Scholar] [CrossRef] [PubMed]
- Maloney, C.A.; Hay, S.M.; Rees, W.D. Folate deficiency during pregnancy impacts on methyl metabolism without affecting global DNA methylation in the rat fetus. Br. J. Nutr. 2007, 97, 1090–1098. [Google Scholar] [CrossRef] [PubMed]
- McKay, J.A.; Xie, L.; Harris, S.; Wong, Y.K.; Ford, D.; Mathers, J.C. Blood as a surrogate marker for tissue-specific DNA methylation and changes due to folate depletion in post-partum female mice. Mol. Nutr. Food Res. 2011, 55, 1026–1035. [Google Scholar] [CrossRef] [PubMed]
- Haggarty, P.; Hoad, G.; Campbell, D.M.; Horgan, G.W.; Piyathilake, C.; McNeill, G. Folate in pregnancy and imprinted gene and repeat element methylation in the offspring. Am. J. Clin. Nutr. 2013, 97, 94–99. [Google Scholar] [CrossRef] [PubMed]
- Chalitchagorn, K.; Shuangshoti, S.; Hourpai, N.; Kongruttanachok, N.; Tangkijvanich, P.; Thong-ngam, D.; Voravud, N.; Sriuranpong, V.; Mutirangura, A. Distinctive pattern of line-1 methylation level in normal tissues and the association with carcinogenesis. Oncogene 2004, 23, 8841–8846. [Google Scholar] [CrossRef] [PubMed]
- He, H.; Kim, J. Regulation and function of the peg3 imprinted domain. Genom. Inform. 2014, 12, 105–113. [Google Scholar] [CrossRef] [PubMed]
- Temple, I.K.; Shield, J.P. Transient neonatal diabetes, a disorder of imprinting. J. Med. Genet. 2002, 39, 872–875. [Google Scholar] [CrossRef] [PubMed]
- Hammoud, S.S.; Purwar, J.; Pflueger, C.; Cairns, B.R.; Carrell, D.T. Alterations in sperm DNA methylation patterns at imprinted loci in two classes of infertility. Fertil. Steril. 2010, 94, 1728–1733. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Bretz, C.L.; Lee, S. Epigenetic instability of imprinted genes in human cancers. Nucleic Acids Res. 2015, 43, 10689–10699. [Google Scholar] [CrossRef] [PubMed]
- Ba, Y.; Yu, H.; Liu, F.; Geng, X.; Zhu, C.; Zhu, Q.; Zheng, T.; Ma, S.; Wang, G.; Li, Z.; et al. Relationship of folate, vitamin b12 and methylation of insulin-like growth factor-ii in maternal and cord blood. Eur. J. Clin. Nutr. 2011, 65, 480–485. [Google Scholar] [PubMed]
- Dunlop, A.L.; Taylor, R.N.; Tangpricha, V.; Fortunato, S.; Menon, R. Maternal vitamin d, folate, and polyunsaturated fatty acid status and bacterial vaginosis during pregnancy. Infect. Dis. Obstet. Gynecol. 2011. [Google Scholar] [CrossRef] [PubMed]
- Thota, C.; Menon, R.; Fortunato, S.J.; Brou, L.; Lee, J.E.; Al-Hendy, A. 1,25-dihydroxyvitamin d deficiency is associated with preterm birth in african american and caucasian women. Reprod. Sci. 2014, 21, 244–250. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.H.; Fu, L.; Hao, J.H.; Yu, Z.; Zhu, P.; Wang, H.; Xu, Y.Y.; Zhang, C.; Tao, F.B.; Xu, D.X. Maternal vitamin d deficiency during pregnancy elevates the risks of small for gestational age and low birth weight infants in chinese population. J. Clin. Endocrinol. Metab. 2015, 100, 1912–1919. [Google Scholar] [CrossRef] [PubMed]
- Bodnar, L.M.; Platt, R.W.; Simhan, H.N. Early-pregnancy vitamin d deficiency and risk of preterm birth subtypes. Obstet. Gynecol. 2015, 125, 439–447. [Google Scholar] [CrossRef] [PubMed]
- Zhu, T.; Liu, T.J.; Ge, X.; Kong, J.; Zhang, L.J.; Zhao, Q. High prevalence of maternal vitamin d deficiency in preterm births in northeast china, shenyang. Int. J. Clin. Exp. Pathol. 2015, 8, 1459–1465. [Google Scholar] [PubMed]
- Thorne-Lyman, A.; Fawzi, W.W. Vitamin d during pregnancy and maternal, neonatal and infant health outcomes: A systematic review and meta-analysis. Paediatr. Perinat. Epidemiol. 2012, 26, 75–90. [Google Scholar] [CrossRef] [PubMed]
- Paterson, C.R.; Ayoub, D. Congenital rickets due to vitamin d deficiency in the mothers. Clin. Nutr. 2015, 34, 793–798. [Google Scholar] [CrossRef] [PubMed]
- Krishnaveni, G.V.; Veena, S.R.; Winder, N.R.; Hill, J.C.; Noonan, K.; Boucher, B.J.; Karat, S.C.; Fall, C.H. Maternal vitamin d status during pregnancy and body composition and cardiovascular risk markers in indian children: The mysore parthenon study. Am. J. Clin. Nutr. 2011, 93, 628–635. [Google Scholar] [CrossRef] [PubMed]
- Tornhammar, P.; Ueda, P.; Hult, M.; Simila, H.; Eyles, D.; Norman, M. Season of birth, neonatal vitamin d status, and cardiovascular disease risk at 35 y of age: A cohort study from sweden. Am. J. Clin. Nutr. 2014, 99, 472–478. [Google Scholar] [CrossRef] [PubMed]
- Maslova, E.; Hansen, S.; Jensen, C.B.; Thorne-Lyman, A.L.; Strom, M.; Olsen, S.F. Vitamin d intake in mid-pregnancy and child allergic disease—A prospective study in 44,825 danish mother-child pairs. BMC Pregnancy Childbirth 2013. [Google Scholar] [CrossRef] [PubMed]
- Fernell, E.; Bejerot, S.; Westerlund, J.; Miniscalco, C.; Simila, H.; Eyles, D.; Gillberg, C.; Humble, M.B. Autism spectrum disorder and low vitamin d at birth: A sibling control study. Mol. Autism 2015. [Google Scholar] [CrossRef] [PubMed]
- Novakovic, B.; Galati, J.C.; Chen, A.; Morley, R.; Craig, J.M.; Saffery, R. Maternal vitamin d predominates over genetic factors in determining neonatal circulating vitamin d concentrations. Am. J. Clin. Nutr. 2012, 96, 188–195. [Google Scholar] [CrossRef] [PubMed]
- Hewison, M. Vitamin d and immune function: An overview. Proc. Nutr. Soc. 2012, 71, 50–61. [Google Scholar] [CrossRef] [PubMed]
- Liong, S.; Di Quinzio, M.K.; Fleming, G.; Permezel, M.; Georgiou, H.M. Is vitamin d binding protein a novel predictor of labour? PLoS ONE 2013, 8, e76490. [Google Scholar] [CrossRef] [PubMed]
- Liong, S.; Di Quinzio, M.K.; Fleming, G.; Permezel, M.; Rice, G.E.; Georgiou, H.M. New biomarkers for the prediction of spontaneous preterm labour in symptomatic pregnant women: A comparison with fetal fibronectin. BJOG 2015, 122, 370–379. [Google Scholar] [CrossRef] [PubMed]
- Bobbitt, K.R.; Peters, R.M.; Li, J.; Rao, S.D.; Woodcroft, K.J.; Cassidy-Bushrow, A.E. Early pregnancy vitamin d and patterns of antenatal inflammation in african-american women. J. Reprod. Immunol. 2015, 107, 52–58. [Google Scholar] [CrossRef] [PubMed]
- Vijayendra Chary, A.; Hemalatha, R.; Seshacharyulu, M.; Vasudeva Murali, M.; Jayaprakash, D.; Dinesh Kumar, B. Reprint of “vitamin d deficiency in pregnant women impairs regulatory t cell function”. J. Steroid Biochem. Mol. Biol. 2015, 148, 194–201. [Google Scholar] [CrossRef] [PubMed]
- Bodnar, L.M.; Catov, J.M.; Simhan, H.N.; Holick, M.F.; Powers, R.W.; Roberts, J.M. Maternal vitamin d deficiency increases the risk of preeclampsia. J. Clin. Endocrinol. Metab. 2007, 92, 3517–3522. [Google Scholar] [CrossRef] [PubMed]
- Bodnar, L.M.; Simhan, H.N. Vitamin d may be a link to black-white disparities in adverse birth outcomes. Obstet. Gynecol. Surv. 2010, 65, 273–284. [Google Scholar] [CrossRef] [PubMed]
- Perez-Ferre, N.; Torrejon, M.J.; Fuentes, M.; Fernandez, M.D.; Ramos, A.; Bordiu, E.; del Valle, L.; Rubio, M.A.; Bedia, A.R.; Montanez, C.; et al. Association of low serum 25-hydroxyvitamin d levels in pregnancy with glucose homeostasis and obstetric and newborn outcomes. Endocr. Pract. 2012, 18, 676–684. [Google Scholar]
- Bodnar, L.M.; Simhan, H.N.; Powers, R.W.; Frank, M.P.; Cooperstein, E.; Roberts, J.M. High prevalence of vitamin d insufficiency in black and white pregnant women residing in the northern united states and their neonates. J. Nutr. 2007, 137, 447–452. [Google Scholar] [PubMed]
- Mozhui, K.; Smith, A.K.; Tylavsky, F.A. Ancestry dependent DNA methylation and influence of maternal nutrition. PLoS ONE 2015, 10, e0118466. [Google Scholar] [CrossRef] [PubMed]
- Tong, V.T.; Dietz, P.M.; Morrow, B.; D’Angelo, D.V.; Farr, S.L.; Rockhill, K.M.; England, L.J. Trends in smoking before, during, and after pregnancy-pregnancy risk assessment monitoring system, united states, 40 sites, 2000–2010. MMWR Surveill. Summ. 2013, 62, 1–19. [Google Scholar] [PubMed]
- Aliyu, M.H.; Salihu, H.M.; Wilson, R.E.; Alio, A.P.; Kirby, R.S. The risk of intrapartum stillbirth among smokers of advanced maternal age. Arch. Gynecol. Obstet. 2008, 278, 39–45. [Google Scholar] [CrossRef] [PubMed]
- Rua Ede, A.; Porto, M.L.; Ramos, J.P.; Nogueira, B.V.; Meyrelles, S.S.; Vasquez, E.C.; Pereira, T.C. Effects of tobacco smoking during pregnancy on oxidative stress in the umbilical cord and mononuclear blood cells of neonates. J. Biomed. Sci. 2014. [Google Scholar] [CrossRef]
- Shinjo, A.; Ventura, W.; Koide, K.; Hori, K.; Yotsumoto, J.; Matsuoka, R.; Ichizuka, K.; Sekizawa, A. Maternal smoking and placental expression of a panel of genes related to angiogenesis and oxidative stress in early pregnancy. Fetal Diagn. Ther. 2014, 35, 289–295. [Google Scholar] [CrossRef] [PubMed]
- Marufu, T.C.; Ahankari, A.; Coleman, T.; Lewis, S. Maternal smoking and the risk of still birth: Systematic review and meta-analysis. BMC Public Health 2015. [Google Scholar] [CrossRef] [PubMed]
- Isayama, T.; Shah, P.S.; Ye, X.Y.; Dunn, M.; Da Silva, O.; Alvaro, R.; Lee, S.K. Adverse impact of maternal cigarette smoking on preterm infants: A population-based cohort study. Am. J. Perinatol. 2015, 32, 1105–1111. [Google Scholar] [CrossRef] [PubMed]
- Kyrklund-Blomberg, N.B.; Granath, F.; Cnattingius, S. Maternal smoking and causes of very preterm birth. Acta Obstet. Gynecol. Scand. 2005, 84, 572–577. [Google Scholar] [PubMed]
- Smith, L.K.; Draper, E.S.; Evans, T.A.; Field, D.J.; Johnson, S.J.; Manktelow, B.N.; Seaton, S.E.; Marlow, N.; Petrou, S.; Boyle, E.M. Associations between late and moderately preterm birth and smoking, alcohol, drug use and diet: A population-based case-cohort study. Arch. Dis. Child. Fetal Neonat. Ed. 2015. [Google Scholar] [CrossRef] [PubMed]
- Anthopolos, R.; Edwards, S.E.; Miranda, M.L. Effects of maternal prenatal smoking and birth outcomes extending into the normal range on academic performance in fourth grade in north carolina, USA. Paediatr. Perinat. Epidemiol. 2013, 27, 564–574. [Google Scholar] [CrossRef] [PubMed]
- Hogberg, L.; Cnattingius, S.; Lundholm, C.; D’Onofrio, B.M.; Langstrom, N.; Iliadou, A.N. Effects of maternal smoking during pregnancy on offspring blood pressure in late adolescence. J. Hypertens. 2012, 30, 693–699. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.V.; Smith, A.K.; Conneely, K.N.; Chang, Q.; Li, W.; Lazarus, A.; Smith, J.A.; Almli, L.M.; Binder, E.B.; Klengel, T.; et al. Epigenomic association analysis identifies smoking-related DNA methylation sites in african americans. Hum. Genet. 2013, 132, 1027–1037. [Google Scholar] [PubMed]
- Joubert, B.R.; Haberg, S.E.; Nilsen, R.M.; Wang, X.; Vollset, S.E.; Murphy, S.K.; Huang, Z.; Hoyo, C.; Midttun, O.; Cupul-Uicab, L.A.; et al. 450k epigenome-wide scan identifies differential DNA methylation in newborns related to maternal smoking during pregnancy. Environ. Health Perspect. 2012, 120, 1425–1431. [Google Scholar] [PubMed]
- Ivorra, C.; Fraga, M.F.; Bayon, G.F.; Fernandez, A.F.; Garcia-Vicent, C.; Chaves, F.J.; Redon, J.; Lurbe, E. DNA methylation patterns in newborns exposed to tobacco in utero. J. Transl. Med. 2015. [Google Scholar] [CrossRef] [PubMed]
- Kupers, L.K.; Xu, X.; Jankipersadsing, S.A.; Vaez, A.; la Bastide-van Gemert, S.; Scholtens, S.; Nolte, I.M.; Richmond, R.C.; Relton, C.L.; Felix, J.F.; et al. DNA methylation mediates the effect of maternal smoking during pregnancy on birthweight of the offspring. Int. J. Epidemiol. 2015, 44, 1224–1237. [Google Scholar] [PubMed]
- Flom, J.; Ferris, J.; Gonzalez, K.; Santella, R.; Terry, M.B. Prenatal tobacco smoke exposure and genomewide methylation in adulthood. Cancer Epidemiol. Biomark. Prev. 2011, 20, 720–720. [Google Scholar]
- Lee, K.W.; Richmond, R.; Hu, P.; French, L.; Shin, J.; Bourdon, C.; Reischl, E.; Waldenberger, M.; Zeilinger, S.; Gaunt, T.; et al. Prenatal exposure to maternal cigarette smoking and DNA methylation: Epigenome-wide association in a discovery sample of adolescents and replication in an independent cohort at birth through 17 years of age. Environ. Health Perspect. 2015, 123, 193–199. [Google Scholar]
- Bhuvaneswar, C.G.; Chang, G.; Epstein, L.A.; Stern, T.A. Alcohol use during pregnancy: Prevalence and impact. Prim. Care Companion J. Clin. Psychiatry 2007, 9, 455–460. [Google Scholar] [CrossRef] [PubMed]
- Orsi, L.; Rudant, J.; Ajrouche, R.; Leverger, G.; Baruchel, A.; Nelken, B.; Pasquet, M.; Michel, G.; Bertrand, Y.; Ducassou, S.; et al. Parental smoking, maternal alcohol, coffee and tea consumption during pregnancy, and childhood acute leukemia: The estelle study. Cancer Causes Control CCC 2015, 26, 1003–1017. [Google Scholar] [PubMed]
- Flak, A.L.; Su, S.; Bertrand, J.; Denny, C.H.; Kesmodel, U.S.; Cogswell, M.E. The association of mild, moderate, and binge prenatal alcohol exposure and child neuropsychological outcomes: A meta-analysis. Alcohol. Clin. Exp. Res. 2014, 38, 214–226. [Google Scholar] [CrossRef] [PubMed]
- Mason, S.; Zhou, F.C. Editorial: Genetics and epigenetics of fetal alcohol spectrum disorders. Front. Genet. 2015. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kesmodel, U.; Olsen, S.F.; Secher, N.J. Does alcohol increase the risk of preterm delivery? Epidemiology 2000, 11, 512–518. [Google Scholar] [CrossRef] [PubMed]
- Lundsberg, L.S.; Illuzzi, J.L.; Belanger, K.; Triche, E.W.; Bracken, M.B. Low-to-moderate prenatal alcohol consumption and the risk of selected birth outcomes: A prospective cohort study. Ann. Epidemiol. 2015. [Google Scholar] [CrossRef] [PubMed]
- Curtis, B.J.; Zahs, A.; Kovacs, E.J. Epigenetic targets for reversing immune defects caused by alcohol exposure. Alcohol Res. Curr. Rev. 2013, 35, 97–113. [Google Scholar]
- Harlaar, N.; Hutchison, K.E. Alcohol and the methylome: Design and analysis considerations for research using human samples. Drug Alcohol Depend. 2013, 133, 305–316. [Google Scholar] [CrossRef] [PubMed]
- Lee, B.Y.; Park, S.Y.; Ryu, H.M.; Shin, C.Y.; Ko, K.N.; Han, J.Y.; Koren, G.; Cho, Y.H. Changes in the methylation status of dat, sert, and mecp2 gene promoters in the blood cell in families exposed to alcohol during the periconceptional period. Alcohol. Clin. Exp. Res. 2015, 39, 239–250. [Google Scholar] [CrossRef] [PubMed]
- Burns, E.R.; Farr, S.L.; Howards, P.P.; Centers for Disease Control and Prevention (CDCP). Stressful life events experienced by women in the year before their infants’ births—United States, 2000–2010. MMWR Morb. Mortal. Wkly. Rep. 2015, 64, 247–251. [Google Scholar] [PubMed]
- Lobel, M.; Cannella, D.L.; Graham, J.E.; DeVincent, C.; Schneider, J.; Meyer, B.A. Pregnancy-specific stress, prenatal health behaviors, and birth outcomes. Health Psychol. Off. J. Div. Health Psychol. Am. Psychol. Assoc. 2008, 27, 604–615. [Google Scholar] [CrossRef] [PubMed]
- Dunn, A.J. The hpa axis and the immune system: A perspective. NeuroImmune Biol. 2007, 7, 3–15. [Google Scholar]
- Charmandari, E.; Tsigos, C.; Chrousos, G. Endocrinology of the stress response. Annu. Rev. Physiol. 2005, 67, 259–284. [Google Scholar] [CrossRef] [PubMed]
- Tsigos, C.; Chrousos, G.P. Hypothalamic-pituitary-adrenal axis, neuroendocrine factors and stress. J. Psychosom. Res. 2002, 53, 865–871. [Google Scholar] [CrossRef]
- Boumpas, D.T.; Chrousos, G.P.; Wilder, R.L.; Cupps, T.R.; Balow, J.E. Glucocorticoid therapy for immune-mediated diseases: Basic and clinical correlates. Ann. Intern. Med. 1993, 119, 1198–1208. [Google Scholar] [CrossRef] [PubMed]
- Bloch, M.; Daly, R.C.; Rubinow, D.R. Endocrine factors in the etiology of postpartum depression. Compr. Psychiatry 2003, 44, 234–246. [Google Scholar] [CrossRef]
- Reis, F.M.; Fadalti, M.; Florio, P.; Petraglia, F. Putative role of placental corticotropin-releasing factor in the mechanisms of human parturition. J. Soc. Gynecol. Investig. 1999, 6, 109–119. [Google Scholar] [CrossRef]
- Appleton, A.A.; Armstrong, D.A.; Lesseur, C.; Lee, J.; Padbury, J.F.; Lester, B.M.; Marsit, C.J. Patterning in placental 11-b hydroxysteroid dehydrogenase methylation according to prenatal socioeconomic adversity. PLoS ONE 2013, 8, e74691. [Google Scholar] [CrossRef] [PubMed]
- Vidal, A.C.; Benjamin Neelon, S.E.; Liu, Y.; Tuli, A.M.; Fuemmeler, B.F.; Hoyo, C.; Murtha, A.P.; Huang, Z.; Schildkraut, J.; Overcash, F.; et al. Maternal stress, preterm birth, and DNA methylation at imprint regulatory sequences in humans. Genet. Epigenetics 2014, 6, 37–44. [Google Scholar]
- Cohen, S.; Kamarck, T.; Mermelstein, R. A global measure of perceived stress. J. Health Soc. Behav. 1983, 385–396. [Google Scholar] [CrossRef]
- Chen, C.P.; Su, Y.N.; Lin, M.H.; Wang, T.Y.; Chern, S.R.; Kuo, Y.L.; Chen, Y.T.; Wang, W. Detection of altered methylation status at 11p15.5 and 7q32 in placental mesenchymal dysplasia. Taiwan. J. Obstet. Gynecol. 2014, 53, 68–73. [Google Scholar] [CrossRef] [PubMed]
- Cao-Lei, L.; Massart, R.; Suderman, M.J.; Machnes, Z.; Elgbeili, G.; Laplante, D.P.; Szyf, M.; King, S. DNA methylation signatures triggered by prenatal maternal stress exposure to a natural disaster: Project ice storm. PLoS ONE 2014, 9, e107653. [Google Scholar] [CrossRef] [PubMed]
- Christianson, S.; Marren, J. The impact of event scale-revised (IES-R). Medsurg. Nurs. 2012, 21, 321–322. [Google Scholar] [PubMed]
- Miller, G.E.; Chen, E.; Zhou, E.S. If it goes up, must it come down? Chronic stress and the hypothalamic-pituitary-adrenocortical axis in humans. Psychol. Bull. 2007, 133, 25–45. [Google Scholar] [PubMed]
- Han, A.; Stewart, D.E. Maternal and fetal outcomes of intimate partner violence associated with pregnancy in the latin american and caribbean region. Int. J. Gynaecol. Obstet. Off. Organ Int. Fed. Gynaecol. Obstet. 2014, 124, 6–11. [Google Scholar] [CrossRef] [PubMed]
- Shah, P.S.; Shah, J.; Knowledge Synthesis Group on Determinants of Preterm/LBW Births. Maternal exposure to domestic violence and pregnancy and birth outcomes: A systematic review and meta-analyses. J. Women’s Health 2010, 19, 2017–2031. [Google Scholar] [CrossRef] [PubMed]
- Radtke, K.M.; Ruf, M.; Gunter, H.M.; Dohrmann, K.; Schauer, M.; Meyer, A.; Elbert, T. Transgenerational impact of intimate partner violence on methylation in the promoter of the glucocorticoid receptor. Transl. Psychiatry 2011. [Google Scholar] [CrossRef] [PubMed]
- Dibaba, Y.; Fantahun, M.; Hindin, M.J. The association of unwanted pregnancy and social support with depressive symptoms in pregnancy: Evidence from rural southwestern ethiopia. BMC Pregnancy Childbirth 2013. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, J.K.; Wilhelm, M.H.; Dunkel-Schetter, C.; Lombardi, C.A.; Ritz, B.R. Paternal support and preterm birth, and the moderation of effects of chronic stress: A study in los angeles county mothers. Arch. Women's Ment. Health 2010, 13, 327–338. [Google Scholar] [CrossRef] [PubMed]
- Pires, R.; Araujo-Pedrosa, A.; Canavarro, M.C. Examining the links between perceived impact of pregnancy, depressive symptoms, and quality of life during adolescent pregnancy: The buffering role of social support. Matern. Child Health J. 2014, 18, 789–800. [Google Scholar] [CrossRef] [PubMed]
- Straughen, J.K.; Caldwell, C.H.; Young, A.A., Jr.; Misra, D.P. Partner support in a cohort of african american families and its influence on pregnancy outcomes and prenatal health behaviors. BMC Pregnancy Childbirth 2013. [Google Scholar] [CrossRef] [PubMed]
- Giesbrecht, G.F.; Poole, J.C.; Letourneau, N.; Campbell, T.; Kaplan, B.J.; Team, A.P.S. The buffering effect of social support on hypothalamic-pituitary-adrenal axis function during pregnancy. Psychosom. Med. 2013, 75, 856–862. [Google Scholar] [CrossRef] [PubMed]
- Field, T. Prenatal depression effects on early development: A review. Infant Behav. Dev. 2011, 34, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Narendran, S.; Nagarathna, R.; Narendran, V.; Gunasheela, S.; Nagendra, H.R. Efficacy of yoga on pregnancy outcome. J. Altern. Complement. Med. 2005, 11, 237–244. [Google Scholar] [CrossRef] [PubMed]
- Field, T.; Hernandez-Reif, M.; Diego, M. Newborns of depressed mothers who received moderate versus light pressure massage during pregnancy. Infant Behav. Dev. 2006, 29, 54–58. [Google Scholar] [CrossRef] [PubMed]
- Field, T.; Diego, M.; Hernandez-Reif, M.; Deeds, O.; Figueiredo, B. Pregnancy massage reduces prematurity, low birthweight and postpartum depression. Infant Behav. Dev. 2009, 32, 454–460. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tanner-Smith, E.E.; Steinka-Fry, K.T.; Lipsey, M.W. The effects of centeringpregnancy group prenatal care on gestational age, birth weight, and fetal demise. Matern. Child Health J. 2014, 18, 801–809. [Google Scholar] [CrossRef] [PubMed]
- Grady, M.A.; Bloom, K.C. Pregnancy outcomes of adolescents enrolled in a centeringpregnancy program. J. Midwifery Women's Health 2004, 49, 412–420. [Google Scholar] [CrossRef] [PubMed]
- Walton, R.B.; Shaffer, S.; Heaton, J. Group prenatal care outcomes in a military population: A retrospective cohort study. Mil. Med. 2015, 180, 825–829. [Google Scholar] [CrossRef] [PubMed]
- Field, T.; Hernandez-Reif, M.; Diego, M.; Schanberg, S.; Kuhn, C. Cortisol decreases and serotonin and dopamine increase following massage therapy. Int. J. Neurosc. 2005, 115, 1397–1413. [Google Scholar] [CrossRef] [PubMed]
- Heberlein, E.C.; Picklesimer, A.H.; Billings, D.L.; Covington-Kolb, S.; Farber, N.; Frongillo, E.A. The comparative effects of group prenatal care on psychosocial outcomes. Arch. Women's Ment. Health 2016, 19, 259–269. [Google Scholar] [CrossRef] [PubMed]
- Goldenberg, R.L.; Cliver, S.P.; Mulvihill, F.X.; Hickey, C.A.; Hoffman, H.J.; Klerman, L.V.; Johnson, M.J. Medical, psychosocial, and behavioral risk factors do not explain the increased risk for low birth weight among black women. Am. J. Obstet. Gynecol. 1996, 175, 1317–1324. [Google Scholar] [CrossRef]
- Marret, S.; Ancel, P.Y.; Marpeau, L.; Marchand, L.; Pierrat, V.; Larroque, B.; Foix-L’Helias, L.; Thiriez, G.; Fresson, J.; Alberge, C.; et al. Neonatal and 5-year outcomes after birth at 30–34 weeks of gestation. Obstet. Gynecol. 2007, 110, 72–80. [Google Scholar] [PubMed]
- Hogan, V.K.; Richardson, J.L.; Ferre, C.D.; Durant, T.; Boisseau, M. A public health framework for addressing black and white disparities in preterm delivery. J. Am. Med. Womens Assoc. 2001, 56, 177–180. [Google Scholar] [PubMed]
- Green, N.S.; Damus, K.; Simpson, J.L.; Iams, J.; Reece, E.A.; Hobel, C.J.; Merkatz, I.R.; Greene, M.F.; Schwarz, R.H. Research agenda for preterm birth: Recommendations from the march of dimes. Am. J. Obstet. Gynecol. 2005, 193, 626–635. [Google Scholar] [CrossRef] [PubMed]
- Kramer, M.R.; Hogue, C.R. What causes racial disparities in very preterm birth? A biosocial perspective. Epidemiol. Rev. 2009, 31, 84–98. [Google Scholar] [PubMed]
- Anum, E.A.; Springel, E.H.; Shriver, M.D.; Strauss, J.F., 3rd. Genetic contributions to disparities in preterm birth. Pediatr. Res. 2009, 65, 1–9. [Google Scholar] [PubMed]
- Adkins, R.M.; Krushkal, J.; Tylavsky, F.A.; Thomas, F. Racial differences in gene-specific DNA methylation levels are present at birth. Birth Defects Res. Part A Clin. Mol. Teratol. 2011, 91, 728–736. [Google Scholar] [CrossRef] [PubMed]
- Tehranifar, P.; Wu, H.C.; Fan, X.; Flom, J.D.; Ferris, J.S.; Cho, Y.H.; Gonzalez, K.; Santella, R.M.; Terry, M.B. Early life socioeconomic factors and genomic DNA methylation in mid-life. Epigenetics Off. J. DNA Methylation Soc. 2013, 8, 23–27. [Google Scholar] [CrossRef] [PubMed]
- Miller, G.E.; Chen, E.; Fok, A.K.; Walker, H.; Lim, A.; Nicholls, E.F.; Cole, S.; Kobor, M.S. Low early-life social class leaves a biological residue manifested by decreased glucocorticoid and increased proinflammatory signaling. Proc. Natl. Acad. Sci. USA 2009, 106, 14716–14721. [Google Scholar] [CrossRef] [PubMed]
- Geronimus, A.T. Black/white differences in the relationship of maternal age to birthweight: A population-based test of the weathering hypothesis. Soc. Sci. Med. 1996, 42, 589–597. [Google Scholar] [CrossRef]
- Geronimus, A.T. The weathering hypothesis and the health of african-american women and infants: Evidence and speculations. Ethn. Dis. 1991, 2, 207–221. [Google Scholar]
- Holzman, C.; Eyster, J.; Kleyn, M.; Messer, L.C.; Kaufman, J.S.; Laraia, B.A.; O’Campo, P.; Burke, J.G.; Culhane, J.; Elo, I.T. Maternal weathering and risk of preterm delivery. Am. J. Public Health 2009, 99, 1864–1871. [Google Scholar] [CrossRef] [PubMed]
- Miller, M.W.; Sadeh, N. Traumatic stress, oxidative stress and post-traumatic stress disorder: Neurodegeneration and the accelerated-aging hypothesis. Mol. Psychiatry 2014, 19, 1156–1162. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Velez, J.C.; Barbosa, C.; Pepper, M.; Andrade, A.; Stoner, L.; De Vivo, I.; Gelaye, B.; Williams, M.A. Smoking and perceived stress in relation to short salivary telomere length among caregivers of children with disabilities. Stress 2015, 18, 20–28. [Google Scholar] [CrossRef] [PubMed]
- Boks, M.P.; van Mierlo, H.C.; Rutten, B.P.; Radstake, T.R.; De Witte, L.; Geuze, E.; Horvath, S.; Schalkwyk, L.C.; Vinkers, C.H.; Broen, J.C.; et al. Longitudinal changes of telomere length and epigenetic age related to traumatic stress and post-traumatic stress disorder. Psychoneuroendocrinology 2015, 51, 506–512. [Google Scholar] [PubMed]
- Love, C.; David, R.J.; Rankin, K.M.; Collins, J.W., Jr. Exploring weathering: Effects of lifelong economic environment and maternal age on low birth weight, small for gestational age, and preterm birth in African-American and white women. Am. J. Epidemiol. 2010, 172, 127–134. [Google Scholar] [CrossRef] [PubMed]
- Collins, J.W.; Rankin, K.M.; Hedstrom, A.B. Exploring weathering: The relation of age to low birth weight among first generation and established united states-born mexican-american women. Matern. Child Health J. 2012, 16, 967–972. [Google Scholar] [CrossRef] [PubMed]
- Wildsmith, E.M. Testing the weathering hypothesis among mexican-origin women. Ethn. Dis. 2002, 12, 470–479. [Google Scholar] [PubMed]
- Ferrari, F.; Facchinetti, F.; Saade, G.; Menon, R. Placental telomere shortening in stillbirth: A sign of premature senescence? J. Matern.-Fetal Neonatal Med. 2016, 29, 1283–1288. [Google Scholar] [CrossRef] [PubMed]
- Menon, R.; Yu, J.; Basanta-Henry, P.; Brou, L.; Berga, S.L.; Fortunato, S.J.; Taylor, R.N. Short fetal leukocyte telomere length and preterm prelabor rupture of the membranes. PLoS ONE 2012, 7, e31136. [Google Scholar] [CrossRef] [PubMed]
- Friedrich, U.; Schwab, M.; Griese, E.U.; Fritz, P.; Klotz, U. Telomeres in neonates: New insights in fetal hematopoiesis. Pediatr. Res. 2001, 49, 252–256. [Google Scholar] [CrossRef] [PubMed]
- Menon, R.; Boldogh, I.; Hawkins, H.K.; Woodson, M.; Polettini, J.; Syed, T.A.; Fortunato, S.J.; Saade, G.R.; Papaconstantinou, J.; Taylor, R.N. Histological evidence of oxidative stress and premature senescence in preterm premature rupture of the human fetal membranes recapitulated in vitro. Am. J. Pathol. 2014, 184, 1740–1751. [Google Scholar] [CrossRef] [PubMed]
- Greider, C.W. Telomere length regulation. Annu. Rev. Biochem. 1996, 65, 337–365. [Google Scholar] [CrossRef] [PubMed]
- Samassekou, O.; Gadji, M.; Drouin, R.; Yan, J. Sizing the ends: Normal length of human telomeres. Ann. Anat.-Anat. Anz. 2010, 192, 284–291. [Google Scholar] [CrossRef] [PubMed]
- Turner, K.J.; Vasu, V.; Greenall, J.; Griffin, D.K. Telomere length analysis and preterm infant health: The importance of assay design in the search for novel biomarkers. Biomark. Med. 2014, 8, 485–498. [Google Scholar] [CrossRef] [PubMed]
- Polettini, J.; Dutta, E.H.; Behnia, F.; Saade, G.R.; Torloni, M.R.; Menon, R. Aging of intrauterine tissues in spontaneous preterm birth and preterm premature rupture of the membranes: A systematic review of the literature. Placenta 2015, 36, 969–973. [Google Scholar] [CrossRef] [PubMed]
- Biron-Shental, T.; Sukenik-Halevy, R.; Sharon, Y.; Goldberg-Bittman, L.; Kidron, D.; Fejgin, M.D.; Amiel, A. Short telomeres may play a role in placental dysfunction in preeclampsia and intrauterine growth restriction. Am. J. Obstet. Gynecol. 2010. [Google Scholar] [CrossRef] [PubMed]
- Needham, B.L.; Rehkopf, D.; Adler, N.; Gregorich, S.; Lin, J.; Blackburn, E.H.; Epel, E.S. Leukocyte telomere length and mortality in the national health and nutrition examination survey, 1999–2002. Epidemiology 2015, 26, 528–535. [Google Scholar] [CrossRef] [PubMed]
- Wentzensen, I.M.; Mirabello, L.; Pfeiffer, R.M.; Savage, S.A. The association of telomere length and cancer: A meta-analysis. Cancer Epidemiol. Biomark. Prev. 2011, 20, 1238–1250. [Google Scholar] [CrossRef] [PubMed]
- Honig, L.S.; Kang, M.S.; Schupf, N.; Lee, J.H.; Mayeux, R. Association of shorter leukocyte telomere repeat length with dementia and mortality. Arch. Neurol. 2012, 69, 1332–1339. [Google Scholar] [CrossRef] [PubMed]
- D’Mello, M.J.; Ross, S.A.; Briel, M.; Anand, S.S.; Gerstein, H.; Pare, G. Association between shortened leukocyte telomere length and cardiometabolic outcomes: Systematic review and meta-analysis. Circ. Cardiovasc. Genet. 2015, 8, 82–90. [Google Scholar] [CrossRef] [PubMed]
- Hou, L.; Joyce, B.T.; Gao, T.; Liu, L.; Zheng, Y.; Penedo, F.J.; Liu, S.; Zhang, W.; Bergan, R.; Qi, D. Blood telomere length attrition and cancer development in the normative aging study cohort. EBioMedicine 2015, 2, 591–596. [Google Scholar] [CrossRef] [PubMed]
- Lindqvist, D.; Epel, E.S.; Mellon, S.H.; Penninx, B.W.; Revesz, D.; Verhoeven, J.E.; Reus, V.I.; Lin, J.; Mahan, L.; Hough, C.M.; et al. Psychiatric disorders and leukocyte telomere length: Underlying mechanisms linking mental illness with cellular aging. Neurosci. Biobehav. Rev. 2015, 55, 333–364. [Google Scholar] [PubMed]
- Shalev, I.; Caspi, A.; Ambler, A.; Belsky, D.W.; Chapple, S.; Cohen, H.J.; Israel, S.; Poulton, R.; Ramrakha, S.; Rivera, C.D.; et al. Perinatal complications and aging indicators by midlife. Pediatrics 2014, 134, e1315–e1323. [Google Scholar] [PubMed]
- Entringer, S.; Epel, E.S.; Kumsta, R.; Lin, J.; Hellhammer, D.H.; Blackburn, E.H.; Wust, S.; Wadhwa, P.D. Stress exposure in intrauterine life is associated with shorter telomere length in young adulthood. Proc. Natl. Acad. Sci. USA 2011, 108, E513–E518. [Google Scholar] [CrossRef] [PubMed]
- Entringer, S.; Epel, E.S.; Lin, J.; Buss, C.; Shahbaba, B.; Blackburn, E.H.; Simhan, H.N.; Wadhwa, P.D. Maternal psychosocial stress during pregnancy is associated with newborn leukocyte telomere length. Am. J. Obstet. Gynecol. 2013. [Google Scholar] [CrossRef] [PubMed]
- Horvath, S. DNA methylation age of human tissues and cell types. Genome Biol. 2013. [Google Scholar] [CrossRef] [PubMed]
- Hannum, G.; Guinney, J.; Zhao, L.; Zhang, L.; Hughes, G.; Sadda, S.; Klotzle, B.; Bibikova, M.; Fan, J.B.; Gao, Y.; et al. Genome-wide methylation profiles reveal quantitative views of human aging rates. Mol. Cell 2013, 49, 359–367. [Google Scholar] [PubMed]
- Koch, C.M.; Wagner, W. Epigenetic-aging-signature to determine age in different tissues. Aging 2011, 3, 1018–1027. [Google Scholar] [CrossRef] [PubMed]
- Horvath, S.; Garagnani, P.; Bacalini, M.G.; Pirazzini, C.; Salvioli, S.; Gentilini, D.; Di Blasio, A.M.; Giuliani, C.; Tung, S.; Vinters, H.V.; et al. Accelerated epigenetic aging in down syndrome. Aging Cell 2015, 14, 491–495. [Google Scholar] [PubMed]
- Simpkin, A.J.; Hemani, G.; Suderman, M.; Gaunt, T.R.; Lyttleton, O.; McArdle, W.L.; Ring, S.M.; Sharp, G.C.; Tilling, K.; Horvath, S.; et al. Prenatal and early life influences on epigenetic age in children: A study of mother-offspring pairs from two cohort studies. Hum. Mol. Genet. 2015. [Google Scholar] [CrossRef] [Green Version]
- Schroeder, J.W.; Conneely, K.N.; Cubells, J.C.; Kilaru, V.; Newport, D.J.; Knight, B.T.; Stowe, Z.N.; Brennan, P.A.; Krushkal, J.; Tylavsky, F.A.; et al. Neonatal DNA methylation patterns associate with gestational age. Epigenetics Off. J. DNA Methylation Soc. 2011, 6, 1498–1504. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.; Jaffe, A.E.; Feinberg, J.I.; Tryggvadottir, R.; Brown, S.; Montano, C.; Aryee, M.J.; Irizarry, R.A.; Herbstman, J.; Witter, F.R.; et al. DNA methylation shows genome-wide association of nfix, rapgef2 and msrb3 with gestational age at birth. Int. J. Epidemiol. 2012, 41, 188–199. [Google Scholar] [PubMed]
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Knight, A.K.; Smith, A.K. Epigenetic Biomarkers of Preterm Birth and Its Risk Factors. Genes 2016, 7, 15. https://doi.org/10.3390/genes7040015
Knight AK, Smith AK. Epigenetic Biomarkers of Preterm Birth and Its Risk Factors. Genes. 2016; 7(4):15. https://doi.org/10.3390/genes7040015
Chicago/Turabian StyleKnight, Anna K., and Alicia K. Smith. 2016. "Epigenetic Biomarkers of Preterm Birth and Its Risk Factors" Genes 7, no. 4: 15. https://doi.org/10.3390/genes7040015
APA StyleKnight, A. K., & Smith, A. K. (2016). Epigenetic Biomarkers of Preterm Birth and Its Risk Factors. Genes, 7(4), 15. https://doi.org/10.3390/genes7040015