Non-Coding RNAs in Pediatric Airway Diseases
Abstract
:1. Introduction
2. NcRNA Studies in Asthma
3. NcRNA Studies in Cystic Fibrosis
4. Role of ncRNAs in Epithelial Function during Repair
5. NcRNAs as Mediators of Epithelial Response to Environmental Stimuli
5.1. Bacterial and Viral Respiratory Infections
5.2. Pollution
5.3. Cigarette Smoke
6. Perspectives
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Xie, N.; Liu, G. ncRNA-regulated immune response and its role in inflammatory lung diseases. Am. J. Physiol. Lung Cell. Mo.l Physiol. 2015, 309, 1076–1087. [Google Scholar] [CrossRef] [PubMed]
- Clark, M.B.; Choudhary, A.; Smith, M.A.; Taft, R.J.; Mattick, J.S. The dark matter rises: the expanding world of regulatory RNAs. Essays Biochem. 2013, 54, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Mercer, T.R.; Dinger, M.E.; Mattick, J.S. Long non-coding rnas: Insights into functions. Nat. Rev. Genet. 2009, 10, 155–159. [Google Scholar] [CrossRef] [PubMed]
- Kim, V.N. MicroRNA biogenesis: Coordinated cropping and dicing. Nat. Rev. Mol. Cell Biol. 2005, 6, 376–385. [Google Scholar] [CrossRef] [PubMed]
- Friedman, R.C.; Farh, K.K.; Burge, C.B.; Bartel, D.P. Most mammalian mRNAs are conserved targets of microRNAs. Genome Res. 2009, 19, 92–105. [Google Scholar] [CrossRef] [PubMed]
- He, L.; Hannon, G.J. MicroRNAs: Small RNAs with a big role in gene regulation. Nat. Rev. Genet. 2004, 5, 522–531. [Google Scholar] [CrossRef] [PubMed]
- Iwasaki, Y.W.; Siomi, M.C.; Siomi, H. PIWI-interacting RNA: Its biogenesis and functions. Annu. Rev. Biochem. 2015, 84, 405–433. [Google Scholar] [CrossRef] [PubMed]
- Zhong, F.; Zhou, N.; Wu, K.; Guo, Y.; Tan, W.; Zhang, H.; Zhang, X.; Geng, G.; Pan, T.; Luo, H.; et al. A SnoRNA-derived piRNA interacts with human interleukin-4 pre-mRNA and induces its decay in nuclear exosomes. Nucleic Acids Res. 2015, 43, 10474–10491. [Google Scholar] [PubMed]
- Quinn, J.J.; Chang, H.Y. Unique features of long non-coding RNA biogenesis and function. Nat. Rev. Genet. 2016, 17, 47–62. [Google Scholar] [CrossRef] [PubMed]
- Ponting, C.P.; Oliver, P.L.; Reik, W. Evolution and functions of long noncoding RNAs. Cell 2009, 136, 629–641. [Google Scholar] [CrossRef] [PubMed]
- Gutschner, T.; Diederichs, S. The hallmarks of cancer: a long non-coding RNA point of view. RNA Biol. 2012, 9, 703–719. [Google Scholar] [CrossRef] [PubMed]
- Rinn, J.L.; Chang, H.Y. Genome regulation by long noncoding RNAs. Annu. Rev. Biochem. 2012, 81, 145–166. [Google Scholar] [CrossRef] [PubMed]
- Gallach, S.; Calabuig-Farinas, S.; Jantus-Lewintre, E.; Camps, C. MicroRNAs: Promising new antiangiogenic targets in cancer. BioMed. Res. Int. 2014. [Google Scholar] [CrossRef] [PubMed]
- Kent, O.A.; Mendell, J.T. A small piece in the cancer puzzle: microRNAs as tumor suppressors and oncogenes. Oncogene 2006, 25, 6188–6196. [Google Scholar] [CrossRef] [PubMed]
- Benson, M.; Svensson, P.A.; Carlsson, B.; Jernas, M.; Reinholdt, J.; Cardell, L.O.; Carlsson, L. DNA microarrays to study gene expression in allergic airways. Clin. Exp. Allergy 2002, 32, 301–308. [Google Scholar] [CrossRef] [PubMed]
- Gladkevich, A.; Nelemans, S.A.; Kauffman, H.F.; Korf, J. Microarray profiling of lymphocytes in internal diseases with an altered immune response: Potential and methodology. Mediators Inflamm. 2005, 2005, 317–330. [Google Scholar] [CrossRef] [PubMed]
- Ono, S.J.; Nakamura, T.; Ohbayashi, M.; Dawson, M.; Ikeda, Y.; Nugent, A.K.; Toda, M.; Jay, G. Expression profiling: Opportunities and pitfalls and impact on the study and management of allergic diseases. J. Allergy Clin. Immunol. 2003, 112, 1050–1056. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Qin, H.B.; Xu, B.; Zhou, H.; Zhao, D.Y. Profiling of miRNAs in pediatric asthma: Upregulation of miRNA-221 and miRNA-485-3p. Mol. Med. Rep. 2012, 6, 1178–1182. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Yang, Q.; Xu, H.; Zhang, J.; Deng, H.; Gao, H.; Yang, J.; Zhao, D.; Liu, F. miRNA-221-3p enhances the secretion of interleukin-4 in mast cells through the phosphatase and tensin homolog/p38/nuclear factor-kappab pathway. PLoS ONE 2016, 11. [Google Scholar] [CrossRef] [PubMed]
- Qin, H.B.; Xu, B.; Mei, J.J.; Li, D.; Liu, J.J.; Zhao, D.Y.; Liu, F. Inhibition of miRNA-221 suppresses the airway inflammation in asthma. Inflammation 2012, 35, 1595–1599. [Google Scholar] [CrossRef] [PubMed]
- Mayoral, R.J.; Deho, L.; Rusca, N.; Bartonicek, N.; Saini, H.K.; Enright, A.J.; Monticelli, S. MiR-221 influences effector functions and actin cytoskeleton in mast cells. PLoS ONE 2011, 6. [Google Scholar] [CrossRef] [PubMed]
- Perry, M.M.; Baker, J.E.; Gibeon, D.S.; Adcock, I.M.; Chung, K.F. Airway smooth muscle hyperproliferation is regulated by microRNA-221 in severe asthma. Am. J. Respir. Cell Mol. Biol. 2014, 50, 7–17. [Google Scholar] [CrossRef] [PubMed]
- Pinkerton, M.; Chinchilli, V.; Banta, E.; Craig, T.; August, A.; Bascom, R.; Cantorna, M.; Harvill, E.; Ishmael, F.T. Differential expression of microRNAs in exhaled breath condensates of patients with asthma, patients with chronic obstructive pulmonary disease, and healthy adults. J. Allergy Clin. Immunol. 2013, 132, 217–219. [Google Scholar] [CrossRef] [PubMed]
- Levanen, B.; Bhakta, N.R.; Torregrosa Paredes, P.; Barbeau, R.; Hiltbrunner, S.; Pollack, J.L.; Skold, C.M.; Svartengren, M.; Grunewald, J.; Gabrielsson, S.; et al. Altered microRNA profiles in bronchoalveolar lavage fluid exosomes in asthmatic patients. J. Allergy Clin. Immunol. 2013, 131, 894–903. [Google Scholar] [CrossRef] [PubMed]
- Suojalehto, H.; Lindstrom, I.; Majuri, M.L.; Mitts, C.; Karjalainen, J.; Wolff, H.; Alenius, H. Altered microRNA expression of nasal mucosa in long-term asthma and allergic rhinitis. Int. Arch. Allergy Immunol. 2014, 163, 168–178. [Google Scholar] [CrossRef] [PubMed]
- Sawant, D.V.; Yao, W.; Wright, Z.; Sawyers, C.; Tepper, R.S.; Gupta, S.K.; Kaplan, M.H.; Dent, A.L. Serum microRNA-21 as a biomarker for allergic inflammatory disease in children. Microrna 2015, 4, 36–40. [Google Scholar] [CrossRef] [PubMed]
- Lu, T.X.; Munitz, A.; Rothenberg, M.E. MicroRNA-21 is up-regulated in allergic airway inflammation and regulates il-12p35 expression. J. Immunol. 2009, 182, 4994–5002. [Google Scholar] [CrossRef] [PubMed]
- Lu, T.X.; Hartner, J.; Lim, E.J.; Fabry, V.; Mingler, M.K.; Cole, E.T.; Orkin, S.H.; Aronow, B.J.; Rothenberg, M.E. MicroRNA-21 limits in vivo immune response-mediated activation of the IL-12/ifn-gamma pathway, Th1 polarization, and the severity of delayed-type hypersensitivity. J. Immunol. 2011, 187, 3362–3373. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.B.; Wang, M.Y.; Zhu, H.Y.; Tang, S.Q.; You, Y.D.; Xie, Y.Q. Overexpression of microRNA-21 and microRNA-126 in the patients of bronchial asthma. Int. J. Clin. Exp. Med. 2014, 7, 1307–1312. [Google Scholar] [PubMed]
- Collison, A.; Herbert, C.; Siegle, J.S.; Mattes, J.; Foster, P.S.; Kumar, R.K. Altered expression of microRNA in the airway wall in chronic asthma: miR-126 as a potential therapeutic target. BMC Pulm. Med. 2011, 11, 29. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.W.; Li, K.; Hellermann, G.; Lockey, R.F.; Mohapatra, S.; Mohapatra, S. Regulating the regulators: microRNA and asthma. World Allergy Organ. J. 2011, 4, 94–103. [Google Scholar] [CrossRef] [PubMed]
- Taganov, K.D.; Boldin, M.P.; Chang, K.J.; Baltimore, D. NF-kappaB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proc. Natl. Acad. Sci. USA 2006, 103, 12481–12486. [Google Scholar] [CrossRef] [PubMed]
- Tsitsiou, E.; Williams, A.E.; Moschos, S.A.; Patel, K.; Rossios, C.; Jiang, X.; Adams, O.D.; Macedo, P.; Booton, R.; Gibeon, D.; et al. Transcriptome analysis shows activation of circulating CD8+ T cells in patients with severe asthma. J. Allergy Clin. Immunol. 2012, 129, 95–103. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, M.; Singh, A.; Ruan, J.; Gauvreau, G.M.; O’Byrne, P.M.; Carlsten, C.R.; FitzGerald, J.M.; Boulet, L.P.; Tebbutt, S.J. Decreased miR-192 expression in peripheral blood of asthmatic individuals undergoing an allergen inhalation challenge. BMC genomics 2012, 13, 655. [Google Scholar] [CrossRef] [PubMed]
- Lacedonia, D.; Palladino, G.P.; Foschino-Barbaro, M.P.; Scioscia, G.; Carpagnano, G.E. Expression profiling of miRNA-145 and miRNA-338 in serum and sputum of patients with copd, asthma, and asthma-copd overlap syndrome phenotype. Int. J. Chron. Obstruct. Pulmon. Dis. 2017, 12, 1811–1817. [Google Scholar] [CrossRef] [PubMed]
- Maes, T.; Cobos, F.A.; Schleich, F.; Sorbello, V.; Henket, M.; De Preter, K.; Bracke, K.R.; Conickx, G.; Mesnil, C.; Vandesompele, J.; et al. Asthma inflammatory phenotypes show differential microRNA expression in sputum. J. Allergy Clin. Immunol. 2016, 137, 1433–1446. [Google Scholar] [CrossRef] [PubMed]
- Malmhall, C.; Johansson, K.; Winkler, C.; Alawieh, S.; Ekerljung, L.; Radinger, M. Altered miR-155 expression in allergic asthmatic airways. Scand. J. Immunol. 2017, 85, 300–307. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Nunez, R.T.; Bondanese, V.P.; Louafi, F.; Francisco-Garcia, A.S.; Rupani, H.; Bedke, N.; Holgate, S.; Howarth, P.H.; Davies, D.E.; Sanchez-Elsner, T. A microRNA network dysregulated in asthma controls IL-6 production in bronchial epithelial cells. PLoS ONE 2014, 9. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez, A.; Vigorito, E.; Clare, S.; Warren, M.V.; Couttet, P.; Soond, D.R.; van Dongen, S.; Grocock, R.J.; Das, P.P.; Miska, E.A.; et al. Requirement of bic/microRNA-155 for normal immune function. Science 2007, 316, 608–611. [Google Scholar] [CrossRef] [PubMed]
- Haj-Salem, I.; Fakhfakh, R.; Berube, J.C.; Jacques, E.; Plante, S.; Simard, M.J.; Bosse, Y.; Chakir, J. MicroRNA-19a enhances proliferation of bronchial epithelial cells by targeting TGFβR2 gene in severe asthma. Allergy 2015, 70, 212–219. [Google Scholar] [CrossRef] [PubMed]
- Jardim, M.J.; Dailey, L.; Silbajoris, R.; Diaz-Sanchez, D. Distinct microRNA expression in human airway cells of asthmatic donors identifies a novel asthma-associated gene. Am. J. Respir. Cell Mol. Biol. 2012, 47, 536–542. [Google Scholar] [CrossRef] [PubMed]
- Marcet, B.; Chevalier, B.; Luxardi, G.; Coraux, C.; Zaragosi, L.E.; Cibois, M.; Robbe-Sermesant, K.; Jolly, T.; Cardinaud, B.; Moreilhon, C.; et al. Control of vertebrate multiciliogenesis by miR-449 through direct repression of the delta/notch pathway. Nat. Cell Biol. 2011, 13, 693–699. [Google Scholar] [CrossRef] [PubMed]
- Bartel, S.; Schulz, N.; Alessandrini, F.; Schamberger, A.C.; Pagel, P.; Theis, F.J.; Milger, K.; Noessner, E.; Stick, S.M.; Kicic, A.; et al. Pulmonary microRNA profiles identify involvement of Creb1 and Sec14l3 in bronchial epithelial changes in allergic asthma. Sci. Rep. 2017, 7, 46026. [Google Scholar] [CrossRef] [PubMed]
- Austin, P.J.; Tsitsiou, E.; Boardman, C.; Jones, S.W.; Lindsay, M.A.; Adcock, I.M.; Chung, K.F.; Perry, M.M. Transcriptional profiling identifies the long noncoding RNA plasmacytoma variant translocation (PVT1) as a novel regulator of the asthmatic phenotype in human airway smooth muscle. J. Allergy Clin. Immunol. 2017, 139, 780–789. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.Y.; Zhang, L.X.; Tian, C.J.; Tang, X.Y.; Zhao, L.M.; Guo, Y.L.; Cheng, D.J.; Chen, X.L.; Ma, L.J.; Chen, Z.C. LncRNAs BCYRN1 promoted the proliferation and migration of rat airway smooth muscle cells in asthma via upregulating the expression of transient receptor potential 1. Am. J. Transl. Res. 2016, 8, 3409–3418. [Google Scholar] [PubMed]
- Polikepahad, S.; Knight, J.M.; Naghavi, A.O.; Oplt, T.; Creighton, C.J.; Shaw, C.; Benham, A.L.; Kim, J.; Soibam, B.; Harris, R.A.; et al. Proinflammatory role for let-7 microRNAs in experimental asthma. J. Biol. Chem. 2010, 285, 30139–30149. [Google Scholar] [CrossRef] [PubMed]
- Comer, B.S.; Camoretti-Mercado, B.; Kogut, P.C.; Halayko, A.J.; Solway, J.; Gerthoffer, W.T. MicroRNA-146a and microRNA-146b expression and anti-inflammatory function in human airway smooth muscle. Am. J. Physiol. Lung Cell Mol. Physiol. 2014, 307, 727–734. [Google Scholar] [CrossRef] [PubMed]
- Jazdzewski, K.; Murray, E.L.; Franssila, K.; Jarzab, B.; Schoenberg, D.R.; de la Chapelle, A. Common SNP in pre-miR-146a decreases mature miR expression and predisposes to papillary thyroid carcinoma. Proc. Natl. Acad. Sci. USA 2008, 105, 7269–7274. [Google Scholar] [CrossRef] [PubMed]
- Jimenez-Morales, S.; Gamboa-Becerra, R.; Baca, V.; Del Rio-Navarro, B.E.; Lopez-Ley, D.Y.; Velazquez-Cruz, R.; Saldana-Alvarez, Y.; Salas-Martinez, G.; Orozco, L. MiR-146a polymorphism is associated with asthma but not with systemic lupus erythematosus and juvenile rheumatoid arthritis in Mexican patients. Tissue Antigens 2012, 80, 317–321. [Google Scholar] [CrossRef] [PubMed]
- Toraih, E.A.; Hussein, M.H.; Al Ageeli, E.; Riad, E.; AbdAllah, N.B.; Helal, G.M.; Fawzy, M.S. Structure and functional impact of seed region variant in MIR-499 gene family in bronchial asthma. Respir. Res. 2017, 18, 169. [Google Scholar] [CrossRef] [PubMed]
- Trinh, H.K.T.; Pham, D.L.; Kim, S.C.; Kim, R.Y.; Park, H.S.; Kim, S.H. Association of the miR-196a2, miR-146a, and miR-499 polymorphisms with asthma phenotypes in a Korean population. Mol. Diagn. Ther. 2017. [Google Scholar] [CrossRef] [PubMed]
- Kho, A.T.; Sharma, S.; Davis, J.S.; Spina, J.; Howard, D.; McEnroy, K.; Moore, K.; Sylvia, J.; Qiu, W.; Weiss, S.T.; et al. Circulating MicroRNAs: Association with lung function in asthma. PLoS ONE 2016, 11. [Google Scholar] [CrossRef] [PubMed]
- Gon, Y.; Maruoka, S.; Inoue, T.; Kuroda, K.; Yamagishi, K.; Kozu, Y.; Shikano, S.; Soda, K.; Lotvall, J.; Hashimoto, S. Selective release of miRNAs via extracellular vesicles is associated with house dust mite allergen-induced airway inflammation. Clin. Exp. Allergy 2017. [Google Scholar] [CrossRef] [PubMed]
- Solberg, O.D.; Ostrin, E.J.; Love, M.I.; Peng, J.C.; Bhakta, N.R.; Hou, L.; Nguyen, C.; Solon, M.; Barczak, A.J.; Zlock, L.T.; et al. Airway epithelial miRNA expression is altered in asthma. Am. J. Respir. Crit. Care Med. 2012, 186, 965–974. [Google Scholar] [CrossRef] [PubMed]
- Williams, A.E.; Larner-Svensson, H.; Perry, M.M.; Campbell, G.A.; Herrick, S.E.; Adcock, I.M.; Erjefalt, J.S.; Chung, K.F.; Lindsay, M.A. MicroRNA expression profiling in mild asthmatic human airways and effect of corticosteroid therapy. PLoS ONE 2009, 4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sweeney, M.; McDaniel, S.S.; Platoshyn, O.; Zhang, S.; Yu, Y.; Lapp, B.R.; Zhao, Y.; Thistlethwaite, P.A.; Yuan, J.X. Role of capacitative Ca2+ entry in bronchial contraction and remodeling. J. Appl. Physiol. (1985) 2002, 92, 1594–1602. [Google Scholar] [CrossRef] [PubMed]
- Britto, M.T.; Kotagal, U.R.; Hornung, R.W.; Atherton, H.D.; Tsevat, J.; Wilmott, R.W. Impact of recent pulmonary exacerbations on quality of life in patients with cystic fibrosis. Chest 2002, 121, 64–72. [Google Scholar] [CrossRef] [PubMed]
- Megiorni, F.; Cialfi, S.; Cimino, G.; De Biase, R.V.; Dominici, C.; Quattrucci, S.; Pizzuti, A. Elevated levels of miR-145 correlate with SMAD3 down-regulation in cystic fibrosis patients. J. Cyst. Fibros. 2013, 12, 797–802. [Google Scholar] [CrossRef] [PubMed]
- Megiorni, F.; Cialfi, S.; Dominici, C.; Quattrucci, S.; Pizzuti, A. Synergistic post-transcriptional regulation of the cystic fibrosis transmembrane conductance regulator (CFTR) by miR-101 and miR-494 specific binding. PLoS ONE 2011, 6. [Google Scholar] [CrossRef] [PubMed]
- Gillen, A.E.; Gosalia, N.; Leir, S.H.; Harris, A. MicroRNA regulation of expression of the cystic fibrosis transmembrane conductance regulator gene. Biochem. J. 2011, 438, 25–32. [Google Scholar] [CrossRef] [PubMed]
- Oglesby, I.K.; Chotirmall, S.H.; McElvaney, N.G.; Greene, C.M. Regulation of cystic fibrosis transmembrane conductance regulator by microRNA-145, -223, and -494 is altered in ∆F508 cystic fibrosis airway epithelium. J. Immunol. 2013, 190, 3354–3362. [Google Scholar] [CrossRef] [PubMed]
- Ramachandran, S.; Karp, P.H.; Osterhaus, S.R.; Jiang, P.; Wohlford-Lenane, C.; Lennox, K.A.; Jacobi, A.M.; Praekh, K.; Rose, S.D.; Behlke, M.A.; et al. Post-transcriptional regulation of cystic fibrosis transmembrane conductance regulator expression and function by microRNAs. Am. J. Respir. Cell Mol. Biol. 2013, 49, 544–551. [Google Scholar] [CrossRef] [PubMed]
- Ramachandran, S.; Karp, P.H.; Jiang, P.; Ostedgaard, L.S.; Walz, A.E.; Fisher, J.T.; Keshavjee, S.; Lennox, K.A.; Jacobi, A.M.; Rose, S.D.; et al. A microRNA network regulates expression and biosynthesis of wild-type and DeltaF508 mutant cystic fibrosis transmembrane conductance regulator. Proc. Natl. Acad. Sci. USA 2012, 109, 13362–13367. [Google Scholar] [CrossRef] [PubMed]
- Amato, F.; Seia, M.; Giordano, S.; Elce, A.; Zarrilli, F.; Castaldo, G.; Tomaiuolo, R. Gene mutation in microRNA target sites of CFTR gene: A novel pathogenetic mechanism in cystic fibrosis? PLoS ONE 2013, 8. [Google Scholar] [CrossRef] [PubMed]
- Kumar, P.; Bhattacharyya, S.; Peters, K.W.; Glover, M.L.; Sen, A.; Cox, R.T.; Kundu, S.; Caohuy, H.; Frizzell, R.A.; Pollard, H.B.; et al. miR-16 rescues F508del-CFTR function in native cystic fibrosis epithelial cells. Gene Ther. 2015, 22, 908–916. [Google Scholar] [CrossRef] [PubMed]
- Endale Ahanda, M.L.; Bienvenu, T.; Sermet-Gaudelus, I.; Mazzolini, L.; Edelman, A.; Zoorob, R.; Davezac, N. The hsa-miR-125a/hsa-let-7e/hsa-miR-99b cluster is potentially implicated in cystic fibrosis pathogenesis. J. Cyst. Fibros. 2015, 14, 571–579. [Google Scholar] [CrossRef] [PubMed]
- Sonneville, F.; Ruffin, M.; Coraux, C.; Rousselet, N.; Le Rouzic, P.; Blouquit-Laye, S.; Corvol, H.; Tabary, O. MicroRNA-9 downregulates the ANO1 chloride channel and contributes to cystic fibrosis lung pathology. Nat. Commun. 2017, 8. [Google Scholar] [CrossRef] [PubMed]
- Rebane, A.; Akdis, C.A. MicroRNAs: Essential players in the regulation of inflammation. J. Allergy Clin. Immunol. 2013, 132, 15–26. [Google Scholar] [CrossRef] [PubMed]
- McKiernan, P.J.; Molloy, K.; Cryan, S.A.; McElvaney, N.G.; Greene, C.M. Long noncoding RNA are aberrantly expressed in vivo in the cystic fibrosis bronchial epithelium. Int. J. Biochem. Cell Biol. 2014, 52, 184–191. [Google Scholar] [CrossRef] [PubMed]
- Oglesby, I.K.; Agrawal, R.; Mall, M.A.; McElvaney, N.G.; Greene, C.M. miRNA-221 is elevated in cystic fibrosis airway epithelial cells and regulates expression of ATF6. Mol. Cell Pediatr. 2015, 2. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharyya, S.; Balakathiresan, N.S.; Dalgard, C.; Gutti, U.; Armistead, D.; Jozwik, C.; Srivastava, M.; Pollard, H.B.; Biswas, R. Elevated miR-155 promotes inflammation in cystic fibrosis by driving hyperexpression of interleukin-8. J. Biol. Chem. 2011, 286, 11604–11615. [Google Scholar] [CrossRef] [PubMed]
- Oglesby, I.K.; Bray, I.M.; Chotirmall, S.H.; Stallings, R.L.; O'Neill, S.J.; McElvaney, N.G.; Greene, C.M. miR-126 is downregulated in cystic fibrosis airway epithelial cells and regulates TOM1 expression. J. Immunol. 2010, 184, 1702–1709. [Google Scholar] [CrossRef] [PubMed]
- Weldon, S.; McNally, P.; McAuley, D.F.; Oglesby, I.K.; Wohlford-Lenane, C.L.; Bartlett, J.A.; Scott, C.J.; McElvaney, N.G.; Greene, C.M.; McCray, P.B., Jr.; et al. miR-31 dysregulation in cystic fibrosis airways contributes to increased pulmonary cathepsin S production. Am. J. Respir. Crit. Care Med. 2014, 190, 165–174. [Google Scholar] [CrossRef] [PubMed]
- Saayman, S.M.; Ackley, A.; Burdach, J.; Clemson, M.; Gruenert, D.C.; Tachikawa, K.; Chivukula, P.; Weinberg, M.S.; Morris, K.V. Long non-coding RNA BGas regulates the cystic fibrosis transmembrane conductance regulator. Mol. Ther. 2016, 24, 1351–1357. [Google Scholar] [CrossRef] [PubMed]
- Zarrilli, F.; Amato, F.; Morgillo, C.M.; Pinto, B.; Santarpia, G.; Borbone, N.; D'Errico, S.; Catalanotti, B.; Piccialli, G.; Castaldo, G.; et al. Peptide nucleic acids as miRNA target protectors for the treatment of cystic fibrosis. Molecules 2017, 22. [Google Scholar] [CrossRef] [PubMed]
- Holgate, S.T. The airway epithelium is central to the pathogenesis of asthma. Allergol. Int. 2008, 57, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Ganesan, S.; Comstock, A.T.; Sajjan, U.S. Barrier function of airway tract epithelium. Tissue Barriers 2013, 1. [Google Scholar] [CrossRef] [PubMed]
- Rogers, D.F. The airway goblet cell. Int. J. Biochem. Cell Biol. 2003, 35, 1–6. [Google Scholar] [CrossRef]
- Crosby, L.M.; Waters, C.M. Epithelial repair mechanisms in the lung. Am. J. Physiol. Lung Cell. Mol. Physiol. 2010, 298. [Google Scholar] [CrossRef] [PubMed]
- Holgate, S.T.; Roberts, G.; Arshad, H.S.; Howarth, P.H.; Davies, D.E. The role of the airway epithelium and its interaction with environmental factors in asthma pathogenesis. Proc. Am. Thorac. Soc. 2009, 6, 655–659. [Google Scholar] [CrossRef] [PubMed]
- Cantin, A.M.; Hartl, D.; Konstan, M.W.; Chmiel, J.F. Inflammation in cystic fibrosis lung disease: Pathogenesis and therapy. J. Cyst. Fibros. 2015, 14, 419–430. [Google Scholar] [CrossRef] [PubMed]
- Szczepankiewicz, A.; Lackie, P.M.; Holloway, J.W. Altered microRNA expression profile during epithelial wound repair in bronchial epithelial cells. BMC Pulm. Med. 2013, 13. [Google Scholar] [CrossRef] [PubMed]
- Narozna, B.; Langwinski, W.; Jackson, C.; Lackie, P.; Holloway, J.W.; Szczepankiewicz, A. MicroRNA-328 is involved in wound repair process in human bronchial epithelial cells. Respir. Physiol. Neurobiol. 2017, 242, 59–65. [Google Scholar] [CrossRef] [PubMed]
- Balloy, V.; Koshy, R.; Perra, L.; Corvol, H.; Chignard, M.; Guillot, L.; Scaria, V. Bronchial epithelial cells from cystic fibrosis patients express a specific long non-coding RNA signature upon pseudomonas aeruginosa infection. Front. Cell. Infect. Microbiol. 2017, 7. [Google Scholar] [CrossRef] [PubMed]
- Rossi, G.A.; Silvestri, M.; Colin, A.A. Respiratory syncytial virus infection of airway cells: Role of microRNAs. Pediatr. Pulmonol. 2015, 50, 727–732. [Google Scholar] [CrossRef] [PubMed]
- Inchley, C.S.; Sonerud, T.; Fjaerli, H.O.; Nakstad, B. Nasal mucosal microRNA expression in children with respiratory syncytial virus infection. BMC infect. Dis. 2015, 15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Q.; Lee, I.; Ren, J.; Ajay, S.S.; Lee, Y.S.; Bao, X. Identification and functional characterization of tRNA-derived RNA fragments (tRFs) in respiratory syncytial virus infection. Mol. Ther. 2013, 21, 368–379. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Liu, S.; Chen, Y.; Fu, Y.; Silver, A.J.; Hill, M.S.; Lee, I.; Lee, Y.S.; Bao, X. Identification of two novel functional tRNA-derived fragments induced in response to respiratory syncytial virus infection. J. Gen. Virol. 2017, 98, 1600–1610. [Google Scholar] [CrossRef] [PubMed]
- Deng, J.; Ptashkin, R.N.; Wang, Q.; Liu, G.; Zhang, G.; Lee, I.; Lee, Y.S.; Bao, X. Human metapneumovirus infection induces significant changes in small noncoding RNA expression in airway epithelial cells. Mol. Ther. Nucleic Acids 2014, 3. [Google Scholar] [CrossRef] [PubMed]
- Song, D.J. Rhinovirus and childhood asthma: An update. Korean J. Pediatr. 2016, 59, 432–439. [Google Scholar] [CrossRef] [PubMed]
- Gutierrez, M.J.; Gomez, J.L.; Perez, G.F.; Pancham, K.; Val, S.; Pillai, D.K.; Giri, M.; Ferrante, S.; Freishtat, R.; Rose, M.C.; et al. Airway secretory microRNAome changes during rhinovirus infection in early childhood. PLoS ONE 2016, 11. [Google Scholar] [CrossRef] [PubMed]
- Jardim, M.J.; Fry, R.C.; Jaspers, I.; Dailey, L.; Diaz-Sanchez, D. Disruption of microRNA expression in human airway cells by diesel exhaust particles is linked to tumorigenesis-associated pathways. Environ. Health Perspect. 2009, 117, 1745–1751. [Google Scholar] [CrossRef] [PubMed]
- Bleck, B.; Grunig, G.; Chiu, A.; Liu, M.; Gordon, T.; Kazeros, A.; Reibman, J. MicroRNA-375 regulation of thymic stromal lymphopoietin by diesel exhaust particles and ambient particulate matter in human bronchial epithelial cells. J. Immunol. 2013, 190, 3757–3763. [Google Scholar] [CrossRef] [PubMed]
- Fry, R.C.; Rager, J.E.; Bauer, R.; Sebastian, E.; Peden, D.B.; Jaspers, I.; Alexis, N.E. Air toxics and epigenetic effects: Ozone altered microRNAs in the sputum of human subjects. Am. J. Physiol. Lung Cell. Mol. Physiol. 2014, 306. [Google Scholar] [CrossRef] [PubMed]
- Izzotti, A.; Calin, G.A.; Arrigo, P.; Steele, V.E.; Croce, C.M.; De Flora, S. Downregulation of microRNA expression in the lungs of rats exposed to cigarette smoke. FASEB J 2009, 23, 806–812. [Google Scholar] [CrossRef] [PubMed]
- Schembri, F.; Sridhar, S.; Perdomo, C.; Gustafson, A.M.; Zhang, X.; Ergun, A.; Lu, J.; Liu, G.; Zhang, X.; Bowers, J.; et al. MicroRNAs as modulators of smoking-induced gene expression changes in human airway epithelium. Proc. Natl. Acad. Sci. USA 2009, 106, 2319–2324. [Google Scholar] [CrossRef] [PubMed]
- Solleti, S.K.; Bhattacharya, S.; Ahmad, A.; Wang, Q.; Mereness, J.; Rangasamy, T.; Mariani, T.J. MicroRNA expression profiling defines the impact of electronic cigarettes on human airway epithelial cells. Sci. Rep. 2017, 7. [Google Scholar] [CrossRef] [PubMed]
Class of ncRNA | Regulation | Tissue/Cell Type | Species | Condition/Treatment | Validated Target Gene | Ref. |
---|---|---|---|---|---|---|
miR-221 | ↑ | Peripheral blood | Human | Asthma | Spred-2 | [18] |
Lungs | Mouse | Asthma model | ||||
↑ | Lungs | Mouse | Asthma model | PTEN | [19] | |
P815 mast cells | Mouse | Asthma model | ||||
↓ | Eosinophils (BALF) | Mouse | Anti-sense miR-221 | - | [20] | |
↑ | BMMCs | Mouse | miR-221 overexpression | Cdkn1b, Kit, Il2Ra | [21] | |
↑ | ASM | Human | Asthma | p27kip1, p21WAF1 | [22] | |
let-7 | ↓ | EBC | Human | Asthma | - | [23] |
↓ | BALF | Human | Asthma | - | [24] | |
↓ | Nasal biopsies | Human | Asthma | - | [25] | |
miR-21 | ↑ | Serum | Human | Asthma | - | [26] |
↑ | Lungs | Mouse | OVA, Aspergillus fumigatus, IL-13 | IL-12p35 | [27] | |
↓ | Lungs | Mouse | miR-21 knock-out | - | [28] | |
↑ | BECs | Human | Asthma | - | [29] | |
↓ | EBC | Human | Asthma | - | [23] | |
miR-126 | ↑ | Lungs | Mouse | OVA sensitization | - | [30] |
↑ | BECs | Human | Asthma | - | [29] | |
↓ | Lungs | Mouse | OVA sensitization (miR-126 inhibitor) | - | [30,31] | |
↓ | Nasal biopsies | Human | Asthma | - | [25] | |
miR-146 | ↑ | THP-1 cells | Human | LPS and pro-inflammatory cytokines induction | IRAK1, TRAF6 | [32] |
↓ | CD4+ and CD8+ cells | Human | Asthma | - | [33] | |
miR-192 | ↓ | Peripheral blood | Human | Asthma | - | [34] |
miR-485-3p | ↑ | Whole lung | Mouse | Asthma model | Spred-2 | [18,20] |
Peripheral blood | Human | Asthma | ||||
miR-223-3p, miR-629-3p, miR-142-3p, miR-338, miR-145 | ↑ | Sputum | Human | Mild-to-moderate asthma | - | [35,36] |
miR-155 | ↓ | Sputum | Human | Asthma | - | [37] |
↓ | Bronchial epithelium | Human | Asthma | IL-6, IL-8 | [38] | |
↓ | Lungs/BALF | Mouse | miR-155 knock-out | c-Maf | [39] | |
↓ | Nasal biopsies | Human | Asthma | - | [25] | |
↓ | EBC | Human | Asthma | - | [23] | |
miR-19a | ↑ | HBEpC | Human | Asthma | TGF-βR2 | [40] |
miR-200 | ↓ | BALF | Human | Asthma | - | [24] |
miR-1248, miR-328, miR-133 | ↓ | EBC | Human | Asthma | - | [23] |
miR-203 | ↓ | HBEpC | Human | Asthma | [41] | |
miR-449 | ↓ | HAECs | Human | AntagomiR-449a/b | DLL1, NOTCH1 | [42] |
miR-18a | ↓ | BECs | Human | Asthma | - | [38] |
↓ | Nasal biopsies | Human | Asthma | - | [25] | |
miR-27a, miR-128 | ↓ | BECs | Human | Asthma | SMAD2 | [38] |
miR-224 | ↓ | Nasal biopsies | Human | Asthma | - | [25] |
miR-498, miR-197, miR-874 miR-143, miR-886-3p | ↑ | Nasal biopsies | Human | Asthma | - | [25] |
miR-17, miR-144 | ↑ | Lungs | Mouse | OVA-sensitization | Creb1 | [43] |
miR-22 | ↓ | Lungs | Mouse | OVA-sensitization | Creb1 | |
piR-30840 | ↑ | CD4+ cells | Human | Asthma | IL-4 | [8] |
LINC00472, RP5-1158E12.3, FKBP1A-SDCBP2 | ASMCs | Human | Non-severe and severe asthma | - | [44] | |
PVT1 | ↑ | ASM | Human | Upregulated in patients with severe asthma as compared to patients with non-severe asthma | - | |
BCYRN1 | ↑ | Lungs | Rat | Asthma model | TRPC1 | [45] |
Class of ncRNA | Regulation | Tissue/Cell Type | Validated Target Genes | Ref. |
---|---|---|---|---|
miR-145, miR-384, miR-494, miR-1246 | - | Caco-2 cell line | CFTR | [60,62] |
miR-101, miR-494 | ↑ (mimic) | HEK293 | CFTR repressed | [59] |
miR-145, miR-223, miR-494 | ↑ | bronchial brushings | CFTR | [61] |
miR-509-3p, miR-494 | ↑ | primary airway epithelial cells, Calu3 | CFTR decreased | [62] |
miR-138 | ↑ (mimic) | primary airway epithelial cells, Calu-3, HEK293T, HeLa, CFBE | CFTR increased SIN3A repressed, | [63] |
miR-16 | ↑ (mimic) | IB3-1 CF lung epithelial cells, CFPAC-1 cells | CFTR increased | [65] |
miR-9 | ↑ | CFBE41o-, 16HBE14o- | ANO1 | [67] |
miR-17 | ↓ | bronchial cells | Enhanced IL-8 | [70] |
miR-155 | ↑ | lung epithelial cells | SHIP1 reduced | [71] |
miR-145 | ↑ | nasal epithelium | SMAD3 | [58] |
miR-126 | ↓ | bronchial brushings | TOM1 | [72] |
miR-221, miR-145, miR-494 | ↑ | CFBE41o-, 16HBE14o-, bronchial brushings | ATF | [70] |
miR-31 | ↓ | PBECs, CFBE41o-, 16HBE14o-, 9HTEo-, CFTE29o- | CTSS, IRF-1 | [73] |
XIST HOTAIR, MALAT, TLR8-AS1 | ↑ ↓ | bronchial brushings | - TLR8 | [69] |
BGas | ↓ (inhibition) | CFPAC cells, 1HAEo-, CFBE41o-, 16HBE14o- | CFTR increased | [74] |
Class of ncRNA | Regulation | Tissue/Cell Type | Species | Condition/Treatment | Validated Target Genes | Ref. |
---|---|---|---|---|---|---|
lcRNAs: MEG9, BLACAT1, RP11-477I4.4, RP11-1334A24.5 | ↓ | bronchial epithelial cells | humans | CF + Pseudomonas aeruginosa | - | [84] |
miR-34b, miR-34c, miR-125b, miR-29c, mir125a, miR-429 miR-27b | ↑ | nasal epithelium brushings | humans | RSV | - | [86] |
miR-155, miR-31, miR-203a, miR-16 and let-7d | ↓ | - | ||||
tRF5-GluCTC | ↑ | lung carcinoma cell line (A549) | humans | RSV | - | [87] |
tRF5-GlyCCC, tRF5-LysCT | ↑ | lung carcinoma cell line (A549) | humans | RSV | - | [88] |
let-7f | ↑ | lung carcinoma cell line (A549) | humans | hMPV | - | [89] |
miR-155 | ↑ | nasal airway secretions | humans | RV | - | [91] |
miR-513c, miR-513b, miR-513a-5p, miR-923, miR-494, miR-338-5p, | ↑ | bronchial epithelial cells | humans | DEP | - | [92] |
miR-31-3p, miR-26b, miR-96, miR-27a, miR-135b, miR-374a | ↓ | - | ||||
miR-375 | ↑ | bronchial epithelial cells | humans | DEP, APM | TSLP, AhR | [93] |
miR-132, miR-143, miR-145, miR-199a-3p, miR-199b-5p, miR-222, miR-223, miR-25, miR-424 and miR-582-5p | ↑ | sputum | humans | Ozone | - | [94] |
let-7, miR-10, miR-26, miR-30, miR-34, miR-99, miR-122, miR-123, miR-124, miR-125, miR-140, miR-145, miR-146, miR-191, miR-192, miR-219, miR-222, and miR-223 | ↓ | lung biopsies | rats | ECS | - | [95] |
hsa-miR-337, hsa-miR-18a-3p, hsa-miR-189, hsa-miR-365, hsa-miR-181d | ↑ | bronchial epithelial cells | humans | ECS | - | [96] |
hsa-miR-10b, hsa-miR-150, hsa-miR-338, hsa-miR-362, hsa-miR-17-3p, hsa-miR-15a, hsa-miR-652, hsa-miR-106b, hsa-miR-19b, hsa-miR-106a, hsa-miR-128a, hsa-miR-30a-3p, hsa-miR-128b, hsa-miR-130a, hsa-miR-500, hsa-miR-363, hsa-miR-199b, hsa-miR-223, hsa-miR-625, hsa-miR-99a, hsa-miR-125b, hsa-miR-146a | ↓ | - | ||||
hsa-miR-218 | ↓ | MAFG, NAC-1, ECOP, LASP1 | ||||
miR-126a-3p, miR-126-5p, miR-140-5p, miR129a-5p, miR374a-3p, miR-147b | ↑ | bronchial epithelial cells | humans | EC | - | [97] |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Narożna, B.; Langwiński, W.; Szczepankiewicz, A. Non-Coding RNAs in Pediatric Airway Diseases. Genes 2017, 8, 348. https://doi.org/10.3390/genes8120348
Narożna B, Langwiński W, Szczepankiewicz A. Non-Coding RNAs in Pediatric Airway Diseases. Genes. 2017; 8(12):348. https://doi.org/10.3390/genes8120348
Chicago/Turabian StyleNarożna, Beata, Wojciech Langwiński, and Aleksandra Szczepankiewicz. 2017. "Non-Coding RNAs in Pediatric Airway Diseases" Genes 8, no. 12: 348. https://doi.org/10.3390/genes8120348
APA StyleNarożna, B., Langwiński, W., & Szczepankiewicz, A. (2017). Non-Coding RNAs in Pediatric Airway Diseases. Genes, 8(12), 348. https://doi.org/10.3390/genes8120348