Efficiency and Eco-Costs of Air Purifiers in Terms of Improving Microbiological Indoor Air Quality in Dwellings—A Case Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling Sites
2.2. Sampling and Analysis Methods
2.3. LCA Methodology
- human health;
- ecosystem;
- natural resources.
3. Results and Discussion
3.1. The Concentration of CBA
3.2. The Particle Size Distribution (PSD) of CBA
3.3. LCA—The Ecological Cost of Emission Reduction
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Petrillo, A.; De Felice, F.; Jannelli, E.; Autorino, C.; Minutillo, M.; Lavadera, A.L. Life cycle assessment (LCA) and life cycle cost (LCC) analysis model for a stand-alone hybrid renewable energy system. Renew. Energy 2016, 95, 337–355. [Google Scholar] [CrossRef]
- WHO Regional Office for Europe. OECD Economic Cost of the Health Impact of Air Pollution in Europe: Clean Air, Health and Wealth; European Environment and Health Processes; WHO Regional Office for Europe: Copenhagen, Denmark, 2015. [Google Scholar]
- Aydogdu, H.; Asan, A.; Tatman Otkun, M. Indoor and outdoor airborne bacteria in child day-care centers in Edirne City (Turkey), seasonal distribution and influence of meteorological factors. Environ. Monit. Assess. 2010, 164, 53–66. [Google Scholar] [CrossRef] [PubMed]
- Mainka, A.; Brągoszewska, E.; Kozielska, B.; Pastuszka, J.S.; Zajusz-Zubek, E. Indoor air quality in urban nursery schools in Gliwice, Poland: Analysis of the case study. Atmos. Pollut. Res. 2015, 6, 1098–1104. [Google Scholar] [CrossRef]
- Hospodsky, D.; Yamamoto, N.; Nazaroff, W.W.; Miller, D.; Gorthala, S.; Peccia, J. Characterizing airborne fungal and bacterial concentrations and emission rates in six occupied children’s classrooms. Indoor Air 2015, 25, 641–652. [Google Scholar] [CrossRef]
- Matlow, A.G.; Morris, S.K. Control of antibiotic-resistant bacteria in the office and clinic. Can. Med. Assoc. J. 2009, 180, 1021–1024. [Google Scholar] [CrossRef] [PubMed]
- Mummolo, S.; Marchetti, E.; Giuca, M.R.; Gallusi, G.; Tecco, S.; Gatto, R.; Marzo, G. In-office bacteria test for a microbial monitoring during the conventional and self-ligating orthodontic treatment. Head Face Med. 2013, 9, 7. [Google Scholar] [CrossRef]
- Reynolds, S.J.; Black, D.W.; Borin, S.S.; Breuer, G.; Burmeister, L.F.; Fuortes, L.J.; Smith, T.F.; Stein, M.A.; Subramanian, P.; Thorne, P.S.; et al. Indoor Environmental Quality in Six Commercial Office Buildings in the Midwest United States. Appl. Occup. Environ. Hyg. 2001, 16, 1065–1077. [Google Scholar] [CrossRef]
- Ashmore, M.; Dimitroulopoulou, C. Personal exposure of children to air pollution. Atmos. Environ. 2009, 43, 128–141. [Google Scholar] [CrossRef]
- Wichmann, J.; Lind, T.; Nilsson, M.-M.; Bellander, T. PM2.5, soot and NO2 indoor–outdoor relationships at homes, pre-schools and schools in Stockholm, Sweden. Atmos. Environ. 2010, 44, 4536–4544. [Google Scholar] [CrossRef]
- Wang, Y.-F.; Wang, C.-H.; Hsu, K.-L. Size and seasonal distributions of airborne bioaerosols in commuting trains. Atmos. Environ. 2010, 44, 4331–4338. [Google Scholar] [CrossRef]
- Nasir, Z.A.; Colbeck, I.; Sultan, S.; Ahmed, S.; Nasar, Z.A. Bioaerosols in residential micro-environments in low income countries: A case study from Pakistan. Environ. Pollut. 2012, 168, 15–22. [Google Scholar] [CrossRef] [PubMed]
- Wood, R.A.; Burchett, M.D.; Orwell, R.A.; Tarran, J.; Torpy, F. Plant/Soil Capacities to Remove Harmful Substances from Polluted Indoor Air. J. Horticul. Sci. Biotechnol. 2002, 71, 120–129. [Google Scholar] [CrossRef]
- Lee, B.U. Life Comes from the Air: A Short Review on Bioaerosol Control. Aerosol. Air Qual. Res. 2011, 11, 921–927. [Google Scholar] [CrossRef]
- Tolabi, Z.; Alimohammadi, M.; Hassanvand, M.S.; Nabizadeh, R.; Soleimani, H.; Zarei, A. The investigation of type and concentration of bio-aerosols in the air of surgical rooms: A case study in Shariati hospital, Karaj. MethodsX 2019, 6, 641–650. [Google Scholar] [CrossRef] [PubMed]
- Adhikari, A.; Reponen, T.; Grinshpun, S.A.; Martuzevicius, D.; Lemasters, G. Correlation of ambient inhalable bioaerosols with particulate matter and ozone: A two-year study. Environ. Pollut. 2006, 140, 16–28. [Google Scholar] [CrossRef]
- Brągoszewska, E.; Pastuszka, J.S. Influence of meteorological factors on the level and characteristics of culturable bacteria in the air in Gliwice, Upper Silesia (Poland). Aerobiology 2018, 34, 241–255. [Google Scholar] [CrossRef]
- Almeida, S.M.; Canha, N.; Silva, A.; Freitas, M.D.C.; Pegas, P.; Alves, C.; Evtyugina, M.; Pio, C.A. Children exposure to atmospheric particles in indoor of Lisbon primary schools. Atmos. Environ. 2011, 45, 7594–7599. [Google Scholar] [CrossRef]
- Brandl, H. Bioaerosols in Indoor Environment—A Review with Special Reference to Residential and Occupational Locations. Open Environ. Biol. Monit. J. 2011, 4, 83–96. [Google Scholar] [CrossRef]
- Brągoszewska, E.; Biedroń, I.; Kozielska, B.; Pastuszka, J.S. Microbiological indoor air quality in an office building in Gliwice, Poland: Analysis of the case study. Air Qual. Atmos. Health 2018, 11, 729–740. [Google Scholar] [CrossRef]
- Pastuszka, J.S.; Paw, U.K.T.; Lis, D.O.; Wlazło, A.; Ulfig, K. Bacterial and fungal aerosol in indoor environment in Upper Silesia, Poland. Atmos. Environ. 2000, 34, 3833–3842. [Google Scholar] [CrossRef]
- Brągoszewska, E.; Biedroń, I. Indoor Air Quality and Potential Health Risk Impacts of Exposure to Antibiotic Resistant Bacteria in an Office Rooms in Southern Poland. Int. J. Environ. Res. Public Health 2018, 15, 2604. [Google Scholar] [CrossRef] [PubMed]
- Oh, H.-J.; Nam, I.-S.; Yun, H.; Kim, J.; Yang, J.; Sohn, J.-R. Characterization of indoor air quality and efficiency of air purifier in childcare centers, Korea. Build. Environ. 2014, 82, 203–214. [Google Scholar] [CrossRef]
- Brągoszewska, E.; Biedroń, I.; Hryb, W. Air Quality and Potential Health Risk Impacts of Exposure to Bacterial Aerosol in a Waste Sorting Plant Located in the Mountain Region of Southern Poland, Around Which There Are Numerous Rural Areas. Atmosphere 2019, 10, 360. [Google Scholar] [CrossRef]
- Jiayu, C.; Qiaoqiao, R.; Feilong, C.; Chen, L.; Jiguo, W.; Zhendong, W.; Lingyun, C.; Liu, R.; Guoxia, Z. Microbiology Community Structure in Bioaerosols and the Respiratory Diseases. J. Environ. Sci. Public Heal. 2019, 3, 347–357. [Google Scholar] [CrossRef]
- Moore, M.N. Do airborne biogenic chemicals interact with the PI3K/Akt/mTOR cell signalling pathway to benefit human health and wellbeing in rural and coastal environments? Environ. Res. 2015, 140, 65–75. [Google Scholar] [CrossRef] [PubMed]
- Louis, G.B.; Damstra, T.; Díaz-Barriga, F.; Faustman, E.; Hass, U.; Kavlock, R.; Kimmel, C.; Kimmel, G.; Krishnan, K.; Luderer, U.; et al. Environmental Health Criteria 237: Principles for Evaluating Health Risks in Children Associated with Exposure to Chemicals; Environmental Health Criteria; WHO Press, World Health Organization: Geneva, Switzerland, 2006. [Google Scholar]
- Cincinelli, A.; Martellini, T. Indoor Air Quality and Health. Int. J. Environ. Res. Public Health 2017, 14, 1286. [Google Scholar] [CrossRef]
- Nevalainen, A.; Pastuszka, J.; Liebhaber, F.; Willeke, K. Performance of bioaerosol samplers: Collection characteristics and sampler design considerations. Atmos. Environ. Part A Gen. Top. 1992, 26, 531–540. [Google Scholar] [CrossRef]
- Douwes, J.; Thorne, P.; Pearce, N.; Heederik, D. Bioaerosol health effects and exposure assessment: Progress and prospects. Ann. Occup. Hyg. 2003, 47, 187–200. [Google Scholar]
- Barkjohn, K.K.; Bergin, M.H.; Norris, C.; Schauer, J.J.; Zhang, Y.; Black, M.; Hu, M.; Zhang, J. Using Low-cost sensors to Quantify the Effects of Air Filtration on Indoor and Personal Exposure Relevant PM2.5 Concentrations in Beijing, China. Aerosol. Air Qual. Res. 2019, in press. [Google Scholar] [CrossRef]
- Abreu, N.A.; Nagalingam, N.A.; Song, Y.; Roediger, F.C.; Pletcher, S.D.; Goldberg, A.N.; Lynch, S.V. Sinus microbiome diversity depletion and Corynebacterium tuberculostearicum enrichment mediates rhinosinusitis. Sci. Transl. Med. 2012, 4, 151ra124. [Google Scholar] [CrossRef]
- Gallego-Schmid, A.; Mendoza, J.M.F.; Jeswani, H.K.; Azapagic, A. Life cycle environmental impacts of vacuum cleaners and the effects of European regulation. Sci. Total Environ. 2016, 559, 192–203. [Google Scholar] [CrossRef] [PubMed]
- Monfared, B.; Furberg, R.; Palm, B. Magnetic vs. vapor-compression household refrigerators: A preliminary comparative life cycle assessment. Int. J. Refrig. 2014, 42, 69–76. [Google Scholar] [CrossRef] [Green Version]
- Ardente, F.; Mathieux, F. Environmental assessment of the durability of energy-using products: Method and application. J. Clean. Prod. 2014, 74, 62–73. [Google Scholar] [CrossRef]
- Teehan, P.; Kandlikar, M. Sources of Variation in Life Cycle Assessments of Desktop Computers. J. Ind. Ecol. 2012, 16, S182–S194. [Google Scholar] [CrossRef]
- Jeswani, H.K.; Azapagic, A. Is e-reading environmentally more sustainable than conventional reading? Clean Technol. Environ. Policy 2015, 17, 803–809. [Google Scholar] [CrossRef]
- Brągoszewska, E.; Mainka, A.; Pastuszka, J.S.; Lizończyk, K.; Desta, Y.G. Assessment of Bacterial Aerosol in a Preschool, Primary School and High School in Poland. Atmosphere 2018, 9, 87. [Google Scholar] [CrossRef] [Green Version]
- Sato, J.; Denda, M.; Chang, S.; Elias, P.M.; Feingold, K.R. Abrupt Decreases in Environmental Humidity Induce Abnormalities in Permeability Barrier Homeostasis. J. Investig. Dermatol. 2002, 119, 900–904. [Google Scholar] [CrossRef] [Green Version]
- Nevalainen, A.; Willeke, K.; Liebhaber, F.; Pastuszka, J.S.; Burge, H.; Henningson, E. Bioaerosol sampling. In Aerosol Measurement: Principles, Techniques and Applications; Willeke, K., Baron, P., Eds.; Van Nostrand Reinhold: New York, NY, USA, 1993; pp. 471–492. [Google Scholar]
- PN-EN 12322 In Vitro Diagnostic Medical Devices. Culture Media for Microbiology. Performance Criteria for Culture Media. 2005. Available online: https://ec.europa.eu/growth/single-market/european-standards/harmonised-standards/iv-diagnostic-medical-devices_en (accessed on 18 November 2019).
- ISO 11133 Microbiology of Food, Animal Feed and Water—Preparation, Production, Storage and Performance Testing of Culture Media. 2014. Available online: https://www.iso.org/standard/53610.html (accessed on 18 November 2019).
- Brągoszewska, E.; Mainka, A.; Pastuszka, J.S. Bacterial and Fungal Aerosols in Rural Nursery Schools in Southern Poland. Atmosphere 2016, 7, 142. [Google Scholar] [CrossRef] [Green Version]
- ISO 14040 Environmental management—Life Cycle Assessment—Principles and Framework; International Organization for Standardization (ISO): Geneva, Switzerland, 2006.
- Huijbregts, M.A.J.; Steinmann, Z.J.N.; Elshout, P.M.F.; Stam, G.; Verones, F.; Vieira, M.; Zijp, M.; Hollander, A.; van Zelm, R. ReCiPe2016: A harmonised life cycle impact assessment method at midpoint and endpoint level. Int. J. Life Cycle Assess. 2017, 22, 138–147. [Google Scholar] [CrossRef]
- Gayer, A.; Mucha, D.; Adamkiewicz, Ł.; Badyda, A. Children exposure to PM2.5 in kindergarten classrooms equipped with air purifiers—A pilot study. In MATEC Web of Conferences; EDP Sciences: Les Ulis, France, 2018; Volume 247, p. 00016. [Google Scholar]
- Pastuszka, J.S. Exposure of the General Population Living in Upper Silesia Industrial Zone to the Particulate, Fibrous and Biological (Bacteria and Fungi) Aerosols; Wroclaw Technical University: Wroclaw, Poland, 2001. (In Polish) [Google Scholar]
- Mirhoseini, S.H.; Nikaeen, M.; Satoh, K.; Makimura, K. Assessment of Airborne Particles in Indoor Environments: Applicability of Particle Counting for Prediction of Bioaerosol Concentrations. Aerosol. Air Qual. Res. 2016, 16, 1903–1910. [Google Scholar] [CrossRef]
- Lee, J.-H.; Jo, W.-K. Characteristics of indoor and outdoor bioaerosols at Korean high-rise apartment buildings. Environ. Res. 2006, 101, 11–17. [Google Scholar] [CrossRef] [PubMed]
- Górny, R.L. Biological aerosols – a role of hygienic standards in the protection of environment and health. Environ. Med. 2010, 13, 2009–2010. [Google Scholar]
- Lacey, J.; Dutkiewicz, J. Bioaerosols and occupational lung disease. J. Aerosol. Sci. 1994, 25, 1371–1404. [Google Scholar] [CrossRef]
- Owen, M.; Ensor, D.; Sparks, L. Airborne particle sizes and sources found in indoor air. Atmos. Environ. Part A Gen. Top. 1992, 26, 2149–2162. [Google Scholar] [CrossRef]
Dwelling 1 (D1) | Dwelling 2 (D2) | |
---|---|---|
Home location | close to the city centre | close to the city centre |
Building built in | 1990s | 1980s |
Equipment | Table, chairs, sofa | Table, chairs, sofa, 2 armchairs |
Ventilation system | natural | natural |
Volume, m3 | 64 | 62 |
Number of occupants | 4 (2 adults and 2 children) | 4 (2 adults and 2 children) |
Number of animals | - | 1 dog |
Floor covered with | PVC | PVC and carpet |
Indoor temperature, °C (APA) | 19.60 | 20.60 |
Indoor temperature, °C (APO) | 21.45 | 20.55 |
Outdoor temperature, °C (APA) | 25.15 | 25.60 |
Outdoor temperature, °C (APO) | 24.00 | 23.50 |
Indoor relative humidity, % (APA) | 31.80 | 36.75 |
Indoor relative humidity, % (APO) | 31.10 | 32.00 |
Outdoor relative humidity, % (APA) | 42.00 | 48.40 |
Outdoor relative humidity, % (APO) | 39.50 | 47.85 |
Location | Average Concentration | SD | Min | Max |
---|---|---|---|---|
D1 APO | 918 | 221 | 311 | 1204 |
D2 APO | 1006 | 311 | 528 | 1511 |
D1 APA | 446 | 81 | 163 | 526 |
D2 APA | 572 | 98 | 301 | 748 |
Assumption | Unit | Chosen Ecoinvent Database | |
---|---|---|---|
Working hours | 3025 | h/year | - |
Electricity consumption | 85.5 | kWh | Electricity, low voltage {PL}| market for | Alloc Def, U |
Recycling plastic | 2 | kg | _42 Recycling of plastics basic, EU27 |
Recycling metals | 0.5 | kg | _60 Recycling of metals basic, n.e.c. EU27 |
Air filter | 1 | piece | Air filter, central unit, 600 m3/h {GLO}| market for | Alloc Def, U |
Production of the device | 1 | piece | Air purification and ventilation equipment manufacturing |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brągoszewska, E.; Bogacka, M.; Pikoń, K. Efficiency and Eco-Costs of Air Purifiers in Terms of Improving Microbiological Indoor Air Quality in Dwellings—A Case Study. Atmosphere 2019, 10, 742. https://doi.org/10.3390/atmos10120742
Brągoszewska E, Bogacka M, Pikoń K. Efficiency and Eco-Costs of Air Purifiers in Terms of Improving Microbiological Indoor Air Quality in Dwellings—A Case Study. Atmosphere. 2019; 10(12):742. https://doi.org/10.3390/atmos10120742
Chicago/Turabian StyleBrągoszewska, Ewa, Magdalena Bogacka, and Krzysztof Pikoń. 2019. "Efficiency and Eco-Costs of Air Purifiers in Terms of Improving Microbiological Indoor Air Quality in Dwellings—A Case Study" Atmosphere 10, no. 12: 742. https://doi.org/10.3390/atmos10120742
APA StyleBrągoszewska, E., Bogacka, M., & Pikoń, K. (2019). Efficiency and Eco-Costs of Air Purifiers in Terms of Improving Microbiological Indoor Air Quality in Dwellings—A Case Study. Atmosphere, 10(12), 742. https://doi.org/10.3390/atmos10120742