Spatial Variability of the Lower Atmospheric Boundary Layer over Hilly Terrain as Observed with an RPAS
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Measuring Site
2.2. RPAS Technical Characteristics
2.3. ECMWF Profiles
3. Results and Discussion
3.1. Horizontal Variability for Slowly Evolving Events
3.1.1. A Late Morning Windy and Sunny Case (14 July 2017)
3.1.2. A Cloudy and Windy Dawn Case (27 July 2017)
3.1.3. A Dawn Case with Clear Skies and Weak Winds (2 August 2017)
3.1.4. A Dawn Case with Patches of Mist and Weak Winds (24 September 2017)
3.2. Quantitative Comparison of Individual Sites to Averaged and ECMWF Profiles
3.3. A Tentative Quantification of the Surface Layer Heterogeneity
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Beyrich, F.; Herzog, H.J.; Neisser, J. The LITFASS project of DWD and the LITFASS-98 experiment: The project strategy and the experimental setup. Theor. Appl. Climatol. 2002, 73, 3–18. [Google Scholar] [CrossRef]
- Simó, G.; Cuxart, J.; Jiménez, M.A.; Martínez-Villagrasa, D.; Picos, R.; López-Grifol, A.; Martí, B. Observed atmospheric and surface variability on heterogeneous terrain at the hectometre scale and related advective transports. J. Geophys. Res. Atmos. 2019. [Google Scholar] [CrossRef]
- Couvreux, F.; Guichard, F.; Redelsperger, J.L.; Kiemle, C.; Masson, V.; Lafore, J.P.; Flamant, C. Water-vapour variability within a convective boundary-layer assessed by large-eddy simulations and IHOP-2002 observations. Q. J. R. Meteorol. Soc. 2005, 131, 2665–2693. [Google Scholar] [CrossRef]
- Garratt, J.R. The Atmospheric Boundary Layer; Cambridge University Press: Cambridge, UK, 1992; 334p. [Google Scholar]
- Serafin, S.; Adler, B.; Cuxart, J.; De Wekker, S.J.; Gohm, A.; Grisogono, B.; Kalthoff, N.; Kirshbaum, D.J.; Rotach, M.W.; Schmidl, J.; et al. Exchange processes in the atmospheric boundary layer over mountainous terrain. Atmosphere 2018, 9, 102. [Google Scholar] [CrossRef]
- Jackson, P.S.; Hunt, J.C.R. Turbulent wind flow over a low hill. Q. J. R. Meteorol. Soc. 1975, 101, 929–955. [Google Scholar] [CrossRef]
- Finnigan, J.J.; Belcher, S.E. Flow over a hill covered with a plant canopy. Q. J. R. Meteorol. Soc. 2004, 130, 1–29. [Google Scholar] [CrossRef]
- Brown, A.R.; Hobson, J.M.; Wood, N. Large-eddy simulation of neutral turbulent flow over rough sinusoidal ridges. Bound. Layer Meteorol. 2001, 98, 411–441. [Google Scholar] [CrossRef]
- Taylor, P.A.; Teunissen, H.W. The Askervein Hill project: Overview and background data. Bound. Layer Meteorol. 1987, 39, 15–39. [Google Scholar] [CrossRef]
- Ruck, B.; Adams, E. Fluid mechanical aspects of the pollutant transport to coniferous trees. Bound. Layer Meteorol. 1991, 56, 163–195. [Google Scholar] [CrossRef]
- Dörnbrack, A.; Schumann, U. Numerical simulation of turbulent convective flow over wavy terrain. Bound. Layer Meteorol. 1993, 65, 323–355. [Google Scholar] [CrossRef]
- Patton, E.G.; Katul, G.G. Turbulent pressure and velocity perturbations induced by gentle hills covered with sparse and dense canopies. Bound. Layer Meteorol. 2009, 133, 189–217. [Google Scholar] [CrossRef]
- Mahrt, L. Microfronts in the nocturnal boundary layer. Q. J. R. Meteorol. Soc. 2019, 145, 546–562. [Google Scholar] [CrossRef]
- Beljaars, A.C.; Brown, A.R.; Wood, N. A new parametrization of turbulent orographic form drag. Q. J. R. Meteorol. Soc. 2004, 130, 1327–1347. [Google Scholar] [CrossRef]
- Anderson, W.; Meneveau, C. Dynamic roughness model for large-eddy simulation of turbulent flow over multiscale, fractal-like rough surfaces. J. Fluid Mech. 2011, 679, 288–314. [Google Scholar] [CrossRef]
- Flack, K.A.; Schultz, M.P. Review of hydraulic roughness scales in the fully rough regime. J. Fluids Eng. 2010, 132, 041203. [Google Scholar] [CrossRef]
- Petersen, E.L.; Troen, I.; Joergensen, H.E.; Mann, J. The new European wind atlas. Energy Bull. 2014, 17, 34–39. [Google Scholar]
- Mann, J.; Angelou, N.; Arnqvist, J.; Callies, D.; Cantero, E.; Arroyo, R.C.; Courtney, M.; Cuxart, J.; Dellwik, E.; Gottschall, J.; et al. Complex terrain experiments in the new European wind atlas. Philos. Trans. R. Soc. A 2017, 375, 20160101. [Google Scholar] [CrossRef] [PubMed]
- Künt, P.; Basse, A.; Callies, D.; Chen, Y.; Döpfer, R.; Freier, J.; Griesbach, T.; Klaas, T.; Pauscher, L. NEWA Forested Hill Experiment: Experiment Documentation; Technical Report IEE-2018-214-V2; Fraunhofer-Gesellschaft: München, Germany, 2018; 72p. [Google Scholar]
- Pauscher, L.; Callies, D.; Klaas, T.; Foken, T. Wind observations from a forested hill: Relating turbulence statistics to surface characteristics in hilly and patchy terrain. Meteorol. Z. 2018, 27, 43–57. [Google Scholar] [CrossRef]
- Debor, S. Multiplying mighty Davids. In The Influence of Energy Cooperatives on Germany’s Energy Transition; Springer: Berlin/Heidelberg, Germany, 2018. [Google Scholar]
- Wrenger, B.; Cuxart, J. Evening transition by a river sampled using a remotely-piloted multicopter. Bound. Layer Meteorol. 2017, 165, 535–543. [Google Scholar] [CrossRef]
- Prohasky, D.; Watkins, S. Low Cost Hot-element Anemometry Verses the TFI Cobra. In Proceedings of the 19th Australasian Fluid Mechanics Conference, Melbourne, Australia, 8–11 December 2014. [Google Scholar]
- Neumann, P.P.; Bartholomai, M. Real-time wind estimation on a micro unmanned aerial vehicle using its inertial measurement unit. Sens. Actuator A Phys. 2015, 235, 300–310. [Google Scholar] [CrossRef]
Site (lat/lon) | Elevation (m) | Use of Terrain | Vegetation Height (m) | Dist to 1, 2, 3, 4, 5 (km) |
---|---|---|---|---|
1 (51.337 N/9.168 E) | 263 | agr bare/veg | 0–1 | x, 1, 5, 5, 3 |
2 (51.344 N/9.178 E) | 231 | agr vegetated | 0.5 | 1, x, 4, 4, 2 |
3 (51.377 N/9.169 E) | 218 | forest | 15–20 | 5, 4, x, 2, 5 |
4 (51.373 N/9.202 E) | 268 | agr bare | 0 | 5, 4, 2, x, 3 |
5 (51.348 N/9.213 E) | 321 | pasture | 0.1 | 3, 2, 5, 3, x |
Case | s1-av | s2-av | s3-av | s4-av | s5-av | s1-ec | s2-ec | s3-ec | s4-ec | s5-ec | av-ec | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
14 July | 0.49 | 0.66 | 1.04 | 0.37 | 1.99 | 0.89 | 0.78 | 1.36 | 0.46 | 1.80 | 0.42 | K |
0.66 | 2.18 | 1.51 | 1.32 | 3.02 | 0.84 | 2.85 | 1.94 | 1.88 | 2.60 | 0.79 | m s | |
27 July | 0.36 | 0.17 | 1.59 | 0.63 | 1.03 | 1.10 | 1.37 | 3.00 | 0.79 | 0.42 | 1.42 | K |
1.01 | 1.20 | 2.15 | 2.39 | 0.94 | 0.96 | 0.88 | 3.18 | 1.93 | 1.69 | 1.19 | m s | |
2 August | 0.50 | 0.96 | 0.76 | 0.21 | 0.23 | 0.75 | 1.07 | 0.95 | 0.42 | 0.43 | 0.37 | K |
0.22 | 0.60 | 1.06 | 0.24 | 0.72 | 0.74 | 0.56 | 0.72 | 0.96 | 0.88 | 0.79 | m s | |
24 September | 0.69 | 1.53 | 1.62 | 0.43 | 0.08 | 1.20 | 1.32 | 1.36 | 1.77 | 1.50 | 1.46 | K |
0.40 | 0.28 | 0.92 | 0.65 | 0.19 | 0.42 | 0.58 | 1.17 | 0.94 | 0.45 | 0.32 | m s | |
Average | 0.51 | 0.83 | 1.25 | 0.41 | 0.83 | 0.99 | 1.13 | 1.67 | 0.86 | 1.04 | 0.92 | K |
0.57 | 1.06 | 1.41 | 1.15 | 1.22 | 0.74 | 1.22 | 1.75 | 1.43 | 1.40 | 0.78 | m s |
Date and Time (UTC) | Weather | u10 (m/s) | (m/s) | (K) | |
---|---|---|---|---|---|
14 July, 10:17–11:51 | clear CBL | 3 | 2 | 1.5 | 0.70 |
27 July, 3:44–5:31 | drizzle | 3 | 2 | 1.2 | 0.62 |
2 August, 4:04–5:25 | broken, dew | 1 | 0.2 | 0.5 | 4.03 |
24 September, 7:10–8:15 | fading mist | 1.2 | 0.2 | 1.5 | 7.06 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cuxart, J.; Wrenger, B.; Matjacic, B.; Mahrt, L. Spatial Variability of the Lower Atmospheric Boundary Layer over Hilly Terrain as Observed with an RPAS. Atmosphere 2019, 10, 715. https://doi.org/10.3390/atmos10110715
Cuxart J, Wrenger B, Matjacic B, Mahrt L. Spatial Variability of the Lower Atmospheric Boundary Layer over Hilly Terrain as Observed with an RPAS. Atmosphere. 2019; 10(11):715. https://doi.org/10.3390/atmos10110715
Chicago/Turabian StyleCuxart, Joan, Burkhard Wrenger, Blazenka Matjacic, and Larry Mahrt. 2019. "Spatial Variability of the Lower Atmospheric Boundary Layer over Hilly Terrain as Observed with an RPAS" Atmosphere 10, no. 11: 715. https://doi.org/10.3390/atmos10110715
APA StyleCuxart, J., Wrenger, B., Matjacic, B., & Mahrt, L. (2019). Spatial Variability of the Lower Atmospheric Boundary Layer over Hilly Terrain as Observed with an RPAS. Atmosphere, 10(11), 715. https://doi.org/10.3390/atmos10110715