Skin-on-a-Chip: Transepithelial Electrical Resistance and Extracellular Acidification Measurements through an Automated Air-Liquid Interface
Abstract
:1. Introduction
2. Background
2.1 State of the Art in Reconstructed Human Epidermis-Based Skin Toxicity Testing
2.2 Moving Toward Organ-on-Chip Platforms and Inclusion of Microphysiometry
2.3 Transepithelial Electrical Resistance in Skin/Reconstructed Human Epidermis Toxicology
2.4 Disadvantages of Current Transepithelial Electrical Resistance Methods and the Need for Automated Transepithelial Electrical Resistance.
3. Materials and Methods
3.1 Intelligent Mobile Lab for in Vitro Diagnostics General Description
3.2 Design of Modified BioChip-D Encapsulation
3.3 L929 Cell and EpiDerm Reconstructed Human Epidermis Preparation and Culture
3.4 Description of Automated Fluidic System
4. Results and Discussion
4.1 Function of Redesigned Transepithelial Electrical Resistance Encapsulation
4.2 Measurement of Extracellular Acidification Rate of Murine Fibroblasts
4.3 Murine Fibroblast Metabolic Reaction to Sodium Dodecyl Sulphate Medium
4.5 Transepithelial Electrical Resistance Monitoring of MatTek Epiderm Reconstructed Human Epidermis Model
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Zhang, Z.; Michniak-Kohn, B.B. Tissue engineered human skin equivalents. Pharmaceutics 2012, 4, 26–41. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, J.; Heisler, E.; Karpinski, S.; Losse, J.; Thomas, D.; Siefken, W.; Ahr, H.J.; Vohr, H.W.; Fuchs, H.W. Epidermal-skin-test 1000 (EST-1000)—A new reconstructed epidermis for in vitro skin corrosivity testing. Toxicol. Vitro 2005, 19, 925–929. [Google Scholar] [CrossRef] [PubMed]
- Pourchet, L.J.; Thepot, A.; Albouy, M.; Courtial, E.J.; Boher, A.; Blum, L.J.; Marquette, C.A. Human skin 3D bioprinting using scaffold-free approach. Adv. Healthc. Mater. 2017, 6. [Google Scholar] [CrossRef] [PubMed]
- Petrova, A.; Celli, A.; Jacquet, L.; Dafou, D.; Crumrine, D.; Hupe, M.; Arno, M.; Hobbs, C.; Cvoro, A.; Karagiannis, P.; et al. 3D in vitro model of a functional epidermal permeability barrier from human embryonic stem cells and induced pluripotent stem cells. Stem Cell Rep. 2014, 2, 675–689. [Google Scholar] [CrossRef] [PubMed]
- Metcalfe, A.D.; Ferguson, M.W. Bioengineering skin using mechanisms of regeneration and repair. Biomaterials 2007, 28, 5100–5113. [Google Scholar] [CrossRef] [PubMed]
- Gangatirkar, P.; Paquet-Fifield, S.; Li, A.; Rossi, R.; Kaur, P. Establishment of 3D organotypic cultures using human neonatal epidermal cells. Nat. Protoc. 2007, 2, 178. [Google Scholar] [CrossRef] [PubMed]
- Groeber, F.; Holeiter, M.; Hampel, M.; Hinderer, S.; Schenke-Layland, K. Skin tissue engineering—In vivo and in vitro applications. Adv. Drug Deliv. Rev. 2011, 63, 352–366. [Google Scholar] [CrossRef] [PubMed]
- Mohammadi, M.H.; Heidary, A.; Beydaghi, V.; Geraili, A.; Moradi, F.; Jafari, P.; Janmaleki, M.; Valente, K.P.; Akbari, M.; Sanati-Nezhad, A. Skin diseases modeling using combined tissue engineering and microfluidic technologies. Adv. Healthc. Mater. 2016, 5, 2459–2480. [Google Scholar] [CrossRef] [PubMed]
- Planz, V.; Lehr, C.M.; Windbergs, M. In vitro models for evaluating safety and efficacy of novel technologies for skin drug delivery. J. Control. Release 2016, 424, 89–104. [Google Scholar] [CrossRef] [PubMed]
- Mewes, K.R.; Fischer, A.; Zöller, N.N.; Laubach, V.; Bernd, A.; Jacobs, A.; van Rompay, A.; Liebsch, M.; Pirow, R.; Petersohn, D. Catch-up validation study of an in vitro skin irritation test method based on an open source reconstructed epidermis (phase I). Toxicol. Vitro 2016, 16, 254–261. [Google Scholar] [CrossRef] [PubMed]
- De Wever, B.; Goldberg, A.; Eskes, C.; Roggen, E.; Vanparys, P.; Schröder, K.; Le Varlet, B.; Maibach, H.; Beken, S.; De Wilde, B. “Open source”–based engineered human tissue models: A new gold standard for nonanimal testing through openness, transparency, and collaboration, promoted by the ALEXANDRA association. App. Vitro Toxicol. 2015, 1, 5–9. [Google Scholar] [CrossRef]
- Alepee, N.; Bahinski, A.; Daneshian, M.; De Wever, B.; Fritsche, E.; Goldberg, A.; Hansmann, J.; Hartung, T.; Haycock, J.; Hogberg, H.T. T4 workshop report: State-of-the-art of 3D cultures (organs-on-a-chip) in safety testing and pathophysiology. ALTEX 2014, 34, 441. [Google Scholar]
- Wagner, I.; Materne, E.M.; Brincker, S.; Süssbier, U.; Frädrich, C.; Busek, M.; Sonntag, F.; Sakharov, DA.; Trushkin, E.V.; Tonevitsky, A.G.; et al. A dynamic multi-organ-chip for long-term cultivation and substance testing proven by 3D human liver and skin tissue co-culture. Lab Chip 2013, 13, 3538–3547. [Google Scholar] [CrossRef] [PubMed]
- Bhatia, S.N.; Ingber, D.E. Microfluidic organs-on-chips. Nat. Biotechnol. 2014, 32, 760–772. [Google Scholar] [CrossRef] [PubMed]
- Shinawi, T.F.; Kimmel, D.W.; Cliffel, D.E. Multianalyte microphysiometry reveals changes in cellular bioenergetics upon exposure to fluorescent dyes. Anal. Chem. 2013, 85, 11677–11680. [Google Scholar] [CrossRef] [PubMed]
- Sandby-Moller, J.; Poulsen, T.; Wulf, H.C. Epidermal thickness at different body sites: Relationship to age, gender, pigmentation, blood content, skin type and smoking habits. Acta. Derm. Venereol. 2003, 83, 410–413. [Google Scholar] [CrossRef] [PubMed]
- Egawa, M.; Tagami, H. Comparison of the depth profiles of water and water-binding substances in the stratum corneum determined in vivo by Raman spectroscopy between the cheek and volar forearm skin: Effects of age, seasonal changes and artificial forced hydration. Br. J. Dermatol. 2008, 152, 251–260. [Google Scholar] [CrossRef] [PubMed]
- Moore, T.L.; Lunt, M.; McManus, B.; Anderson, M.E.; Herrick, A.L. Seventeen-point dermal ultrasound scoring system—A reliable measure of skin thickness in patients with systemic sclerosis. Rheumatology (Oxford) 2003, 23, 1559–1563. [Google Scholar] [CrossRef] [PubMed]
- Henry, O.Y.F.; Villenave, R.; Cronce, M.J.; Leineweber, W.D.; Benz, M.A.; Ingber, D.E. Organs-on-chips with integrated electrodes for trans-epithelial electrical resistance (TEER) measurements of human epithelial barrier function. Lab Chip 2017, 17, 2264–2271. [Google Scholar] [CrossRef] [PubMed]
- Srinivasan, B.; Kolli, A.R.; Esch, M.B.; Abaci, H.E.; Shuler, M.L.; Hickman, J.J. TEER measurement technique for in vitro barrier model systems. J. Lab. Autom. 2015, 20, 107–126. [Google Scholar] [CrossRef] [PubMed]
- Maoz, B.M.; Herland, A.; Henry, O.Y.F.; Leineweber, W.D.; Yadid, M.; Doyle, J.; Mannix, R.; Kujala, V.J.; FitzGerald, E.A.; Parker, K.K.; et al. Organs-on-chips with combined multi-electrode array and transepithelial electrical resistance measurement capabilities. Lab Chip 2017, 17, 2294–2302. [Google Scholar] [CrossRef] [PubMed]
- Blume, L.F.; Denker, M.; Gieseler, F.; Kunze, T. Temperature corrected transepithelial electrical resistance (TEER) measurement to quantify rapid changes in paracellular permeability. Pharmazie 2010, 65, 19–24. [Google Scholar] [PubMed]
- Rivera-Burgos, D.; Sarkar, U.; Lever, A.R.; Avram, M.J.; Coppeta, J.R.; Wishnok, J.S.; Borenstein, J.T.; Tannenbaum, S.R. Glucocorticoid clearance and metabolite profiling in an in vitro human airway epithelium lung model. Drug Metab. Dispos. 2016, 44, 220–226. [Google Scholar] [CrossRef] [PubMed]
- Weiss, D.; Brischwein, M.; Grothe, H.; Wolf, B.; Wiest, J. Label-free monitoring of whole cell vitality. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2013, 1607–1610. [Google Scholar]
- Alexander, F.; Eggert, S.; Wiest, J. A novel lab-on-a-chip platform for spheroid metabolism monitoring. Cytotechnology 2018, 70, 375–386. [Google Scholar] [CrossRef] [PubMed]
- DALiA Client, version 2.0.9.0; cellasys GmbH: Kronburg, Germany, 2014.
- Wiest, J.; Namias, A.; Pfister, C.; Wolf, P.; Demmel, F.; Brischwein, M. Data processing in cellular microphysiometry. IEEE Trans. Biom. Eng. 2016, 63, 2368–2375. [Google Scholar] [CrossRef] [PubMed]
Time in Culture | Impedance n = 9 | |
---|---|---|
Real (Ω) | Imaginary (Ω) | |
Pre-SDS exposure | 189.66 ± 1.80 | −41.89 + 0.93 |
After SDS exposure | 161.56 ± 0.53 | −39.33 + 1.00 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alexander, F.A., Jr.; Eggert, S.; Wiest, J. Skin-on-a-Chip: Transepithelial Electrical Resistance and Extracellular Acidification Measurements through an Automated Air-Liquid Interface. Genes 2018, 9, 114. https://doi.org/10.3390/genes9020114
Alexander FA Jr., Eggert S, Wiest J. Skin-on-a-Chip: Transepithelial Electrical Resistance and Extracellular Acidification Measurements through an Automated Air-Liquid Interface. Genes. 2018; 9(2):114. https://doi.org/10.3390/genes9020114
Chicago/Turabian StyleAlexander, Frank A., Jr., Sebastian Eggert, and Joachim Wiest. 2018. "Skin-on-a-Chip: Transepithelial Electrical Resistance and Extracellular Acidification Measurements through an Automated Air-Liquid Interface" Genes 9, no. 2: 114. https://doi.org/10.3390/genes9020114
APA StyleAlexander, F. A., Jr., Eggert, S., & Wiest, J. (2018). Skin-on-a-Chip: Transepithelial Electrical Resistance and Extracellular Acidification Measurements through an Automated Air-Liquid Interface. Genes, 9(2), 114. https://doi.org/10.3390/genes9020114