Comparative Analysis of Four Calypogeia Species Revealed Unexpected Change in Evolutionarily-Stable Liverwort Mitogenomes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Genome Sequencing, Assembly and Annotation
2.2. Prediction of RNA Editing Sites
3. Results and Discussion
3.1. Mitogenome Structure
3.2. Possible Mechanisms of Intron Losses in Two Genes of Calypogeia
4. Conclusions
Supplementary Materials:
Acknowledgments
Author Contributions
Conflicts of Interest
References and Note
- Lang, B.F.; Laforest, M.-J.; Burger, G. Mitochondrial introns: A critical view. Trends Genet. 2007, 23, 119–125. [Google Scholar] [CrossRef] [PubMed]
- Saldanha, R.; Mohr, G.; Belfort, M.; Lambowitz, A.M. Group I and group II introns. FASEB J. 1993, 7, 15–24. [Google Scholar] [PubMed]
- Eickbush, T.H. Mobile introns: Retrohoming by complete reverse splicing. Curr. Biol. 1999, 9, R11–R14. [Google Scholar] [CrossRef]
- Simon, D.M.; Clarke, N.A.; McNeil, B.A.; Johnson, I.; Pantuso, D.; Dai, L.; Chai, D.; Zimmerly, S. Group II introns in eubacteria and archea: ORF-less introns and new varieties. RNA 2008, 14, 1704–1713. [Google Scholar] [CrossRef] [PubMed]
- Haugen, P.; Reeb, V.; Lutzoni, F.; Bhattacharya, D. The evolution of homing endonuclease genes and group I introns in nuclear rDNA. Mol. Biol. Evol. 2004, 21, 129–140. [Google Scholar] [CrossRef] [PubMed]
- Michel, F.; Ferat, J.L. Structure and activities of group II introns. Annu. Rev. Biochem. 1995, 64, 435–461. [Google Scholar] [CrossRef] [PubMed]
- Knoop, V.; Brennicke, A. Promiscuous mitochondrial group II intron sequences in plant nuclear genomes. J. Mol. Evol. 1997, 39, 144–150. [Google Scholar]
- Lin, X.; Kaul, S.; Rounsley, S.; Shea, T.P.; Benito, M.I.; Town, C.D.; Fujii, C.Y.; Mason, T.; Bowman, C.L.; Barnstead, M.; et al. Sequence and analysis of chromosome 2 of the plant Arabidopsis thaliana. Nature 1999, 402, 761–768. [Google Scholar] [CrossRef] [PubMed]
- Haugen, P.; Simon, D.M.; Bhattacharya, D. The natural history of group I introns. Trends Genet. 2005, 21, 111–119. [Google Scholar] [CrossRef] [PubMed]
- Hepburn, N.J.; Schmidt, D.W.; Mower, J.P. Loss of two introns from the Magnolia tripetala mitochondrial cox2 gene implicates horizontal gene transfer and gene conversion as a novel mechanism of intron loss. Mol. Biol. Evol. 2012, 29, 3111–3120. [Google Scholar] [CrossRef] [PubMed]
- Pruchner, D.; Nassal, B.; Schindler, M.; Knoop, V. Mosses share mitochondrial group II introns with flowering plants, not with liverworts. Mol. Genet. Genom. 2001, 266, 608–613. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Xue, J.-Y.; Wang, B.; Li, L.; Qiu, Y.-L. The mitochondrial genomes of the early land plants Treubia lacunosa and Anomodon rugelii: Dynamic and conservative evolution. PLoS ONE 2011, 6, e25836. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Wang, B.; Li, L.; Qiu, Y.-L.; Xue, J.-Y. Conservative and dynamic evolution of mitochondrial genomes in early land plants. In Genomics of Chloroplasts and Mitochondria; Bock, R., Knoop, V., Eds.; Springer: Dordrecht, The Netherlands, 2012; pp. 159–174. [Google Scholar]
- Fink, G.R. Pseudogenes in yeast? Cell 1987, 49, 5–6. [Google Scholar] [CrossRef]
- Derr, L.K.; Strathern, J.N. A role for reverse transcripts in gene conversion. Nature 1993, 361, 170–173. [Google Scholar] [CrossRef] [PubMed]
- Mourier, T.; Jeffares, D.C. Eucaryotic intron loss. Science 2003, 300, 1393. [Google Scholar] [CrossRef] [PubMed]
- Cohen, N.E.; Shen, R.; Carmel, L. The role of reverse transcriptase in intron gain and loss machanisms. Mol. Biol. Evol. 2013, 29, 179–186. [Google Scholar] [CrossRef] [PubMed]
- Cuenca, A.; Ross, G.; Graham, S.W.; Barrett, C.F.; Davis, J.I.; Seberg, O.; Petersen, G. Localized retroprocessing as a model of intron loss in the plant mitochondrial genome. Genome Biol. Evol. 2016, 8, 2176–2189. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.-Y.; Yang, Y.-F.; Niu, D.-K. Evaluation of models of the mechanisms underlying intron loss and gain in Aspergillus fungi. J. Mol. Evol. 2010, 71, 364–373. [Google Scholar] [CrossRef] [PubMed]
- Dhellin, O.; Maestre, J.; Heidmann, T. Functional differences between the human LINE retrotrasposon and retroviral reverse transcriptases for in vivo mRNA reverse transcription. EMBO J. 1997, 16, 6590–6602. [Google Scholar] [CrossRef] [PubMed]
- Odom, O.W.; Herrin, D.L. Reverse transcription of spliced psbA mRNA in Chlamydomonas spp. and its possible role in evolutionary intron loss. Mol. Biol. Evol. 2013, 30, 2666–2675. [Google Scholar] [CrossRef] [PubMed]
- Grewe, F.; Herres, S.; Viehöver, P.; Polsakiewicz, M.; Weisshaar, B.; Knoop, V. A unique transcriptome: 1782 positions of RNA editing alter 1406 codon indetities in mitochondrial mRNAs of the lycophyte Isoëtes engelmannii. Nucleic Acids Res. 2011, 39, 2890–2902. [Google Scholar] [CrossRef] [PubMed]
- Ran, J.H.; Gao, H.; Wang, X.Q. Fast evolution of the retroprocessed mitochondrial rps3 gene in Conifer II and further evidence for the phylogeny of gymnosperms. Mol. Phylogenet. Evol. 2010, 54, 136–149. [Google Scholar] [CrossRef] [PubMed]
- Coulombe-Huntington, J.; Majewski, J. Intron loss and gain in Drosophila. Mol. Biol. Evol. 2007, 24, 2842–2850. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Zheng, H.; Yang, S.; Yu, S.; Li, J.; Jiang, H.; Su, J.; Yang, L.; Zhang, J.; McDermott, J.; et al. Origin and evolution of new exons in rodents. Genome Res. 2005, 15, 1258–1264. [Google Scholar] [CrossRef] [PubMed]
- Schmitz, J.; Brosius, J. Exonization of transposed elements: A challenge and opportunity for evolution. Biochimie 2011, 93, 1928–1934. [Google Scholar] [CrossRef] [PubMed]
- Pruitt, K.D.; Hanson, M.R. Cytochrome oxidase subunit II sequences in Petunia mitochondria: Two intron-containing genes and an intron-less pseudogene associated with cytoplasmic male sterility. Curr. Genet. 1989, 16, 281–291. [Google Scholar] [CrossRef] [PubMed]
- Schuster, R.M. The Hepaticae and Anthocerotae of North America East of the Hundredth Meridian; Columbia Univeristy Press: New York, NY, USA, 1969; Volume 2, p. 1062. ISBN 0231089821. [Google Scholar]
- Buch, H. Vorarbeiten zu einer Lebermoosflora Fenno-Scandias III. Die Gattung Calypogeia Raddi. Mem. Soc. F. Fl. Fenn. 1935, 11, 197–214. [Google Scholar]
- Bischler, H. The genus Calypogeia Raddi in Central and South America. I-III. Candollea 1963, 18, 19–128. [Google Scholar]
- Dauphin, G. Catalogue of Costa Rican Hepaticae and Anthocerotae. Trop. Bryol. 2005, 26, 141–218. [Google Scholar]
- Szweykowski, J. Species problems and taxonomic methods in Bryophytes. In The New Manual of Bryology; Schuster, R.M., Ed.; Hattori Botanical Laboratory: Nichinan, Japan, 1984; Volume 2, pp. 1130–1171. [Google Scholar]
- Buczkowska, K.; Odrzykoski, I.J.; Chudzińska, E. Delimitation of some European species of Calypogeia Raddi (Hepaticae, Jungermanniales) based on cytological characters of oil modies and multienzyme phenotype. Nova Hedwigia 2004, 78, 147–163. [Google Scholar] [CrossRef]
- Buczkowska, K.; Dabert, M. The development of species-specific SCAR markers for delimitation of Calypogeia species. J. Bryol. 2011, 33, 291–299. [Google Scholar] [CrossRef]
- Oda, K.; Yamato, K.; Ohta, E.; Nakamura, Y.; Takemura, M.; Nozato, N.; Akashi, K.; Kanegae, T.; Ogura, Y.; Kohchi, T.; et al. Gene organization deduced from the complete sequence of liverwort Marchantia polymorpha mitochondrial DNA—A primitive form of plant mitochondrial genome. J. Mol. Biol. 1992, 223, 1–7. [Google Scholar] [CrossRef]
- Wang, B.; Xue, J.; Li, L.; Liu, Y.; Qiu, Y.-L. The complete mitochondrial genome sequence of the liverwort Pleurozia purpurea reveals extremely conservative mitochondrial genome evolution in liverworts. Curr. Genet. 2009, 55, 601. [Google Scholar] [CrossRef] [PubMed]
- Myszczyński, K.; Bączkiewicz, A.; Szczecińska, M.; Buczkowska, K.; Kulik, T.; Sawicki, J. The complete mitochondrial genome of the cryptic species C of Aneura pinguis. Mitochondrial DNA Part A 2017, 28, 112–113. [Google Scholar] [CrossRef] [PubMed]
- Ohyama, K.; Fukuzawa, H.; Kohchi, T.; Shirai, H.; Sano, T.; Sano, S.; Umesono, K.; Shiki, Y.; Takeuchi, M.; Chang, Z.; et al. Chloroplast gene organization deduced from complete sequence of liverwort Marchantia polymorpha chloroplast DNA. Nature 1984, 322, 572–574. [Google Scholar] [CrossRef]
- Ohyama, K.; Fukuzawa, H.; Kohchi, T.; Sano, T.; Sano, S.; Shirai, H.; Umesono, K.; Shiki, Y.; Takeuchi, M.; Chang, Z.; et al. Structure and organization of Marchantia polymorpha chloroplast genome. I. Cloning and gene identification. J. Mol. Biol. 1988, 203, 281–298. [Google Scholar] [CrossRef]
- Wickett, N.J.; Zhang, Y.; Hansen, S.K.; Roper, J.M.; Kuehl, J.V.; Plock, S.A.; Wolf, P.G.; dePamphilis, C.W.; Boore, J.L.; Goffinet, B. Functional gene losses occur with minimal size reduction in the plastid genome of the parasitic liverwort Aneura mirabilis. Mol. Biol. Evol. 2008, 25, 393–401. [Google Scholar] [CrossRef] [PubMed]
- Forrest, L.L.; Wickett, N.J.; Cox, C.J.; Goffinet, B. Deep sequencing of Ptilidium (Ptilidiaceae) suggests evolutionary stasis in liverwort plastid genome structure. Plant Ecol. Evol. 2011, 144, 29–43. [Google Scholar] [CrossRef]
- Grosche, C.; Funk, H.T.; Maier, U.G.; Zauner, S. The chloroplast genome of Pellia endiviifolia: Gene content, RNA-editing pattern, and the origin of chloroplast editing. Genome Biol. Evol. 2012, 4, 1349–1357. [Google Scholar] [CrossRef] [PubMed]
- Myszczyński, K.; Bączkiewicz, A.; Buczkowska, K.; Ślipiko, M.; Szczecińska, M.; Sawicki, J. The extraordinary variation of the organellar genomes of the Aneura pinguis revealed advanced cryptic speciation of the early land plants. Sci. Rep. 2017, 7, 9804. [Google Scholar] [CrossRef] [PubMed]
- Kearse, M.; Moir, R.; Wilson, A.; Stones-Havas, S.; Cheung, M.; Sturrock, S.; Buxton, S.; Cooper, A.; Markowitz, S.; Duran, C.; et al. Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 2012, 28, 1647–1649. [Google Scholar] [CrossRef] [PubMed]
- Johnson, M.; Zaretskaya, I.; Raytselis, Y.; Merezhuk, Y.; McGinnis, S.; Madden, T.L. NCBI BLAST: A better web inerface. Nucleic Acids Res. 2008, 36, W5–W9. [Google Scholar] [CrossRef] [PubMed]
- Lohse, M.; Drechsel, O.; Kahlau, S.; Bock, R. OrganellarGenomeDRAW—A suite of tools for generating physical maps of plastid and mitochondrial genomes and visualizing expression data sets. Nucleic Acids Res. 2013, 41, W575–W581. [Google Scholar] [CrossRef] [PubMed]
- National Center for Biotechnology Information (NCBI) [Internet]. Bethesda (MD): National Library of Medicine (US), National Center for Biotechnology Information. 1988. Available online: www.ncbi.nlm.nih.gov (accessed on 10 March 2017).
- Mower, J.P. The PREP Suite: Predictive RNA editors for plant mitochondrial genes, chloroplast genes and user-defined alignments. Nucleic Acids Res. 2009, 37, W253–W259. [Google Scholar] [CrossRef] [PubMed]
- Lenz, H.; Knoop, V. PERPACT 2.0: Predicting C-to-U and U-to-C RNA editing in organelle genome sequences with multiple references and curated RNA editing annotation. Bioinform. Biol. Insights 2013, 7, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Sawicki, J.; Szczecińska, M.; Kulik, T.; Gomolińska, A.M.; Plášek, V. The complete mitochondrial genome of the epiphytic moss Orthotrichum speciosum. Mitochondrial DNA Part A. 2016, 27, 1709–1710. [Google Scholar]
- Wahrmund, U.; Groth-Malonek, M.; Knoop, V. Tracing plant mitochondrial DNA evolution: Rearrangements of the ancient mitochondrial gene cluster trnA-trnT-nad7 in liverwort phylogeny. J. Mol. Evol. 2008, 66, 621–629. [Google Scholar] [CrossRef] [PubMed]
- Groth-Malonek, M.; Wahrmund, U.; Polsakiewicz, M.; Knoop, V. Evolution of a pseudogene: Exclusive survival of a functional mitochondria nad7 gene supports Haplomitrium as the earliest liverwort lineage and proposes a secondary loss of RNA editing in Marchantiidae. Miol. Biol. Evol. 2007, 24, 1068–1074. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Wang, B.; Liu, Y.; Qiu, Y.-L. The complete mitochondrial genome sequence of the hornwort Megaceros aenigmaticus shows a mixed mode of conservative yet dynamic evolution in early land plant mitochondrial genomes. J. Mol. Evol. 2009, 68, 665–678. [Google Scholar] [CrossRef] [PubMed]
- Xue, J.Y.; Liu, Y.; Li, L.; Wang, B.; Qiu, Y.L. The complete mitochondria genome sequence of the hornwort Phaeoceres laevis: Retention of many ancient pseudogenes and conservative evolution of mitochondrial genomes in hornworts. Curr. Genet. 2010, 56, 53–62. [Google Scholar] [CrossRef] [PubMed]
- Crandall-Stotler, B.; Stotler, R.E.; Long, D.G. Phylogeny and classification of the Marchantiophyta. Edinb. J. Bot. 2009, 66, 155–198. [Google Scholar] [CrossRef]
- Groth-Malonek, M.; Rein, T.; Wilson, R.; Groth, H.; Heinrichs, J.; Knoop, V. Different fates of two mitochondrial gene spacers in early land plant evolution. Int. J. Plant Sci. 2007, 168, 709–717. [Google Scholar] [CrossRef]
- Dombrovska, O.; Qiu, Y.L. Distribution of introns in the mitochondrial gene nad1 in land plants: Phylogenetic and molecular evolutionary implications. Mol. Phylogenet. Evol. 2004, 32, 246–263. [Google Scholar] [CrossRef] [PubMed]
- Knoop, V. The mitochondria DNA of land plants: Peculiarities in phylogenetic perspective. Curr. Genet. 2004, 46, 123–139. [Google Scholar] [CrossRef] [PubMed]
- Geiss, K.T.; Abbas, G.M.; Makaroff, C.A. Intron loss from the NADH dehydrogenase subunit 4 gene of lettuce mitochondrial DNA: Evidence for homologous recombination of a cDNA intermediate. Mol. Gen. Genet. 1994, 243, 97–105. [Google Scholar] [CrossRef] [PubMed]
- Itchoda, N.; Nishizawa, S.; Nagano, H.; Kubo, T.; Mikami, T. The sugar beet mitochondrial nad4 gene: An intron loss and its phylogenetic implication in the Caryophyllales. Theor. Appl. Genet. 2002, 104, 209–213. [Google Scholar] [CrossRef] [PubMed]
- Sloan, D.B.; MacQueen, A.H.; Alverson, A.J.; Palmer, J.D.; Taylor, D.R. Extensive loss of RNA editing sites in rapidly evolving Silene mitochondrial genomes: Selection vs. retroprocessing as the driving force. Genetics 2010, 185, 1369–1380. [Google Scholar] [CrossRef] [PubMed]
- Zumkeller, S.M.; Knoop, V.; Knie, N. Convergent evolution of fern-specific mitochondrial group II intron atp1i361g2 and its ancient source paralogue rps3i249g2 and independent losses of intron and RNA editing among Pteridaceae. Genome Biol. Evol. 2016, 8, 2505–2519. [Google Scholar] [CrossRef] [PubMed]
- Petersen, K.; Schöttler, M.A.; Karcher, D.; Thiele, W.; Bock, R. Elimination of a group II intron from a plastid gene causes a mutant phenotype. Nucleic Acids Res. 2011, 39, 5181–5192. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, C.B.; Friedman, B.; Birren, B.; Burge, C.B.; Galagan, J.E. Patterns of intron gain and loss in fungi. PLoS Biol. 2004, 2, e422. [Google Scholar] [CrossRef] [PubMed]
- Mitogenome of Tritomaria quinquedentata (GenBank, accession number MG640570).
Species | Voucher | Sequencing Results (Total Number of Reads) | Reads Mapped to the Mitogenome (Number of Reads) | Average Read Length (bp) | Mitogenome Length (bp) | Mitogenome Mean Coverage | GenBank Accession Number |
---|---|---|---|---|---|---|---|
Calypogeia arguta | United Kingdom, collection. DC1420 | 383,522,854 | 2,665,062 | 147.9 | 159,061 | 2478.0 | MF401630 |
Calypogeia integristipula | SE Poland, Bieszczady Mts, W slope of Mt Rozsypaniec Wołosacki, 1214 m, collection POZW 41928 | 19,604,000 | 69,739 | 99.6 | 163,057 | 42.6 | MF401629 |
Calypogeia fissa ssp. fissa | W Poland, Lubuskie Province, Biecz forestry, collection POZW 42306 | 22,601,000 | 123,620 | 99.8 | 162,175 | 76.1 | MF401632 |
Calypogeia suecica | SE Poland, Beskid Sądecki Mts, Potok Czarny stream, 717 m, collection POZW 42366 | 12,862,000 | 25,963 | 99.8 | 161,960 | 16.0 | MF401631 |
Gene/Species | Treubia lacunosa | Marchantia polymorpha | Pleurozia purpurea | Aneura pinguis | Calypogeia fissa ssp. fissa | Tritomaria quinquedentata |
---|---|---|---|---|---|---|
atp1 | ● | ● | ● | ● | ● | ● |
atp4 | ● | ● | ● | ● | ● | ● |
atp6 | ● | ● | ● | ● | ● | ● |
atp8 | ● | ● | ● | ● | ● | ● |
atp9 | ● | ● | ● | ● | ● | ● |
ccmB | ψ | ● | ● | ● | ● | ● |
ccmC | □ | ● | ● | ● | ● | ● |
ccmFC | ψ | ● | ● | ● | ● | ● |
ccmFN | □ | ● | ● | ● | ● | ● |
cob | ● | ● | ● | ● | ● | ● |
cox1 | ● | ● | ● | ● | ● | ● |
cox2 | ● | ● | ● | ● | ● | ● |
cox3 | ● | ● | ● | ● | ● | ● |
nad1 | ● | ● | ● | ● | ● | ● |
nad2 | ● | ● | ● | ● | ● | ● |
nad3 | ● | ● | ● | ● | ● | ● |
nad4 | ● | ● | ● | ● | ● | ● |
nad4L | ● | ● | ● | ● | ● | ● |
nad5 | ● | ● | ● | ● | ● | ● |
nad6 | ● | ● | ● | ● | ● | ● |
nad7 | ● | ψ | ψ | ψ | ψ | ψ |
nad9 | ● | ● | ● | ● | ● | ● |
rpl2 | ● | ● | ● | ● | ● | ● |
rpl5 | ● | ● | ● | ● | ● | ● |
rpl6 | ● | ● | ● | ● | ● | ● |
rpl10 | ● | ● | ● | ● | ● | ● |
rpl16 | ● | ● | ● | ● | ● | ● |
rps1 | ● | ● | ● | ● | ● | ● |
rps2 | ● | ● | ● | ● | ● | ● |
rps3 | ● | ● | ● | ● | ● | ● |
rps4 | ● | ● | ● | ● | ● | ● |
rps7 | ● | ● | ● | ● | ● | ● |
rps8 | ● | ● | ● | ● | ● | ● |
rps10 | ● | ● | ● | ● | ● | ● |
rps11 | ● | ● | ● | ● | ● | ● |
rps12 | ● | ● | ● | ● | ● | ● |
rps13 | ● | ● | ● | ● | ● | ● |
rps14 | ● | ● | ● | ● | ● | ● |
rps19 | ● | ● | ● | ● | ● | ● |
rrn5 | ● | ● | ● | ● | ● | ● |
rrn18 | ● | ● | ● | ● | ● | ● |
rrn26 | ● | ● | ● | ● | ● | ● |
rtl | ● | ● | ● a | ● | ● | ● |
sdh3 | ● | ● | ● | ● | ● | ● |
sdh4 | ● | ● | ● | ● | ● | ● |
tatC | ● | ● | ● | ● | ● | ● |
trnAugc | ● | ● | ● | ● | ● | ● |
trnCgca | ● | ● | ● | ● | ● | ● |
trnDguc | ● | ● | ● | ● | ● | ● |
trnEuuc | ● | ● | ● | ● | ● | ● |
trnFgaa | ● | ● | ● | ● | ● | ● |
trnGgcc | ● | ● | ● | ● | ● | ● |
trnGucc | ● | ● | ● | ● | ● | ● |
trnHgug | ● | ● | ● | ● | ● | ● |
trnIcau | ● | ● | ● | ● | ● | ● |
trnKuuu | ● | ● | ● | ● | ● | ● |
trnLcaa | ● | ● | ● | ● | ● | ● |
trnLuaa | ● | ● | ● | ● | ● | ● |
trnLuag | ● | ● | ● | ● | ● | ● |
trnMcau | ● | ● | ● | ● | ● | ● |
trnMfcau | ● | ●● | ●● | ●● | ● | ● |
trnNguu | ● | ● | ● | ● | ● | ● |
trnPugg | ● | ● | ● | ● | ● | ● |
trnQuug | ● | ● | ● | ● | ● | ● |
trnRacg | ● | ● | ● | ● | ● | ● |
trnRucg | □ | ● | □ | □ | □ | □ |
trnRucu | ●● | ● | ●● | ●● | ●● | ●● |
trnSgcu | ● | ● | ● | ● | ● | ● |
trnSuga | ● | ● | ● | ● | ● | ● |
trnTggu | □ | ● | □ | □ | □ | □ |
trnVuac | ● | ● | ● | ● | ● | ● |
trnWcca | ● | ● | ● | ● | ● | ● |
trnYgua | ●● | ●● | ●● | ●● | ●● | ●● |
Intron/Species | Treubia lacunosa | Marchantia polymorpha | Pleurozia purpurea | Aneura pinguis | Calypogeia fissa ssp. fissa | Tritomaria quinquedentata |
---|---|---|---|---|---|---|
atp1i989g2 | □ | ● | ● | ● | □ | □ |
atp1i1050g2 | □ | ● | ● | ● | □ | □ |
atp9i87g2 | ● | ● | ● | ● | ● | ● |
cobi372g2 | ● | ● | ● | ● | ● | ● |
cobi783g2 | ● | ● | ● | ● | ● | ● |
cobi824g2 | ● | ● | ● | ● | ● | ● |
cox1i44g2 | ● | ● | ● | ● | ● | ● |
cox1i178g2 | ● | ● | ● | ● | ● | ● |
cox1i375g1 | ● | ● | ● | ● | ● | ● |
cox1i395g1 | ● | ● | ● | ● | □ | □ |
cox1i511g2 | ● | ● | ● | ● | ● | ● |
cox1i624g1 | ● | ● | ● | ● | □ | □ |
cox1i729g1 | ● | ● | ● | ● | □ | □ |
cox1i1116g1 | ● | ● | ● | ● | ● | □ |
cox1i1305g1 | ● | ● | ● | ● | ● | ● |
cox2i97g2 | ● | ● | ● | ● | ● | ● |
cox2i250g2 | ● | ● | ● | ● | ● | ● |
cox3i171g2 | ● | ● | ● | ● | ● | ● |
cox3i625g2 | ● | ● | ● | ● | ● | ● |
nad2i709g2 | ● | ● | ● | ● | ● | ● |
nad3i140g2 | ● | ● | ● | ● | ● | ● |
nad4i548g2 | ● | ● | ● | ● | ● | ● |
nad4Li100g2 | ● | ● | ● | ● | ● | ● |
nad4Li283g2 | □ | ● | ● | ● | ● | ● |
nad5i753g1 | ● | ● | ● | ● | ● | ● |
nad7i336g2 | ● | ● | ● | ● | ● | ● |
nad7i1113g2 | ● | ● | ● | ● | ● | ● |
rpl2i28g2 | ● | ● | ● | ● | ● | ● |
rps14i114g2 | ● | ● | ● | ● | ● | ● |
rrn18i1065g2 | □ | ● | □ | □ | □ | □ |
rrn26i827g2 | ● | ● | ● | ● | ● | ● |
trnSgcui43g2 | ● | ● | ● | ● | ● | ● |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ślipiko, M.; Myszczyński, K.; Buczkowska-Chmielewska, K.; Bączkiewicz, A.; Szczecińska, M.; Sawicki, J. Comparative Analysis of Four Calypogeia Species Revealed Unexpected Change in Evolutionarily-Stable Liverwort Mitogenomes. Genes 2017, 8, 395. https://doi.org/10.3390/genes8120395
Ślipiko M, Myszczyński K, Buczkowska-Chmielewska K, Bączkiewicz A, Szczecińska M, Sawicki J. Comparative Analysis of Four Calypogeia Species Revealed Unexpected Change in Evolutionarily-Stable Liverwort Mitogenomes. Genes. 2017; 8(12):395. https://doi.org/10.3390/genes8120395
Chicago/Turabian StyleŚlipiko, Monika, Kamil Myszczyński, Katarzyna Buczkowska-Chmielewska, Alina Bączkiewicz, Monika Szczecińska, and Jakub Sawicki. 2017. "Comparative Analysis of Four Calypogeia Species Revealed Unexpected Change in Evolutionarily-Stable Liverwort Mitogenomes" Genes 8, no. 12: 395. https://doi.org/10.3390/genes8120395
APA StyleŚlipiko, M., Myszczyński, K., Buczkowska-Chmielewska, K., Bączkiewicz, A., Szczecińska, M., & Sawicki, J. (2017). Comparative Analysis of Four Calypogeia Species Revealed Unexpected Change in Evolutionarily-Stable Liverwort Mitogenomes. Genes, 8(12), 395. https://doi.org/10.3390/genes8120395