A Turbulence-Oriented Approach to Retrieve Various Atmospheric Parameters Using Advanced Lidar Data Processing Techniques
Abstract
:1. Introduction
2. Materials and Methods
2.1. Turbulence Profiles
2.2. Astronomy Parameters, Extinction and Backscatter Coefficients
2.3. Theoretical Prospects
3. Results and Discussions
3.1. Results
3.2. Applications for Environmental Studies
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lupo, A.; Kininmonth, W. Global Climate Models and Their Limitations. Section 1.1.1 of Climate Change Reconsidered II: Methods and Principles. 2006. Available online: http://www.kestencgreen.com/A&G-2013-Climate_models-CCR2.pdf (accessed on 12 May 2017).
- Bader, D.; Covey, C.; Gutowski, W.; Held, I.; Kunkel, K.; Miller, R.; Tokmakian, R.; Zhang, M. Climate Models: An Assessment of Strengths and Limitations. US Department of Energy Publications. Paper 8. 2008. Available online: http://digitalcommons.unl.edu/usdoepub/8 (accessed on 21 June 2017).
- Durre, I.; Vose, R.S.; Wuertz, D.B. Robust automated quality assurance of radiosonde. Temp. J. Appl. Meteorol. Climatol. 2008, 47, 2081–2095. [Google Scholar] [CrossRef]
- Janhäll, S.; Olofson, K.F.G.; Andersson, P.U.; Pettersson, J.B.; Hallquist, M. Evolution of the urban aerosol during winter temperature inversion episodes. Atmos. Environ. 2006, 40, 5355–5366. [Google Scholar] [CrossRef]
- Davidson, K.L.; Houlihan, T.M.; Fairall, C.W.; Schacher, G.E. Observation of the temperature structure function parameter, CT2, over the ocean. Bound. Layer Meteorol. 1978, 15, 507–523. [Google Scholar] [CrossRef]
- Li, J.; Chen, H.; Li, Z.; Wang, P.; Cribb, M.; Fan, X. Low-level temperature inversions and their effect on aerosol condensation nuclei concentrations under different large-scale synoptic circulations. Adv. Atmos. Sci. 2015, 32, 898–908. [Google Scholar] [CrossRef]
- Spellman, F.R.; Bieber, R.M. Environmental Health and Science Desk Reference; Government Institutes: Plymouth, UK, 2012.
- Trinquet, H.; Vernin, J. A model to forecast seeing and estimate C2N profiles from meteorological data. Publ. Astron. Soc. Pac. 2006, 118, 756–764. [Google Scholar] [CrossRef]
- Tofsted, D.H.; O’Brien, S.G.; Vaucher, G.T. An Atmospheric Turbulence Profile Model for Use in Army Wargaming Applications I (No. ARL-TR-3748), Army Research Lab White Sands Missile Range NM Computational and Information Science Directorate. 2006. Available online: http://www.dtic.mil/dtic/tr/fulltext/u2/a509431.pdf (accessed on 18 June 2017).
- Dagle, W.R.; Belen’kii, M.S.; Gimmestad, G.G.; Roberts, D.W.; Stewart, J.M. A LIDAR for Remote Sensing of Optical Turbulence; Final Report; Applied Technologies, Inc.: Longmont, CO, USA, 2000; Available online: http://www.dtic.mil/docs/citations/ADA378524 (accessed on 28 May 2017).
- Belen’kii, M.S.; Mironov, V.L. Laser method of determining the turbulence parameter Cn2 on the basis of light scattering by atmospheric aerosol. Radiophys. Quantum Electron. 1981, 24, 206–210. [Google Scholar] [CrossRef]
- Tatarski, V.I. Wave Propagation in a Turbulent Medium; Institute of Atmospheric Physics Academy of Sciences of the USSR Translated from Russian by R.A. Silverman; Dover Publications Inc.: New York, NY, USA, 1961. [Google Scholar]
- Consortini, A.; Sun, Y.Y.; Innocenti, C.; Li, Z.P. Measuring inner scale of atmospheric turbulence by angle of arrival and scintillation. Opt. Commun. 2003, 216, 19–23. [Google Scholar] [CrossRef]
- Ochs, G.R.; Hill, R.J. Optical-scintillation method of measuring turbulence inner scale. Appl. Opt. 1985, 24, 2430–2432. [Google Scholar] [CrossRef]
- Liu, C.; Huang, J.; Fedorovich, E.; Hu, X.M.; Wang, Y.; Lee, X. The effect of aerosol radiative heating on turbulence statistics and spectra in the atmospheric convective boundary layer: A large-eddy simulation study. Atmosphere 2018, 9, 347. [Google Scholar] [CrossRef]
- Védrenne, N.; Montmerle, A.B.; Robert, C.; Michau, V.; Montri, J.; Fleury, B. Cn2 profile measurement from Shack-Hartmann data: Experimental validation and exploitation. Proc. SPIE 2010, 78280B. [Google Scholar] [CrossRef]
- Liu, Z.; Hunt, W.; Vaughan, M.; Hostetler, C.; McGill, M.; Powell, K.; Winker, D.M.; Hu, Y. Estimating random errors due to shot noise in backscatter lidar observations. Appl. Opt. 2006, 45, 4437–4447. [Google Scholar] [CrossRef] [PubMed]
- Hamamatsu, Photomultiplier Tubes, and Photomultipliers Tubes Photonics “Basics and Applications”; Hamamatsu Photonics KK: Iwata City, Japan, 2007.
- Yura, H.T. Signal-to-noise ratio of heterodyne LIDAR systems in the presence of atmospheric turbulence. Opt. Acta Int. J. Opt. 1979, 26, 627–644. [Google Scholar] [CrossRef]
- Roddier, F.; Roddier, C. National Optical Astronomy Observatories (NOAO) Infrared Adaptive Optics Program II: Modeling atmospheric effects in adaptive optics systems for astronomical telescopes. Adv. Technol. Opt. Telesc. III 1986, 628, 298–305. [Google Scholar] [CrossRef]
- Hagelin, S. Optical Turbulence Characterization for Ground-Based Astronomy. Ph.D. Thesis, University of Uppsala, Uppsala, Sweden, 2010. [Google Scholar]
- Kovalev, V.; Eichinger, W. Elastic Lidar: Theory, Practice, and Analysis Methods; John Wiley and Sons Inc.: Hoboken, NJ, USA, 2004. [Google Scholar]
- Müller, D.; Mattis, I.; Wandinger, U.; Ansmann, A.; Althausen, D.; Dubovik, O.; Eckhardt, S.; Stohl, A. Saharan dust over a central European EARLINET-AERONET site: Combined observations with Raman lidar and Sun photometer. J. Geophys. Res. 2003, 108, 4345. [Google Scholar] [CrossRef]
- Lolli, S.; Madonna, F.; Rosoldi, M.; Campbell, R.J.; Welton, J.E.; Lewis, R.J.; Gu, Y.; Pappalardo, G. Impact of varying lidar measurement and data processing techniques in evaluating cirrus cloud and aerosol direct radiative effects. Atmos. Meas. Tech. 2018, 1639–1651. [Google Scholar] [CrossRef]
- Klett, J.D. Stable analytical inversion solution for processing lidar returns. Appl. Opt. 1981, 20, 211–220. [Google Scholar] [CrossRef] [PubMed]
- Unga, F.; Cazacu, M.M.; Timofte, A.; Bostan, D.; Mortier, A.; Dimitriu, D.G.; Gurlui, S.; Goloub, P. Study of tropospheric aerosol types over Iasi, Romania, during summer of 2012. Environ. Eng. Manag. J. (EEMJ) 2013, 12, 297–303. [Google Scholar]
- Cazacu, M.M.; Timofte, A.; Unga, F.; Albina, B.; Gurlui, S. AERONET data investigation of the aerosol mixtures over Iasi area, One-year time scale overview. J. Quant. Spectrosc. Radiat. Transf. 2015, 15357–15364. [Google Scholar] [CrossRef]
- Vande, J.D. Theory of Lidar. In A Novel Lidar Ceilometer, Springer Theses (Recognizing Outstanding Ph.D. Research); Springer: Cham, Switzerland, 2015; pp. 23–41. [Google Scholar]
- Optical Depth. Available online: http://scienceworld.wolfram.com/physics/OpticalDepth.html (accessed on 25 June 2017).
- Barletti, R.; Ceppatelli, G.; Paternò, L.; Righini, A.; Speroni, N. Mean vertical profile of atmospheric turbulence relevant for astronomical seeing. J. Opt. Soc. Am. 1976, 66, 1380–1383. [Google Scholar] [CrossRef]
- Andreas, E.L. Estimating Cn2 over snow and sea Ice from meteorological quantities. Opt. Infraredmillim. Wave Propag. Eng. 1988, 926, 258–268. [Google Scholar] [CrossRef]
- Belegante, L.; Cazacu, M.M.; Timofte, A.; Toanca, F.; Vasilescu, J.; Rusu, M.I.; Ajtai, N.; Stefanie, H.I.; Vetres, I.; Ozunu, A.; et al. Case study of the first volcanic ash exercise in Romania using remote sensing techniques. Environ. Eng. Manag. J. (EEMJ) 2015, 14, 2503–2504. [Google Scholar]
- Papayannis, A.; Nicolae, D.; Kokkalis, P.; Binietoglou, I.; Talianu, C.; Belegante, L.; Tsaknakis, G.; Cazacu, M.M.; Vetres, I.; Ilic, L. Optical, size and mass properties of mixed type aerosols in Greece and Romania as observed by synergy of lidar and sunphotometers in combination with model simulations: A case study. Sci. Total Environ. 2014, 500–501, 277–294. [Google Scholar] [CrossRef] [PubMed]
- Flamant, C.; Pelon, J.; Flamant, P.H.; Durand, P. Lidar determination of the entrainment zone thickness at the top of the unstable marine atmospheric boundary layer. Bound. Layer Meteorol. 1997, 83, 247–284. [Google Scholar] [CrossRef]
- Haeffelin, M.; Angelini, F.; Morille, Y.; Martucci, G.; Frey, S.; Gobbi, G.P.; Lolli, S.; O’Dowd, C.D.; Sauvage, L.; Xueref-Rémy, I.; et al. Evaluation of mixing-height retrievals from automatic profiling lidars and ceilometers in view of future integrated networks in Europe. Bound. Layer Meteorol. 2012, 143, 49–75. [Google Scholar] [CrossRef]
- Dockery, D.W.; Pope, C.A. Acute respiratory effects of particulate air pollution. Annu. Rev. Public Health 1994, 15, 107–132. [Google Scholar] [CrossRef]
- Anenberg, S.C.; Horowitz, L.W.; Tong, D.Q.; West, J.J. An estimate of the global burden of anthropogenic ozone and fine particulate matter on premature human mortality using atmospheric modeling. Environ. Health Perspect. 2010, 118, 1189–1195. [Google Scholar] [CrossRef]
- Petäjä, T.; Järvi, L.; Kerminen, V.M.; Ding, A.J.; Sun, J.N.; Nie, W.; Zilitinkevich, S. Enhanced air pollution via aerosol-boundary layer feedback in China. Sci. Rep. 2016, 6, 18998. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Quan, J.; Gao, Y.; Zhang, Q.; Tie, X.; Cao, J.; Han, S.; Zhao, D. Evolution of planetary boundary layer under different weather conditions, and its impact on aerosol concentrations. Particuology 2013, 11, 34–40. [Google Scholar] [CrossRef]
- Glossary of Meteorology. Microburst. Available online: https://web.archive.org/web/20081212043551/http://amsglossary.allenpress.com/glossary/search?p=1&query=microburst&submit=Search (accessed on 26 September 2017).
- 21 December 1992 DC-10 Accident Entry. Aviation-Safety.net. Available online: https://aviation-safety.net/database/record.php?id=19921221-0 (accessed on 15 January 2018).
- Final Report Aircraft Accident Investigation into M/s Bhoja air Flight BHO-213, Boeing 737-236A, REG # AP-BKC Crashed on 20th April 2012 Near Bbiap, Islamabad. Available online: http://caapakistan.com.pk/Upload/SIBReports/SIB-350.pdf (accessed on 15 January 2018).
- One Year after Microburst, Recovery Progresses. Available online: http://www.oread.ku.edu/2007/march/5/microburst.shtml (accessed on 20 January 2018).
- Brian Kushida (11.06.2010), Strong Winds Rip Through SF Neighborhood—News for Sioux Falls, South Dakota, Minnesota and Iowa. Available online: http://www.keloland.com/news/news/NewsDetail7807.cfm?ID=101172 (accessed on 20 January 2018).
0.3141 | 0.7981 | 0.4138 | 1114 | 424 |
0.0666 | 1.6061 | 0.4013 | 1069 | 425 |
0.027 | 3.9627 | 0.3497 | 1036 | 423 |
0.061 | 1.7525 | 0.4448 | 1008 | 425 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rosu, I.-A.; Cazacu, M.-M.; Prelipceanu, O.S.; Agop, M. A Turbulence-Oriented Approach to Retrieve Various Atmospheric Parameters Using Advanced Lidar Data Processing Techniques. Atmosphere 2019, 10, 38. https://doi.org/10.3390/atmos10010038
Rosu I-A, Cazacu M-M, Prelipceanu OS, Agop M. A Turbulence-Oriented Approach to Retrieve Various Atmospheric Parameters Using Advanced Lidar Data Processing Techniques. Atmosphere. 2019; 10(1):38. https://doi.org/10.3390/atmos10010038
Chicago/Turabian StyleRosu, Iulian-Alin, Marius-Mihai Cazacu, Otilia Sanda Prelipceanu, and Maricel Agop. 2019. "A Turbulence-Oriented Approach to Retrieve Various Atmospheric Parameters Using Advanced Lidar Data Processing Techniques" Atmosphere 10, no. 1: 38. https://doi.org/10.3390/atmos10010038
APA StyleRosu, I. -A., Cazacu, M. -M., Prelipceanu, O. S., & Agop, M. (2019). A Turbulence-Oriented Approach to Retrieve Various Atmospheric Parameters Using Advanced Lidar Data Processing Techniques. Atmosphere, 10(1), 38. https://doi.org/10.3390/atmos10010038