Chromosomal Evolution in Mole Voles Ellobius (Cricetidae, Rodentia): Bizarre Sex Chromosomes, Variable Autosomes and Meiosis
Abstract
:1. Introduction
2. Material and Methods
2.1. Meiotic Chromosomes
2.2. Sequencing of the Sry, Eif2s3x and Eif2s3y Genes
3. Results
3.1. Autosome Evolution in Ellobius Сryptic Species
3.2. Ellobius Sex Chromosomes: Structure and Meiotic Behaviour
3.3. Tetraploid Cell in Ellobius talpinus
3.4. Existence of Sry and Eif2s3y Genes in Ellobius
4. Discussion
4.1. A Centromere Repositioning and Lability in Ellobius Karyotype Evolution
4.2. Ellobius Chromosomal Variability and Instability: Robertsonian Translocations, Monobrachial Homology and Polyploid Cells
4.3. Specificity of Y-Linked Genes Sry and Eif2s3y in Ellobius
4.4. Ellobius Sex Chromosomes: Evolutionary Trends
5. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Matthey, R. La formule chromosomique et le problème de la détermination sexuelle chez Ellobius lutescens (Rodentia-Muridae-Microtinae). Arch. Julius Klaus-Stift Vererb. Forsch. 1953, 28, 65–73. [Google Scholar]
- Castro-Sierra, E.; Wolf, U. Replication patterns of the unpaired chromosome No. 9 of the rodent Ellobius lutescens Th. Cytogenet. Genome Res. 1967, 6, 268–275. [Google Scholar] [CrossRef]
- Castro-Sierra, E.; Wolf, U. Studies on the male meiosis of Ellobius lutescens Th. Cytogenet. Genome Res. 1968, 7, 241–248. [Google Scholar] [CrossRef]
- Vorontsov, N.N.; Lyapunova, E.A.; Borissov, Y.M.; Dovgal, V.E. Variability of sex chromosomes in mammals. Genetica 1980, 52/53, 361–372. [Google Scholar] [CrossRef]
- Vogel, W.; Steinbach, P.; Djalali, M.; Mehnert, K.; Ali, S.; Epplen, J.T. Chromosome 9 of Ellobius lutescens is the X chromosome. Chromosoma 1988, 96, 112–118. [Google Scholar] [CrossRef] [PubMed]
- Vogel, W.; Jainta, S.; Rau, W.; Geerkens, C.; Baumstark, A.; Correa-Cerro, L.S.; Ebenhoch, C.; Just, W. Sex determination in Ellobius lutescens: The story of an enigma. Cytogenet. Genome Res. 1998, 80, 214–221. [Google Scholar] [CrossRef]
- Kolomiets, O.L.; Vorontsov, N.N.; Lyapunova, E.A.; Mazurova, T.F. Ultrastructure, meiotic behavior, and evolution of sex chromosomes of the genus Ellobius. Genetica 1991, 84, 179–189. [Google Scholar] [CrossRef]
- Soullier, S.; Hanni, C.; Catzeflis, F.; Berta, P.; Laudet, V. Male sex determination in the spiny rat Tokudaia osimensis (Rodentia: Muridae) is not Sry dependent. Mamm. Genome 1998, 9, 590–592. [Google Scholar] [CrossRef] [PubMed]
- Sutou, S.; Mitsui, Y.; Tsuchiya, K. Sex determination without the Y chromosome in two Japanese rodents Tokudaia osimensis osimensis and Tokudaia osimensis spp. Mamm. Genome 2001, 12, 17–21. [Google Scholar] [CrossRef] [PubMed]
- Just, W.; Baumstark, A.; Hameister, H.; Schreiner, B.; Reisert, I.; Hakhverdyan, M.; Vogel, W. The sex determination in Ellobius lutescens remains bizarre. Cytogenet. Genome Res. 2002, 96, 146–153. [Google Scholar] [CrossRef] [PubMed]
- Mulugeta, E.; Wassenaar, E.; Sleddens-Linkels, E.; van Ijcken, W.F.; Heard, E.; Grootegoed, J.A.; Just, W.; Gribnau, J.; Baarends, W.M. Genomes of Ellobius species provide insight into the evolutionary dynamics of mammalian sex chromosomes. Genome Res. 2016, 26, 1202–1210. [Google Scholar] [CrossRef] [PubMed]
- Honda, A.; Choijookhuu, N.; Izu, H.; Kawano, Y.; Inokuchi, M.; Honsho, K.; Lee, A.-R.; Nabekura, H.; Ohta, H.; Tsukiyama, T.; et al. Flexible adaptation of male germ cells from female iPSCs of endangered Tokudaia osimensis. Sci. Adv. 2017, 3, e1602179. [Google Scholar] [CrossRef] [PubMed]
- Romanenko, S.A.; Volobouev, V. Non-sciuromorph rodent karyotypes in evolution. Cytogenet. Genome Res. 2012, 137, 233–245. [Google Scholar] [CrossRef] [PubMed]
- Just, W.; Rau, W.; Vogel, W.; Akhverdian, M.; Fredga, K.; Graves, J.A.; Lyapunova, E. Absence of Sry in species of the vole Ellobius. Nat. Genet. 1995, 11, 117–118. [Google Scholar] [CrossRef] [PubMed]
- Bagheri-Fam, S.; Sreenivasan, R.; Bernard, P.; Knower, K.C.; Sekido, R.; Lovell-Badge, R.; Just, W.; Harley, V.R. Sox9 gene regulation and the loss of the XY/XX sex-determining mechanism in the mole vole Ellobius lutescens. Chromosome Res. 2012, 20, 191–199. [Google Scholar] [CrossRef] [PubMed]
- Kimura, R.; Murata, C.; Kuroki, Y.; Kuroiwa, A. Mutations in the testis-specific enhancer of SOX9 in the SRY independent sex-determining mechanism in the genus Tokudaia. PLoS ONE 2014, 9, e108779. [Google Scholar] [CrossRef] [PubMed]
- Otake, T.; Kuroiwa, A. Molecular mechanism of male differentiation is conserved in the Sry-absent mammal, Tokudaia osimensis. Sci. Rep. 2016, 6, 32874. [Google Scholar] [CrossRef] [PubMed]
- Topachevsky, V.A.; Rekovets, L.I. New materials for taxonomy and evolution of Ellobius s. str. (Rodentia, Cricetidae). Vestnik Zoologii 1982, 5, 47–54. (in Russian). [Google Scholar]
- Musser, G.G.; Carleton, M.D. Subfamily Arvicolinae. In Mammal Species of the World: A Taxonomic and Geographic Reference; Wilson, D.E., Reeder, D.M., Eds.; Johns Hopkins University Press: Baltimore, MD, USA, 2005; pp. 956–1039. [Google Scholar]
- Abramson, N.I.; Lebedev, V.S.; Tesakov, A.S.; Bannikova, A.A. Supraspecies relationships in the subfamily Arvicolinae (Rodentia, Cricetidae): An unexpected result of nuclear gene analysis. Mol. Biol. 2009, 43, 834–846. [Google Scholar] [CrossRef]
- Ognev, S.I. Mammals of the USSR and Adjacent Countries: Rodents; USSR Akad Sci Press: Moscow, Russia, 1950; Volume 7, pp. 1–706. (In Russian) [Google Scholar]
- Ellerman, J.R.; Morrison-Scott, T.C.S. Checklist of Palaearctic and Indian Mammals, 1758–1946; British Museum: London, UK, 1951. [Google Scholar]
- Gromov, I.M.; Gureev, A.A.; Novikov, G.A.; Sokolov, I.I.; Strelkov, P.P.; Chapski, K.K. Mammals of the Fauna of the USSR; USSR Academy of Sciences Press: Moskva-Leningrad, Russia, 1963; p. 639. (In Russian) [Google Scholar]
- Lyapunova, E.A.; Vorontsov, N.N. Genetics of Ellobius (Rodentia). I. Karyological characteristics of four Ellobius species. Genetika 1978, 14, 2012–2024. (in Russian). [Google Scholar]
- Bakloushinskaya, I. Chromosomal evolution in Ellobius (Rodentia). Ellobius alaicus: Structure of karyotype, chromosome variability and hybridization. In Proceedings of the 4th European Congress of Mammalogy, Brno, Czech Republic, 27 July–1 August 2003; Macholán, M., Bryla, J., Zima, J., Eds.; Institute of Vertebrate Biology: Brno, Czech Republic, 2003; p. 55. [Google Scholar]
- Sitnikova, N.A.; Romanenko, S.A.; O’Brien, P.C.; Perelman, P.L.; Fu, B.; Rubtsova, N.V.; Serdukova, N.A.; Golenishchev, F.N.; Trifonov, V.A.; Ferguson-Smith, M.A.; et al. Chromosomal evolution of Arvicolinae (Cricetidae, Rodentia). I. The genome homology of tundra vole, field vole, mouse and golden hamster revealed by comparative chromosome painting. Chromosome Res. 2007, 15, 447–456. [Google Scholar] [CrossRef] [PubMed]
- Romanenko, S.A.; Sitnikova, N.A.; Serdukova, N.A.; Perelman, P.L.; Rubtsova, N.V.; Bakloushinskaya, I.Y.; Lyapunova, E.A.; Just, W.; Ferguson-Smith, M.A.; Yang, F.; et al. Chromosomal evolution of Arvicolinae (Cricetidae, Rodentia). II. The genome homology of two mole voles (genus Ellobius), the field vole and golden hamster revealed by comparative chromosome painting. Chromosome Res. 2007, 15, 891–897. [Google Scholar] [CrossRef] [PubMed]
- Bakloushinskya, I.Y.; Romanenko, S.A.; Graphodatsky, A.S.; Matveevsky, S.N.; Lyapunova, E.A.; Kolomiets, O.L. The role of chromosome rearrangements in the evolution of mole voles of the genus Ellobius (Rodentia, Mammalia). Russ. J. Genet. 2010, 46, 1143–1145. [Google Scholar] [CrossRef]
- Bakloushinskaya, I.Y.; Matveevsky, S.N.; Romanenko, S.A.; Serdukova, N.A.; Kolomiets, O.L.; Spangenberg, V.E.; Lyapunova, E.A.; Graphodatsky, A.S. A comparative analysis of the mole vole sibling species Ellobius tancrei and E. talpinus (Cricetidae, Rodentia) through chromosome painting and examination of synaptonemal complex structures in hybrids. Cytogenet. Genome Res. 2012, 136, 199–207. [Google Scholar] [CrossRef] [PubMed]
- Bakloushinskaya, I.; Romanenko, S.; Serdukova, N.; Graphodatsky, A.; Lyapunova, E. A new form of the mole vole Ellobius tancrei Blasius, 1884 (Mammalia, Rodentia) with the lowest chromosome number. Comp. Cytogenet. 2013, 7, 163–169. [Google Scholar] [CrossRef] [PubMed]
- Matveevsky, S.; Bakloushinskaya, I.; Tambovtseva, V.; Romanenko, S.; Kolomiets, O. Analysis of meiotic chromosome structure and behavior in Robertsonian heterozygotes of Ellobius tancrei (Rodentia, Cricetidae): A case of monobrachial homology. Comp. Cytogenet. 2015, 9, 691–706. [Google Scholar] [CrossRef] [PubMed]
- Moses, M.J. Synaptonemal complex karyotyping in spermatocytes of the Chinese hamster (Cricetulus griseus). I. Morphology of the autosomal complement in spread preparations. Chromosoma 1977, 60, 99–125. [Google Scholar] [CrossRef] [PubMed]
- Dresser, M.E.; Moses, M.J. Synaptonemal complex karyotyping in spermatocytes of the Chinese hamster (Cricetulus griseus). IV. Light and electron microscopy of synapsis and nucleolar development by silver staining. Chromosoma 1980, 76, 1–22. [Google Scholar] [CrossRef] [PubMed]
- Kolomiets, O.L.; Matveevsky, S.N.; Bakloushinskaya, I.Y. Sexual dimorphism in prophase I of meiosis in the Northern mole vole (Ellobius talpinus Pallas, 1770) with isomorphic (XX) chromosomes in males and females. Comp. Cytogenet. 2010, 4, 55–66. [Google Scholar] [CrossRef]
- Matveevsky, S.; Bakloushinskaya, I.; Kolomiets, O. Unique sex chromosome systems in Ellobius: How do male XX chromosomes recombine and undergo pachytene chromatin inactivation? Sci. Rep. 2016, 6, 29949. [Google Scholar] [CrossRef] [PubMed]
- Spangenberg, V.; Arakelyan, M.; Galoyan, E.; Matveevsky, S.; Petrosyan, R.; Bogdanov, Y.; Danielyan, F.; Kolomiets, O. Reticulate Evolution of the Rock Lizards: Meiotic Chromosome Dynamics and Spermatogenesis in Diploid and Triploid Males of the Genus Darevskia. Genes 2017, 8, 149. [Google Scholar] [CrossRef] [PubMed]
- Sánchez, A.; Bullejos, M.; Burgos, M.; Hera, C.; Jiménez, R.; de la Guardia, R.D. High sequence identity between the Sry HMG box from humans and insectivores. Mamm. Genome 1996, 7, 536–538. [Google Scholar]
- Sambrook, J.; Fritsch, E.F.; Maniatis, T. Molecular Cloning: A Laboratory Manual; Cold Spring Harbor Laboratory Press: New York, NY, USA, 1989; p. 4877. [Google Scholar]
- Ronquist, F.; Teslenko, M.; van der Mark, P.; Ayres, D.L.; Darling, A.; Höhna, S.; Larget, B.; Liu, L.; Suchard, M.A.; Huelsenbeck, J.P. MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 2012, 61, 539–542. [Google Scholar] [CrossRef] [PubMed]
- Kolomiets, O.L.; Lyapunova, E.A.; Mazurova, T.F.; Yanina, I.Y.; Bogdanov, Y.F. Varying ways of formation of trivalent synaptonemal complexes in heterozygote hybrids by Robertson’s translocation. In Molecular Mechanisms of Genetic Processes. Molecular Genetics, Evolution and Molecular-Genetic Bases of Selection; Sozinov, A.A., Ed.; Nauka: Moscow, Russia, 1985; pp. 72–84. (In Russian) [Google Scholar]
- Bogdanov, Y.F.; Kolomiets, O.L.; Lyapunova, E.A.; Yanina, I.Y.; Mazurova, T.F. Synaptonemal complexes and chromosome chains in the rodent Ellobius talpinus heterozygous for ten Robertsonian translocations. Chromosoma 1986, 94, 94–102. [Google Scholar] [CrossRef] [PubMed]
- Murata, C.; Kuroki, Y.; Imoto, I.; Kuroiwa, A. Ancestral Y-linked genes were maintained by translocation to the X and Y chromosomes fused to an autosomal pair in the Okinawa spiny rat Tokudaia muenninki. Chromosome Res. 2016, 24, 407–419. [Google Scholar] [CrossRef] [PubMed]
- McKinley, K.L.; Cheeseman, I.M. The molecular basis for centromere identity and function. Nat. Rev. Mol. Cell Biol. 2016, 17, 16–29. [Google Scholar] [CrossRef] [PubMed]
- Allshire, R.C.; Karpen, G.H. Epigenetic regulation of centromeric chromatin: Old dogs, new tricks? Nat. Rev. Genet. 2008, 9, 923. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giunta, S.; Funabiki, H. Integrity of the human centromere DNA repeats is protected by CENP-A, CENP-C, and CENP-T. Proc. Natl. Acad. Sci. USA 2017, 114, 928–1933. [Google Scholar] [CrossRef] [PubMed]
- Black, B.E.; Cleveland, D.W. Epigenetic centromere propagation and the nature of CENP-A nucleosomes. Cell 2011, 144, 471–479. [Google Scholar] [CrossRef] [PubMed]
- Rosin, L.F.; Mellone, B.G. Centromeres Drive a Hard Bargain. Trends Genet. 2017, 33, 101–117. [Google Scholar] [CrossRef] [PubMed]
- Rocchi, M.; Archidiacono, N.; Schempp, W.; Capozzi, O.; Stanyon, R. Centromere repositioning in mammals. Heredity 2012, 108, 59. [Google Scholar] [CrossRef] [PubMed]
- Tolomeo, D.; Capozzi, O.; Stanyon, R.R.; Archidiacono, N.; D’Addabbo, P.; Catacchio, C.R.; Purgato, S.; Perini, G.; Schempp, W.; Huddleston, J.; et al. Epigenetic origin of evolutionary novel centromeres. Sci. Rep. 2017, 7, 41980. [Google Scholar] [CrossRef] [PubMed]
- Voullaire, L.E.; Slater, H.R.; Petrovic, V.; Choo, K.H. A functional marker centromere with no detectable α-satellite, satellite III, or CENP-B protein: Activation of a latent centromere? Am. J. Hum. Genet. 1993, 52, 1153, PMCID:1682274. [Google Scholar] [PubMed]
- Marshall, O.J.; Chueh, A.C.; Wong, L.H.; Choo, K.A. Neocentromeres: New insights into centromere structure, disease development, and karyotype evolution. Am. J. Hum. Genet. 2008, 82, 261–282. [Google Scholar] [CrossRef] [PubMed]
- Pfau, S.J.; Amon, A. Chromosomal Instability and Aneuploidy in Cancer: From Yeast to Man. EMBO Rep. 2012, 13, 515–527. [Google Scholar] [CrossRef] [PubMed]
- Topp, C.N.; Okagaki, R.J.; Melo, J.R.; Kynast, R.G.; Phillips, R.L.; Dawe, R.K. Identification of a maize neocentromere in an oat-maize addition line. Cytogenet. Genome Res. 2009, 124, 228–238. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.; Zhang, Z.; Liu, C.; Liu, J.; Huang, S.; Jiang, J.; Jin, W. Centromere repositioning in cucurbit species: Implication of the genomic impact from centromere activation and inactivation. Proc. Natl. Acad. Sci. USA 2009, 106, 14937–14941. [Google Scholar] [CrossRef] [PubMed]
- Carbone, L.; Nergadze, S.G.; Magnani, E.; Misceo, D.; Cardone, M.F.; Roberto, R.; Bertoni, L.; Attolini, C.; Piras, M.F.; de Jong, P.; et al. Evolutionary movement of centromeres in horse, donkey, and zebra. Genomics 2006, 87, 777–782. [Google Scholar] [CrossRef] [PubMed]
- Piras, F.M.; Nergadze, S.G.; Magnani, E.; Bertoni, L.; Attolini, C.; Khoriauli, L.; Raimondi, E.; Giulotto, E. Uncoupling of satellite DNA and centromeric function in the genus Equus. PLoS Genet. 2010, 6, e1000845. [Google Scholar] [CrossRef] [PubMed]
- Montefalcone, G.; Tempesta, S.; Rocchi, M.; Archidiacono, N. Centromere repositioning. Genome Res. 1999, 9, 1184–1188. [Google Scholar] [CrossRef] [PubMed]
- Moses, M.J.; Poorman, P.A. Synaptonemal complex analysis of mouse chromosomal rearrangements. Chromosoma 1981, 81, 519–535. [Google Scholar] [CrossRef] [PubMed]
- Matveevsky, S.N. Signs of Sexual Dimorphism in Meiosis and Karyotype Variability of Mole Vole Ellobius (Rodentia, Mammalia). Ph.D. Thesis, NI Vavilov Institute of General Genetics of Russian Academy of Science, Moscow, Russia, 2011; pp. 1–172. (In Russian). [Google Scholar]
- Bogdanov, A.S.; Lebedev, V.S.; Zykov, A.E.; Bakloushinskaya, I.Y. Variability of cytochrome b gene and adjacent part of tRNA-Thr gene of mitochondrial DNA in the northern mole vole Ellobius talpinus (Mammalia, Rodentia). Russ. J. Genet. 2015, 51, 1243–1248. [Google Scholar] [CrossRef]
- Kobayashi, T.; Yamada, F.; Hashimoto, T.; Abe, S.; Matsuda, Y.; Kuroiwa, A. Centromere repositioning in the X chromosome of XO/XO mammals, Ryukyu spiny rat. Chromosome Res. 2008, 16, 587–593. [Google Scholar] [CrossRef] [PubMed]
- Lyapunova, E.A.; Vorontsov, N.N.; Korobitsina, K.V.; Ivanitskaya, E.Y.; Borisov, Y.M.; Yakimenko, L.V.; Dovgal, V.Y. A Robertsonian fan in Ellobius talpinus. Genetica 1980, 52/53, 239–247. [Google Scholar] [CrossRef]
- Lyapunova, E.A.; Ivnitskii, S.B.; Korablev, V.P.; Yanina, I.Y. Complete Robertsonian fan of the chromosomal forms in the mole-vole superspecies Ellobius talpinus. Proc. USSR Acad. Sci. 1984, 274, 1209–1213. (In Russian) [Google Scholar]
- Lyapunova, E.A.; Bakloushinskaya, I.Y.; Saidov, A.S.; Saidov, K.K. Dynamics of chromosome variation in mole voles Ellobius tancrei (Mammalia, Rodentia) in Pamiro-Alay in the period from 1982 to 2008. Russ. J. Genet. 2010, 45, 566–571. [Google Scholar] [CrossRef]
- Lyapunova, E.A.; Bakloushinskaya, I.Y.; Kolomiets, O.L.; Mazurova, T.F. Analysis of fertility of hybrids of multi chromosomal forms in mole voles of the superspecies Ellobius tancrei differing in a single pair of Robertsonian metacentrics. Proc. USSR Acad. Sci. 1990, 310, 721–723. (In Russian) [Google Scholar]
- Bakloushinskaya, I.Y.; Lyapunova, E.A. History of study and evolutionary significance of wide Robertsonian variability in mole voles Ellobius tancrei s.l. (Mammalia, Rodentia). In Problems of Evolution; Kryukov, A.P., Ed.; Dalnauka: Vladivostok, Russia, 2003; Volume 5, pp. 114–126. [Google Scholar]
- Baker, R.J.; Bickham, J.W. Speciation by monobrachial centric fusions. Proc. Natl. Acad. Sci. USA 1986, 83, 8245–8248. [Google Scholar] [CrossRef] [PubMed]
- Nunes, A.C.; Catalan, J.; Lopez, J.; da Graça Ramalhinho, M.; da Luz Mathias, M.; Britton-Davidian, J. Fertility assessment in hybrids between monobrachially homologous Rb races of the house mouse from the island of Madeira: Implications for modes of chromosomal evolution. Heredity 2011, 106, 348–356. [Google Scholar] [CrossRef] [PubMed]
- Potter, S.; Moritz, C.; Eldridge, M.D. Gene flow despite complex Robertsonian fusions among rock-wallaby (Petrogale) species. Biol. Lett. 2015, 11, 20150731. [Google Scholar] [CrossRef] [PubMed]
- Potter, S.; Bragg, J.G.; Blom, M.P.; Deakin, J.E.; Kirkpatrick, M.; Eldridge, M.D.; Moritz, C. Chromosomal speciation in the genomics era: Disentangling phylogenetic evolution of rock-wallabies. Front. Genet. 2017, 8, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Britton-Davidian, J.; Caminade, P.; Davidian, E.; Pagès, M. Does chromosomal change restrict gene flow between house mouse populations (Mus musculus domesticus)? Evidence from microsatellite polymorphisms. Biol. J. Linn. Soc. 2017, 122, 224–240. [Google Scholar] [CrossRef]
- Storchova, Z.; Pellman, D. From polyploidy to aneuploidy, genome instability and cancer. Nat. Rev. Mol. Cell Biol. 2004, 5, 45. [Google Scholar] [CrossRef] [PubMed]
- Brodsky, V.Y. Cell ploidy in the mammalian heart. In The Development and Regenerative Potential of Cardiac Muscle; Oberpriller, J.O., Oberpriller, J.C., Mauro, A., Eds.; Harwood Academic Publishers: New York, NY, USA, 1991; pp. 253–292. [Google Scholar]
- Anisimov, A.P.; Zyumchenko, N.E. Evolutionary regularities of development of somatic polyploidy in salivary glands of gastropod mollusks: V. Subclasses Opisthobranchia and Pulmonata. Cell Tissue Biol. 2012, 6, 268–279. [Google Scholar] [CrossRef]
- Solari, A.J.; Moses, M.J. Synaptonemal complexes in a tetraploid mouse spermatocyte. Exp. Cell Res. 1977, 108, 464–467. [Google Scholar] [CrossRef]
- Codina-Pascual, M.; Navarro, J.; Egozcue, J.; Benet, J. A human tetraploid pachytene spermatocyte as the possible origin of diploid sperm: A case report. Hum. Reprod. 2006, 21, 1795–1797. [Google Scholar] [CrossRef] [PubMed]
- Gregory, T.R.; Mable, B.K. Polyploidy in animals. In The Evolution of the Genome; Gregory, T.R., Ed.; Elsevier Academic Press: Burlington, MA, USA, 2005; pp. 427–517. [Google Scholar]
- Stenberg, P.; Saura, A. Meiosis and its deviations in polyploid animals. Cytogenet. Genome Res. 2013, 140, 185–203. [Google Scholar] [CrossRef] [PubMed]
- Vorontsov, N.N.; Lyapunova, E.A.; Zakaryan, G.G.; Ivanov, V.G. Karyology and taxonomy of the genus Ellobius (Microtinae, Rodentia). In The Mammals: Evolution, Karyology, Faunistics, Systematics; Vorontsov, N.N., Ed.; Nauka: Novosibirsk, Russia, 1969; pp. 127–129. (in Russian) [Google Scholar]
- Bowles, J.; Schepers, G.; Koopman, P. Phylogeny of the SOX family of developmental transcription factors based on sequence and structural indicators. Dev. Biol. 2000, 227, 239–255. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Koopman, P. SRY protein function in sex determination: Thinking outside the box. Chromosome Res. 2012, 20, 153–162. [Google Scholar] [CrossRef] [PubMed]
- Bullejos, M.; Sánchez, A.; Burgos, M.; Hera, C.; Jiménez, R. Multiple, polymorphic copies of SRY in both males and females of the vole Microtus cabrerae. Cytogenet. Genome Res. 1997, 79, 167–171. [Google Scholar] [CrossRef]
- Fernández, R.; Barragán, M.J.; Bullejos, M.; Marchal, J.A.; Martínez, S.; de la Guardia, R.D.; Sánchez, A. Mapping the Sry gene in Microtus cabrerae: A vole species with multiple Sry copies in males and females. Genome 2002, 45, 600–603. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Quinn, A.; Ng, E.T.; Veyrunes, F.; Koopman, P. Reduced Activity of SRY and its target enhancer Sox9-TESCO in a mouse species with X* Y sex reversal. Sci. Rep. 2017, 7, 41378. [Google Scholar] [CrossRef] [PubMed]
- Yamauchi, Y.; Riel, J.M.; Ruthig, V.A.; Ortega, E.A.; Mitchell, M.J.; Ward, M.A. Two genes substitute for the mouse Y chromosome for spermatogenesis and reproduction. Science 2016, 351, 514–516. [Google Scholar] [CrossRef] [PubMed]
- Graves, J.A.M. Did sex chromosome turnover promote divergence of the major mammal groups? Bioessays 2016, 38, 734–743. [Google Scholar] [CrossRef] [PubMed]
- Ohno, S. Sex Chromosomes and Sex-Linked Genes; Springer-Verlag: Berlin/Heidelberg, Germany; New York, NY, USA, 1967; p. 191. [Google Scholar]
- Graves, J.A.M.; Watson, J.M. Mammalian sex chromosomes: Evolution of organization and function. Chromosoma 1991, 101, 63–68. [Google Scholar] [CrossRef] [PubMed]
- Charlesworth, B.; Charlesworth, D. The degeneration of Y chromosomes. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2000, 355, 1563–1572. [Google Scholar] [CrossRef] [PubMed]
- Сharlesworth, D.; Charlesworth, B.; Marais, G. Steps in the evolution of heteromorphic sex chromosomes. Heredity 2005, 95, 118–128. [Google Scholar] [CrossRef] [PubMed]
- Ezaz, T.; Stiglec, R.; Veyrunes, F.; Graves, J.A.M. Relationships between vertebrate ZW and XY sex chromosome systems. Curr. Biol. 2006, 16, R736–R743. [Google Scholar] [CrossRef] [PubMed]
- Graves, J.A.M. Sex chromosome specialization and degeneration in mammals. Cell 2006, 124, 901–914. [Google Scholar] [CrossRef] [PubMed]
- Rice, W.R. Evolution of the Y Sex Chromosome. Anim. Biosci. 1996, 46, 331–343. [Google Scholar] [CrossRef]
- Lyapunova, E.A.; Vorontsov, N.N.; Zakarjan, G.G. Zygotic mortality in Ellobius lutescens (Rodentia: Microtinae). Experientia 1975, 31, 417–418. [Google Scholar] [CrossRef] [PubMed]
- Vicoso, B.; Charlesworth, B. Evolution on the X chromosome: Unusual patterns and processes. Nat. Rev. Genet. 2006, 7, 645–653. [Google Scholar] [CrossRef] [PubMed]
- Bachtrog, D.; Mank, J.E.; Peichel, C.L.; Kirkpatrick, M.; Otto, S.P.; Ashman, T.L.; Hahn, M.W.; Kitano, J.; Mayrose, I.; Ming, R.; et al. Sex determination: Why so many ways of doing it? PLoS Biol. 2014, 12, e1001899. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blackmon, H.; Demuth, J.P. The fragile Y hypothesis: Y chromosome aneuploidy as a selective pressure in sex chromosome and meiotic mechanism evolution. BioEssays 2015, 37, 942–950. [Google Scholar] [CrossRef] [PubMed]
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matveevsky, S.; Kolomiets, O.; Bogdanov, A.; Hakhverdyan, M.; Bakloushinskaya, I. Chromosomal Evolution in Mole Voles Ellobius (Cricetidae, Rodentia): Bizarre Sex Chromosomes, Variable Autosomes and Meiosis. Genes 2017, 8, 306. https://doi.org/10.3390/genes8110306
Matveevsky S, Kolomiets O, Bogdanov A, Hakhverdyan M, Bakloushinskaya I. Chromosomal Evolution in Mole Voles Ellobius (Cricetidae, Rodentia): Bizarre Sex Chromosomes, Variable Autosomes and Meiosis. Genes. 2017; 8(11):306. https://doi.org/10.3390/genes8110306
Chicago/Turabian StyleMatveevsky, Sergey, Oxana Kolomiets, Alexey Bogdanov, Mikhayil Hakhverdyan, and Irina Bakloushinskaya. 2017. "Chromosomal Evolution in Mole Voles Ellobius (Cricetidae, Rodentia): Bizarre Sex Chromosomes, Variable Autosomes and Meiosis" Genes 8, no. 11: 306. https://doi.org/10.3390/genes8110306
APA StyleMatveevsky, S., Kolomiets, O., Bogdanov, A., Hakhverdyan, M., & Bakloushinskaya, I. (2017). Chromosomal Evolution in Mole Voles Ellobius (Cricetidae, Rodentia): Bizarre Sex Chromosomes, Variable Autosomes and Meiosis. Genes, 8(11), 306. https://doi.org/10.3390/genes8110306