Historical and Clinical Experiences of Gene Therapy for Solid Cancers in China
Abstract
:1. Global and Chinese History of Gene Therapy
1.1. Brief History of Gene Therapy in the World
1.2. Brief History of Gene Therapy in China
2. Clinical Issues and Experiences of Gene Therapy
2.1. The Combined Therapy and the Sequence of the Treatment Protocol
2.2. Dosage Calculation and Routes of Administration in Gene Therapy
2.3. Treatment Cycle of the Administration
2.4. Evaluation of the Gene Therapy
3. The Future of Gene Therapy
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Wirth, T.; Parker, N.; Yla-Herttuala, S. History of gene therapy. Gene 2013, 525, 162–169. [Google Scholar] [CrossRef] [PubMed]
- Tatum, E.L. Molecular biology, nucleic acids, and the future of medicine. Perspect. Biol. Med. 1966, 10, 19–32. [Google Scholar] [CrossRef] [PubMed]
- Rogers, S.; Pfuderer, P. Use of viruses as carriers of added genetic information. Nature 1968, 219, 749–751. [Google Scholar] [CrossRef] [PubMed]
- Friedmann, T.; Roblin, R. Gene therapy for human genetic disease? Science 1972, 175, 949–955. [Google Scholar] [CrossRef] [PubMed]
- Blaese, R.M.; Culver, K.W.; Miller, A.D.; Carter, C.S.; Fleisher, T.; Clerici, M.; Shearer, G.; Chang, L.; Chiang, Y.; Tolstoshev, P.; et al. T lymphocyte-directed gene therapy for ADA-SCID: Initial trial results after 4 years. Science 1995, 270, 475–480. [Google Scholar] [CrossRef] [PubMed]
- Bordignon, C.; Notarangelo, L.D.; Nobili, N.; Ferrari, G.; Casorati, G.; Panina, P.; Mazzolari, E.; Maggioni, D.; Rossi, C.; Servida, P.; et al. Gene therapy in peripheral blood lymphocytes and bone marrow for ADA-immunodeficient patients. Science 1995, 270, 470–475. [Google Scholar] [CrossRef]
- Mukhopadhyay, T.; Roth, J.A. A codon 248 p53 mutation retains tumor suppressor function as shown by enhancement of tumor growth by antisense p53. Cancer Res. 1993, 53, 4362–4366. [Google Scholar] [PubMed]
- Zhang, W.W.; Alemany, R.; Wang, J.; Koch, P.E.; Ordonez, N.G.; Roth, J.A. Safety evaluation of Ad5CMV-p53 in vitro and in vivo. Hum. Gene Ther. 1995, 6, 155–164. [Google Scholar] [CrossRef] [PubMed]
- Roth, J.A.; Fossella, F.; Komaki, R.; Ryan, M.B.; Putnam, J.B., Jr.; Lee, J.S.; Dhingra, H.; de Caro, L.; Chasen, M.; McGavran, M.; et al. A randomized trial comparing perioperative chemotherapy and surgery with surgery alone in resectable stage IIIA non-small-cell lung cancer. J. Natl. Cancer Inst. 1994, 86, 673–680. [Google Scholar] [CrossRef] [PubMed]
- Cavazzana-Calvo, M.; Hacein-Bey, S.; de Saint Basile, G.; Gross, F.; Yvon, E.; Nusbaum, P.; Selz, F.; Hue, C.; Certain, S.; Casanova, J.L.; et al. Gene therapy of human severe combined immunodeficiency (SCID)-X1 disease. Science 2000, 288, 669–672. [Google Scholar] [CrossRef] [PubMed]
- Stolberg, S.G. The biotech death of Jesse Gelsinger. N. Y. Times Mag. 1999, 136–140, 49–50. [Google Scholar]
- Yla-Herttuala, S. Endgame: Glybera finally recommended for approval as the first gene therapy drug in the European Union. Mol. Ther. 2012, 20, 1831–1832. [Google Scholar] [CrossRef] [PubMed]
- Touzot, F.; Moshous, D.; Creidy, R.; Neven, B.; Frange, P.; Cros, G.; Caccavelli, L.; Blondeau, J.; Magnani, A.; Luby, J.M.; et al. Faster T-cell development following gene therapy compared with haploidentical HSCT in the treatment of SCID-X1. Blood 2015, 125, 3563–3569. [Google Scholar] [CrossRef] [PubMed]
- Booth, C.; Gaspar, H.B.; Thrasher, A.J. Treating Immunodeficiency through HSC Gene Therapy. Trends Mol. Med. 2016, 22, 317–327. [Google Scholar] [CrossRef] [PubMed]
- Fukuhara, H.; Ino, Y.; Todo, T. Oncolytic virus therapy: A new era of cancer treatment at dawn. Cancer Sci. 2016, 107, 1373–1379. [Google Scholar] [CrossRef] [PubMed]
- Almasbak, H.; Aarvak, T.; Vemuri, M.C. CAR T Cell Therapy: A Game Changer in Cancer Treatment. J. Immunol. Res. 2016. [Google Scholar] [CrossRef] [PubMed]
- Gill, S.; June, C.H. Going viral: Chimeric antigen receptor T-cell therapy for hematological malignancies. Immunol. Rev. 2015, 263, 68–89. [Google Scholar] [CrossRef] [PubMed]
- Louis, C.U.; Savoldo, B.; Dotti, G.; Pule, M.; Yvon, E.; Myers, G.D.; Rossig, C.; Russell, H.V.; Diouf, O.; Liu, E.; et al. Antitumor activity and long-term fate of chimeric antigen receptor-positive T cells in patients with neuroblastoma. Blood 2011, 118, 6050–6056. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, N.; Brawley, V.S.; Hegde, M.; Robertson, C.; Ghazi, A.; Gerken, C.; Liu, E.; Dakhova, O.; Ashoori, A.; Corder, A.; et al. Human Epidermal Growth Factor Receptor 2 (HER2)-Specific Chimeric Antigen Receptor-Modified T Cells for the Immunotherapy of HER2-Positive Sarcoma. J. Clin. Oncol. 2015, 33, 1688–1696. [Google Scholar] [CrossRef] [PubMed]
- Feng, K.; Guo, Y.; Dai, H.; Wang, Y.; Li, X.; Jia, H.; Han, W. Chimeric antigen receptor-modified T cells for the immunotherapy of patients with EGFR-expressing advanced relapsed/refractory non-small cell lung cancer. Sci. China Life Sci. 2016, 59, 468–479. [Google Scholar] [CrossRef] [PubMed]
- Beatty, G.L.; Haas, A.R.; Maus, M.V.; Torigian, D.A.; Soulen, M.C.; Plesa, G.; Chew, A.; Zhao, Y.; Levine, B.L.; Albelda, S.M.; et al. Mesothelin-specific chimeric antigen receptor mRNA-engineered T cells induce anti-tumor activity in solid malignancies. Cancer Immunol. Res. 2014, 2, 112–120. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.W.; Xiao, S.W.; Liu, C.Q.; Sun, Y.; Su, X.; Li, D.M.; Xu, G.; Cai, Y.; Zhu, G.Y.; Xu, B.; et al. Treatment of head and neck squamous cell carcinoma by recombinant adenovirus-p53 combined with radiotherapy: A phase II clinical trial of 42 cases. Zhonghua Yi Xue Za Zhi 2003, 83, 2023–2028. [Google Scholar] [PubMed]
- Peng, Z. Current status of gendicine in China: Recombinant human Ad-p53 agent for treatment of cancers. Hum. Gene Ther. 2005, 16, 1016–1027. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Chen, J.; Xi, W.; Xu, W.; Yin, G. Clinical therapeutic effect and biological monitoring of p53 gene in advanced hepatocellular carcinoma. Am. J. Clin. Oncol. 2014, 37, 24–29. [Google Scholar] [CrossRef] [PubMed]
- Guan, Y.S.; Liu, Y.; Zou, Q.; He, Q.; La, Z.; Yang, L.; Hu, Y. Adenovirus-mediated wild-type p53 gene transfer in combination with bronchial arterial infusion for treatment of advanced non-small-cell lung cancer, one year follow-up. J. Zhejiang Univ. Sci. B 2009, 10, 331–340. [Google Scholar] [CrossRef] [PubMed]
- Guan, Y.S.; Liu, Y.; He, Q.; Li, X.; Yang, L.; Hu, Y.; La, Z. p53 gene therapy in combination with transcatheter arterial chemoembolization for HCC: One-year follow-up. World J. Gastroenterol. 2011, 17, 2143–2149. [Google Scholar] [CrossRef]
- Li, Y.; Li, L.J.; Wang, L.J.; Zhang, Z.; Gao, N.; Liang, C.Y.; Huang, Y.D.; Han, B. Selective intra-arterial infusion of rAd-p53 with chemotherapy for advanced oral cancer: A randomized clinical trial. BMC Med. 2014. [Google Scholar] [CrossRef] [PubMed]
- Tian, G.; Liu, J.; Zhou, J.S.; Chen, W. Multiple hepatic arterial injections of recombinant adenovirus p53 and 5-fluorouracil after transcatheter arterial chemoembolization for unresectable hepatocellular carcinoma: A pilot phase II trial. Anticancer Drugs 2009, 20, 389–395. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Chen, P.; Hu, M.; Tao, Y.; Chen, L.; Liu, H.; Wang, J.; Luo, J.; Gao, G. Randomized, controlled phase II study of post-surgery radiotherapy combined with recombinant adenoviral human p53 gene therapy in treatment of oral cancer. Cancer Gene Ther. 2013, 20, 375–378. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.W.; Xiao, S.W.; Liu, C.Q.; Sun, Y.; Su, X.; Li, D.M.; Xu, G.; Zhu, G.Y.; Xu, B. Recombinant adenovirus-p53 gene therapy combined with radiotherapy for head and neck squamous-cell carcinoma. Zhonghua Zhong Liu Za Zhi 2005, 27, 426–428. [Google Scholar] [PubMed]
- Pan, J.J.; Zhang, S.W.; Chen, C.B.; Xiao, S.W.; Sun, Y.; Liu, C.Q.; Su, X.; Li, D.M.; Xu, G.; Xu, B.; et al. Effect of recombinant adenovirus-p53 combined with radiotherapy on long-term prognosis of advanced nasopharyngeal carcinoma. J. Clin. Oncol. 2009, 27, 799–804. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.X.; Wang, D.; Wang, G.; Zhang, Q.H.; Liu, J.M.; Peng, P.; Liu, X.H. Clinical study of recombinant adenovirus-p53 combined with fractionated stereotactic radiotherapy for hepatocellular carcinoma. J. Cancer Res. Clin. Oncol. 2010, 136, 625–630. [Google Scholar] [CrossRef] [PubMed]
- Cui, H.M.; Guan, C.L.; Liu, Q.; Li, L.Y. Outcome of patients with recurrent epithelial ovarian carcinoma following treatment with recombinant human adenovirus p53 combined with chemotherapy. Chin. J. Cancer Biother. 2014, 21, 450–454. [Google Scholar]
- Liu, R.R.; Ji, C.Y.; Chen, J.C. Clinical effect of recombinant human p53 adv injection (gendicine) in combination with radiotherapy in patients suffering from recurrent nasopharyngeal carcinoma. J. Otolarngol. Ophthal. Shandong Univ. 2010, 24, 13–16. [Google Scholar]
- Ou, S.Q.; Ma, Y.L.; Kang, P.; Li, Z.K.; Meng, Z.B.F.Q. Recombinant adenovirus-p53 gene therapy combined with transcatheter arterial chemoembolization for p53-positive and p53-negative hepatocellular carcinoma. Chin. J. Interv. Imaging Ther. 2010, 7, 354–357. [Google Scholar]
- Si, Y.F.; He, C.C.; Lan, G.P.; Huang, B.; Zhang, Z.; Lu, J.L.; Zhou, R.J.; Jiang, H. Recombinant Adenovirus P53 Agent Injection Combined with Radiotherapy and Chemotherapy for Intermediate and Advanced Stage Nasopharyngeal Carcinoma. ZhongGuo Zhong Liu Lin Chuang 2009, 36, 1031–1039. [Google Scholar]
- Wang, J.G.; Wang, X.H.; Yang, J.Q.; Li, G.H.; Hu, W.N. Treatment of Local Advanced Non-small Cell Lung Cancer with Recombinant Human p53 Adenovirus Combined with Radiochemotherapy. J. GuiYang Med. Coll. 2014, 39, 225–228. [Google Scholar]
- Zhu, J.X.; Li, Z.M.; Geng, F.Y.; Fu, Q.; Guo, C.J.; Xiao, Y.L.; Zhang, Z.T.; Li, G. Treatment of recurrent malignant gliomas by surgery combined with recombinant adenovirus-p53. Chin. J. Cancer Prev. Treat. 2010, 17, 126–128. [Google Scholar]
- Yoo, G.H.; Moon, J.; Leblanc, M.; Lonardo, F.; Urba, S.; Kim, H.; Hanna, E.; Tsue, T.; Valentino, J.; Ensley, J.; et al. A phase 2 trial of surgery with perioperative INGN 201 (Ad5CMV-p53) gene therapy followed by chemoradiotherapy for advanced, resectable squamous cell carcinoma of the oral cavity, oropharynx, hypopharynx, and larynx: Report of the Southwest Oncology Group. Arch. Otolaryngol. Head Neck Surg. 2009, 135, 869–874. [Google Scholar] [CrossRef] [PubMed]
- Gabrilovich, D.I. INGN 201 (Advexin): Adenoviral p53 gene therapy for cancer. Expert Opin. Biol. Ther. 2006, 6, 823–832. [Google Scholar] [CrossRef] [PubMed]
- Wolf, J.K.; Bodurka, D.C.; Gano, J.B.; Deavers, M.; Ramondetta, L.; Ramirez, P.T.; Levenback, C.; Gershenson, D.M. A phase I study of Adp53 (INGN 201; ADVEXIN) for patients with platinum- and paclitaxel-resistant epithelial ovarian cancer. Gynecol. Oncol. 2004, 94, 442–448. [Google Scholar] [CrossRef] [PubMed]
- Saulnier, P.; Vidaud, M.; Gautier, E.; Motte, N.; Bellet, D.; Escudier, B.; Wilson, D.; Yver, A. Development and validation of a real-time PCR assay for the detection and quantitation of p53 recombinant adenovirus in clinical samples from patients treated with Ad5CMV-p53 (INGN 201). J. Virol. Methods 2003, 114, 55–64. [Google Scholar] [CrossRef] [PubMed]
- Swisher, S.G.; Roth, J.A.; Komaki, R.; Gu, J.; Lee, J.J.; Hicks, M.; Ro, J.Y.; Hong, W.K.; Merritt, J.A.; Ahrar, K.; et al. Induction of p53-regulated genes and tumor regression in lung cancer patients after intratumoral delivery of adenoviral p53 (INGN 201) and radiation therapy. Clin. Cancer Res. 2003, 9, 93–101. [Google Scholar] [PubMed]
- Merritt, J.A.; Roth, J.A.; Logothetis, C.J. Clinical evaluation of adenoviral-mediated p53 gene transfer: Review of INGN 201 studies. Semin. Oncol. 2001, 28, 105–114. [Google Scholar] [CrossRef]
- Nemunaitis, J.; Clayman, G.; Agarwala, S.S.; Hrushesky, W.; Wells, J.R.; Moore, C.; Hamm, J.; Yoo, G.; Baselga, J.; Murphy, B.A.; et al. Biomarkers Predict p53 Gene Therapy Efficacy in Recurrent Squamous Cell Carcinoma of the Head and Neck. Clin. Cancer Res. 2009, 15, 7719–7725. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Q.; Wang, J.; Lv, X.; Li, J.; Yin, L.J.; Xiang, Y.Q.; Guo, X. Induction Chemotherapy Followed by Radiotherapy versus Concurrent Chemoradiotherapy in elderly patients with nasopharyngeal carcinoma: Finding from a propensity-matched analysis. BMC Cancer 2016. [Google Scholar] [CrossRef] [PubMed]
- Mitsudo, K.; Koizumi, T.; Iida, M.; Iwai, T.; Nakashima, H.; Oguri, S.; Kioi, M.; Hirota, M.; Koike, I.; Hata, M.; et al. Retrograde superselective intra-arterial chemotherapy and daily concurrent radiotherapy for stage III and IV oral cancer: Analysis of therapeutic results in 112 cases. Radiother. Oncol. 2014, 111, 306–310. [Google Scholar] [CrossRef] [PubMed]
- Strigari, L.; Mancuso, M.; Ubertini, V.; Soriani, A.; Giardullo, P.; Benassi, M.; D’Alessio, D.; Leonardi, S.; Soddu, S.; Bossi, G. Abscopal effect of radiation therapy: Interplay between radiation dose and p53 status. Int. J. Radiat. Biol. 2014, 90, 248–255. [Google Scholar] [CrossRef] [PubMed]
- Lu, C.; El-Deiry, W.S. Targeting p53 for enhanced radio- and chemo-sensitivity. Apoptosis 2009, 14, 597–606. [Google Scholar] [CrossRef] [PubMed]
- Kranz, D.; Dobbelstein, M. A killer promoting survival: p53 as a selective means to avoid side effects of chemotherapy. Cell Cycle 2012, 11, 2053–2054. [Google Scholar] [CrossRef] [PubMed]
- El-Deiry, W.S. The role of p53 in chemosensitivity and radiosensitivity. Oncogene 2003, 22, 7486–7495. [Google Scholar] [CrossRef] [PubMed]
- Farrand, L.; Kim, J.Y.; Byun, S.; Im-aram, A.; Lee, J.; Suh, J.Y.; Lee, K.W.; Lee, H.J.; Tsang, B.K. The diarylheptanoid hirsutenone sensitizes chemoresistant ovarian cancer cells to cisplatin via modulation of apoptosis-inducing factor and X-linked inhibitor of apoptosis. J. Biol. Chem. 2014, 289, 1723–1731. [Google Scholar] [CrossRef] [PubMed]
- Hamada, M.; Fujiwara, T.; Hizuta, A.; Gochi, A.; Naomoto, Y.; Takakura, N.; Takahashi, K.; Roth, J.A.; Tanaka, N.; Orita, K. The p53 gene is a potent determinant of chemosensitivity and radiosensitivity in gastric and colorectal cancers. J. Cancer Res. Clin. Oncol. 1996, 122, 360–365. [Google Scholar] [CrossRef] [PubMed]
- Cheung, K.J.; Horsman, D.E.; Gascoyne, R.D. The significance of TP53 in lymphoid malignancies: Mutation prevalence, regulation, prognostic impact and potential as a therapeutic target. Br. J. Haematol. 2009, 146, 257–269. [Google Scholar] [CrossRef] [PubMed]
- Berge, E.O.; Huun, J.; Lillehaug, J.R.; Lonning, P.E.; Knappskog, S. Functional characterisation of p53 mutants identified in breast cancers with suboptimal responses to anthracyclines or mitomycin. Biochim. Biophys. Acta 2013, 1830, 2790–2797. [Google Scholar] [CrossRef] [PubMed]
- Sakai, K.; Kazama, S.; Nagai, Y.; Murono, K.; Tanaka, T.; Ishihara, S.; Sunami, E.; Tomida, S.; Nishio, K.; Watanabe, T. Chemoradiation provides a physiological selective pressure that increases the expansion of aberrant TP53 tumor variants in residual rectal cancerous regions. Oncotarget 2014, 5, 9641–9649. [Google Scholar] [CrossRef] [PubMed]
- Jiang, G.; Xin, Y.; Zheng, J.N.; Liu, Y.Q. Combining conditionally replicating adenovirus-mediated gene therapy with chemotherapy: A novel antitumor approach. Int. J. Cancer 2011, 129, 263–274. [Google Scholar] [CrossRef] [PubMed]
- Prados, J.; Alvarez, P.J.; Melguizo, C.; Rodriguez-Serrano, F.; Carrillo, E.; Boulaiz, H.; Velez, C.; Marchal, J.A.; Caba, O.; Ortiz, R.; et al. How is gene transfection able to improve current chemotherapy? The role of combined therapy in cancer treatment. Curr. Med. Chem. 2012, 19, 1870–1888. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Li, B.; Li, C.J.; Li, L.J. Key points of basic theories and clinical practice in rAd-p53 (Gendicine) gene therapy for solid malignant tumors. Expert Opin. Biol. Ther. 2015, 15, 437–454. [Google Scholar] [CrossRef] [PubMed]
- Lowenstein, P.R. Virology and immunology of gene therapy, or virology and immunology of high MOI infection with defective viruses. Gene Ther. 2003, 10, 933–934. [Google Scholar] [CrossRef] [PubMed]
- Alemany, R. Cancer selective adenoviruses. Mol. Aspects Med. 2007, 28, 42–58. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Li, L.J.; Zhang, S.T.; Wang, L.J.; Zhang, Z.; Gao, N.; Zhang, Y.Y.; Chen, Q.M. In vitro and clinical studies of gene therapy with recombinant human adenovirus-p53 injection for oral leukoplakia. Clin. Cancer Res. 2009, 15, 6724–6731. [Google Scholar] [CrossRef] [PubMed]
- Moon, C.; Oh, Y.; Roth, J.A. Current status of gene therapy for lung cancer and head and neck cancer. Clin. Cancer Res. 2003, 9, 5055–5067. [Google Scholar] [PubMed]
- Van Zeeburg, H.J.; Huizenga, A.; Brink, A.; van den Doel, P.B.; Zhu, Z.B.; McCormick, F.; Brakenhoff, R.H.; van Beusechem, V.W. Comparison of oncolytic adenoviruses for selective eradication of oral cancer and pre-cancerous lesions. Gene Ther. 2010, 17, 1517–1524. [Google Scholar] [CrossRef] [PubMed]
- Clayman, G.L.; Frank, D.K.; Bruso, P.A.; Goepfert, H. Adenovirus-mediated wild-type p53 gene transfer as a surgical adjuvant in advanced head and neck cancers. Clin. Cancer Res. 1999, 5, 1715–1722. [Google Scholar] [PubMed]
- Van Beusechem, V.W.; van den Doel, P.B.; Grill, J.; Pinedo, H.M.; Gerritsen, W.R. Conditionally replicative adenovirus expressing p53 exhibits enhanced oncolytic potency. Cancer Res. 2002, 62, 6165–6171. [Google Scholar] [PubMed]
- Wang, X.; Su, C.; Cao, H.; Li, K.; Chen, J.; Jiang, L.; Zhang, Q.; Wu, X.; Jia, X.; Liu, Y.; et al. A novel triple-regulated oncolytic adenovirus carrying p53 gene exerts potent antitumor efficacy on common human solid cancers. Mol. Cancer Ther. 2008, 7, 1598–1603. [Google Scholar] [CrossRef] [PubMed]
- Yamasaki, Y.; Tazawa, H.; Hashimoto, Y.; Kojima, T.; Kuroda, S.; Yano, S.; Yoshida, R.; Uno, F.; Mizuguchi, H.; Ohtsuru, A.; et al. A novel apoptotic mechanism of genetically engineered adenovirus-mediated tumour-specific p53 overexpression through E1A-dependent p21 and MDM2 suppression. Eur. J. Cancer 2012, 48, 2282–2291. [Google Scholar] [CrossRef] [PubMed]
- Tazawa, H.; Kagawa, S.; Fujiwara, T. Advances in adenovirus-mediated p53 cancer gene therapy. Expert Opin. Biol. Ther. 2013, 13, 1569–1583. [Google Scholar] [CrossRef] [PubMed]
- Koom, W.S.; Park, S.Y.; Kim, W.; Kim, M.; Kim, J.S.; Kim, H.; Choi, I.K.; Yun, C.O.; Seong, J. Combination of radiotherapy and adenovirus-mediated p53 gene therapy for MDM2-overexpressing hepatocellular carcinoma. J. Radiat. Res. 2012, 53, 202–210. [Google Scholar] [CrossRef] [PubMed]
- Morris, J.C. Cancer gene therapy: Lessons learned from experiences with chemotherapy. Mol. Ther. 2003, 7, 717–719. [Google Scholar] [CrossRef]
- Schwartz, L.H.; Litiere, S.; de Vries, E.; Ford, R.; Gwyther, S.; Mandrekar, S.; Shankar, L.; Bogaerts, J.; Chen, A.; Dancey, J.; et al. RECIST 1.1-Update and clarification: From the RECIST committee. Eur. J. Cancer 2016, 62, 132–137. [Google Scholar] [CrossRef] [PubMed]
- Feng, D.; Shaikh, A.S.; Wang, F. Recent Advance in Tumor-associated Carbohydrate Antigens (TACAs)-based Antitumor Vaccines. ACS Chem. Biol. 2016, 11, 850–863. [Google Scholar] [CrossRef] [PubMed]
- Wiedenfeld, E.A.; Fernandez-Vina, M.; Berzofsky, J.A.; Carbone, D.P. Evidence for selection against human lung cancers bearing p53 missense mutations which occur within the HLA A*0201 peptide consensus motif. Cancer Res. 1994, 54, 1175–1177. [Google Scholar] [PubMed]
- Zhou, S.L.; Yue, W.B.; Fan, Z.M.; Du, F.; Liu, B.C.; Li, B.; Han, X.N.; Ku, J.W.; Zhao, X.K.; Zhang, P.; et al. Autoantibody detection to tumor-associated antigens of P53, IMP1, P16, cyclin B1, P62, C-myc, Survivn, and Koc for the screening of high-risk subjects and early detection of esophageal squamous cell carcinoma. Dis. Esophagus 2014, 27, 790–797. [Google Scholar] [CrossRef] [PubMed]
No. | Study ID | Time | Type of Study | Types of the Tumor | Route and Dosage of Administration | Groups | Outcome |
---|---|---|---|---|---|---|---|
1 | Zhang S.W., et al. [22] | 2001–2002 | randomized controlled trial | Head and neck squamous cell carcinoma | intra-tumoral injection | Group 1 (20 patients): rAd-p53+ radiotherapy Group 2 (22 patients): radiotherapy only | CR rate: Group 1 (59%) vs. Group (22%) Fever is a common adverse effect in Group 1. |
2 | Zhang S.W., et al. [30] | 2001–2003 | randomized controlled trial | Head and neck squamous cell carcinoma | intra-tumoral injection | Group 1 (36 patients): rAd-p53+ radiotherapy Group 2 (33 patients): radiotherapy only | The CR rate of tumors in Group 2 was increased by nearly 2. 31 times more than that of tumors in Group 2. No dose limiting toxicity and adverse events were noted, except transient fever after Gendicine administration |
3 | Pan J.J., et al. [31] | 2001–2003 | randomized controlled trial | Nasopharyngeal carcinoma | intra-tumoral injection | Group 1 (42 patients): rAd-p53+ radiotherapy Group 2 (40 patients): radiotherapy only | Response rate of Group 1 was higher than that of Group 2 at each treatment point (p < 0.01). The 5-year overall survival rate and 5-year disease-free survival rate of Group 1 were 7.5% (p = 0.34) and 11.7% (p = 0.21) higher than those of Group 2. |
4 | Li Y., et al. [27] | 2003–2007 | randomized controlled trial | Advanced oral squamous cell carcinoma | intra-arterially infusion | Group 1 (35 patients): rAd-p53+ chemotherapy Group 2 (33 patients): rAd-p53+ placebo Group 3 (31 patients): placebo+ chemotherapy | Complete response rate: group 1 (48.5%) vs. groups 2 (16.7%) vs. group 3 (17.2%) (p = 0.006). Group 1 had a significantly higher survival rate than group 3 (p = 0.019). The survival rate of patients with stage III oral cancer was significantly higher in group 1 than in group 3 (p = 0.015). The most frequent vector-related complication was a transient fever. |
5 | Guan Y.S., et al. [25] | 2004–2005 | controlled clinical trial | Advanced non-small-cell lung cancer | bronchial arterial access (BAI) | Group 1 (19 patients): rAd-p53+ anti-tumor drug regimes Group 2 (39 patients): anti-tumor drug regimes | Overall response rates: Group 1 (47.3%) vs. Group 2 (38.4%) (p > 0.05). TTP analysis showed that Group 1 had a longer time without progression (p = 0.018, Log-Rank). Group 1 have less adverse events such asanorexia, nausea and emesis, pain, and leucopenia (p < 0.05) but more arthralgia, fever, influenza-like symptom, and myalgia (p < 0.05). |
6 | Guan Y.S., et al. [26] | 2004–2005 | controlled clinical trial | Advanced hepatic cell carcinoma | intra-tumoral injection | Group 1 (68 patients): rAd-p53+ TACE Group 2 (82 patients): TACE only | The total effective rate: Group 1 (58.3%) vs. Group 2 (26.5%) (p < 0.05). The incidence of gastrointestinal symptoms was lower in Group 1 than in Group 2 (p < 0.05). And Group 1 had higher survival rate (Log Rank, p = 0.0002) |
7 | Tian G., et al. [28] | 2004–2007 | randomized controlled trial | Advanced hepatic cell carcinoma | hepatic arterial injections | Group 1 (23 patients): rAd-p53 and 5-FU after TACE Group 2 (23 patients): TACE only | No difference in overall response rates between the two groups (p = 0.419). Median OS: 12.8 months in group 1 vs. 10.4 months in group 2. Time to progression: (log-rank p = 0.62) OS (log-rank p = 0.87). The most frequent vector-related complication was a transient fever (57%). |
8 | Yang Z.X., et al. [32] | 2004–2007 | Retrospective cohort study | hepatic cell carcinoma | intra-tumoral injections | Group 1 (20 patients): rAd-p53+ fSRT Group 2 (20 patients): fSRT only | The overall response rate: Group 1 (85%) vs. Group 2 (70%). The 1-year survival rates: Group 1 (90%) vs. Group 2 (70%) (p = 0.081). The1-year disease-free survival rates: Group 1 (85%) vs. Group 2 (65%). Fever and gastrointestinal toxicity were observed. |
9 | Zhu J.X., et al. [38] | 2004–2008 | controlled clinical trial | recurrent malignant gliomas | administered into the surgical wound | Group 1 (18 patients): rAd-p53+ surgery Group 2 (20 patients): Surgery only | Group 1 achieved significantly higher survival rate (p < 0.05). Fever was a common adverse event in Group 1. |
10 | Liu R.R., et al. [34] | 2005–2006 | controlled clinical trial | Recurrent nasopharyngeal carcinoma | intra-tumoral injection | Group 1 (15 patients): rAd-p53+ radiotherapy+ Chemotherapy Group 2 (15 patients): radiotherapy+ Chemotherapy | Effective rate differed in two groups: Group 1 (100%) vs. Group 2 (40%) (p < 0.05). Fever happened in 85.7% patients in Group 1. |
11 | Liu S., et al. [29] | 2005–2011 | randomized controlled trial | oral squamous cell carcinoma | Surgical wound surface injection | Group 1 (57 patients): rAd-p53+ radiotherapy Group 2 (50 patients): radiotherapy alone | OS did not differ in two groups (log-rank, p = 0.0586) but Group 1 had higher DFS (log-rank, p = 0.0002). Fever and flu-like symptoms were more frequently observed in Group 1. |
12 | Si Y.F., et al. [36] | 2007–2008 | randomized controlled trial | Nasopharyngeal carcinoma | intra-tumoral injection | Group 1 (14 patients): rAd-p53+ radiotherapy+ Chemotherapy Group 2 (15 patients): radiotherapy+ Chemotherapy | Group 1 (12/14) had higher CR rate than Group 2 (5/15) 3 month after treatment (p < 0.05). Fever is a common adverse effect in Group 1. |
13 | OU S.Q., et al. [35] | 2007–2009 | controlled clinical trial | Advanced hepatic cell carcinoma | TACE | Group 1 (60 patients): rAd-p53+ TACE Group 2 (60 patients): TACE only | In p53-positive patients, the effective rate of Group 1 (73.33%) was higher than that of Group 2 (46.67%) (p < 0.05). In the p53-negative patients, the effective rate in Group 1 and Group 2 was 66.67% and 60.00 %, respectively (p > 0.05). |
14 | Chen S., et al. [24] | 2007–2009 | randomized controlled trial | Advanced primary hepatic cell carcinoma | intra-arterially infusion | Group 1 (30 patients): rAd-p53+ hydroxycamptothecin Group 2 (18 patients): hydroxycamptothecin only | Group 1 had higher cumulative survival rate (log-rank p < 0.05). The most frequent vector-related complication was a transient fever. Eczema at the angles of the mouth occurred in 2 patients. |
15 | Cui H.M., et al. [33] | 2007-2011 | controlled clinical trial | Recurrent ovarian carcinoma | peritoneal perfusion | Group 1 (25 patients): rAd-p53+ chemotherapy Group 2 (24 patients): chemotherapy only | Disease control rate: Group 1 (92.0%)vs. Group 2 (87.5%) (p = 0.59), No statistical significance in overall survival between the two groups (log rank, p = 0.051). No serious adverse events were observed in either of the two groups. |
16 | Wang J.G., et al. [37] | 2010–2011 | randomized controlled trial | advanced non-small-cell lung cancer | bronchial arterial access | Group 1 (31 patients): rAd-p53+ radiotherapy+ Chemotherapy Group 2 (33 patients): radiotherapy+ Chemotherapy | Effective rates: Groups 1 (70.97%) vs. Group 2 (45.45%) (p < 0.05). Survival rates in one year: Group 1 (74.19%) vs. Group 2 (69.70%) (p > 0.05). Fever was a common adverse event in Group 1. |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, B.; Gao, N.; Zhang, Z.; Chen, Q.; Li, L.; Li, Y. Historical and Clinical Experiences of Gene Therapy for Solid Cancers in China. Genes 2017, 8, 85. https://doi.org/10.3390/genes8030085
Li B, Gao N, Zhang Z, Chen Q, Li L, Li Y. Historical and Clinical Experiences of Gene Therapy for Solid Cancers in China. Genes. 2017; 8(3):85. https://doi.org/10.3390/genes8030085
Chicago/Turabian StyleLi, Bo, Ning Gao, Zhuang Zhang, Qian‐Ming Chen, Long‐Jiang Li, and Yi Li. 2017. "Historical and Clinical Experiences of Gene Therapy for Solid Cancers in China" Genes 8, no. 3: 85. https://doi.org/10.3390/genes8030085
APA StyleLi, B., Gao, N., Zhang, Z., Chen, Q., Li, L., & Li, Y. (2017). Historical and Clinical Experiences of Gene Therapy for Solid Cancers in China. Genes, 8(3), 85. https://doi.org/10.3390/genes8030085