June Temperature Trends in the Southwest Deserts of the USA (1950–2018) and Implications for Our Urban Areas
Abstract
:1. Introduction
2. Data and Methods
3. Results
4. Discussion and Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Wuebbles, D.J.; Fahey, D.W.; Hibbard, K.A.; Dokken, D.J.; Stewart, B.C.; Maycock, T.K. (Eds.) Climate Science Special Report: Fourth National Climate Assessment, Volume I; U.S. Global Change Research Program: Washington, DC, USA, 2017. [Google Scholar]
- Cayan, D.R.; Douglas, A.V. Urban influences on surface temperatures in the southwestern United States during recent decades. J. Clim. Appl. Meteorol. 1984, 23, 1520–1530. [Google Scholar] [CrossRef]
- Karl, T.R.; Diaz, H.F.; Kukla, G. Urbanization: Its detection and effect in the United States climate record. J. Clim. 1988, 1, 1099–1123. [Google Scholar] [CrossRef] [Green Version]
- Kamal, S.; Huang, H.-P.; Myint, S.W. The Influence of Urbanization on the Climate of the Las Vegas Metropolitan Area: A Numerical Study. J. Appl. Meteorol. Climatol. 2015, 54, 2157–2177. [Google Scholar] [CrossRef]
- Chow, W.T.L.; Brennan, D.; Brazel, A.J. Urban heat island research in Phoenix, Arizona, theoretical contributions and policy applications. Bull. Am. Meteorol. Soc. 2012, 93, 517–530. [Google Scholar] [CrossRef] [Green Version]
- Georgescu, M.; Miguez-Macho, G.; Steyaert, L.T.; Weaver, C.P. Sensitivity of summer climate to anthropogenic land-cover change over the greater Phoenix, Arizona, region. J. Arid Environ. 2008, 72, 1358–1373. [Google Scholar] [CrossRef]
- Comrie, A.C. Mapping a wind-modified urban heat island in Tucson, Arizona (with comments on integrating research and undergraduate learning). Bull. Am. Meteorol. Soc. 2000, 81, 2417–2431. [Google Scholar] [CrossRef] [Green Version]
- Georgescu, M.; Moustaoui, M.; Mahalov, A.; Dudhia, J. Summer-time climate impacts of projected megapolitan expansion in Arizona. Nat. Clim. Chang. 2013, 3, 37–41. [Google Scholar] [CrossRef]
- Garfin, G.; Jardine, A.; Merideth, R.; Black, M.; LeRoy, S. (Eds.) Assessment of Climate Change in the Southwest United States: A Report Prepared for the National Climate Assessment. In A Report by the Southwest Climate Alliance; Island Press: Washington, DC, USA, 2013. [Google Scholar]
- Baker, L.C.; Brazel, A.J.; Selover, N.; Martin, C.; McIntyre, N.; Steiner, F.R.; Nelson, A.; Mussacchio, L. Urbanization and warming of Phoenix (Arizona, USA): Impacts, feedbacks, and mitigation. Urban Ecosyst. 2002, 6, 183–203. [Google Scholar] [CrossRef]
- MacDonald, G.M. Water, climate change, and sustainability in the southwest. Proc. Natl. Acad. Sci. USA 2010, 107, 21256–21262. [Google Scholar] [CrossRef] [Green Version]
- CitiesIPCC. Available online: https://citiesipcc.org/beyond/campaign/ (accessed on 1 November 2019).
- National Centers for Environmental Information, Divisional Data. Available online: https://www.ncdc.noaa.gov/cag/divisional/time-series (accessed on 1 November 2019).
- National Centers for Environmental Information, Climate Data Online—Individual Sites. Dataset Description Document Global Summary of the Month/Year Dataset Version 1.0.1 / March 27, 2017. Available online: https://www.ncdc.noaa.gov/cdo-web/ (accessed on 1 November 2019).
- Brazel, A.J. Scales of Climate in Designing with the desert. In Design with the Desert, Conservation and Sustainable Development; Malloy, R., Brock, J., Floyd, A., Livingston, M., Webb, R.H., Eds.; CRC Press: Boca Raton, USA, 2013. [Google Scholar]
- Sheppard, P.R.; Comrie, A.C.; Packin, G.D.; Angersbach, K.; Hughes, M.K. The climate of the US Southwest. Clim. Res. 2002, 21, 219–238. [Google Scholar] [CrossRef] [Green Version]
- Sheridan, S.C. The Redevelopment of a weather-type classification scheme for North America. Int. J. Climatol. J. R. Meteorol. Soc. 2002, 22, 51–68. [Google Scholar] [CrossRef]
- Oke, T.R. Initial guidance to obtain representative meteorological observations at urban sites. In Instruments and Methods of Observation Programme; 10M Report No. 81, WMO/TD No. 1250; World Meteorological Organization: Geneva, Switzerland, 2004; p. 51. [Google Scholar]
- Durre, I.; Menne, M.J.; Gleason, B.E.; Houston, T.G.; Vose, R.S. Comprehensive automated quality assurance of daily surface observations. J. Appl. Meteorol. Climatol. 2010, 49, 1615–1633. [Google Scholar] [CrossRef] [Green Version]
- Menne, M.J.; Williams, C.N., Jr.; Palecki, M.A. On the reliability of the U.S. surface temperature record. J. Geophys. Res. Atmos. 2010, 115, D11108. [Google Scholar] [CrossRef] [Green Version]
- Menne, M.J.; Durre, I.; Vose, R.S.; Gleason, B.E.; Houston, T.G. An Overview of the Global Historical Climatology Network-Daily Database. J. Atmos. Ocean. Technol. 2012, 29, 897–910. [Google Scholar] [CrossRef]
- Lawrimore, J.H.; Ray, R.; Applequist, S.; Korzeniewski, B.; Menne, M.J. Global Summary of the Month (GSOM), version 1; NOAA National Centers for Environmental Information: Silver Spring, MD, USA, 2016. [Google Scholar]
- MRLC Project and Land Cover (U.S. Geological Survey (USGS) Earth Resources Observation and Science (EROS) Center. Available online: https://www.mrlc.gov/data (accessed on 1 November 2019).
- MesoWest University of Utah Atmospheric Sciences. Available online: https://mesowest.utah.edu (accessed on 1 November 2019).
- Brightness Index from NASA Goddard Institute for Space Studies. Available online: https://data.giss.nasa.gov/cgi-bin/gistemp/ (accessed on 1 November 2019).
- Svoma, B.M.; Brazel, A.J. Urban effects on the diurnal temperature cycle in Phoenix, Arizona. Clim. Res. 2010, 41, 21–29. [Google Scholar] [CrossRef]
- Historical Aerial Photography Maricopa County. Available online: https://gis.maricopa.gov/GIO/HistoricalAerial/index.html (accessed on 1 November 2019).
- Historical Photos UC Santa Barbara Library California Aerial Photography by County. Available online: https://www.library.ucsb.edu/src/airphotos/california-aerial-photography-county (accessed on 1 November 2019).
- Stewart, I.D.; Oke, T.R. Local climate zones for urban temperature studies. Bull. Am. Meteorol. Soc. 2012, 93, 1880–1900. [Google Scholar] [CrossRef]
- Wang, C.; Middel, A.; Myint, S.W.; Kaplan, S.; Brazel, A.J.; Lukasczyk, J. Assessing local climate zones in arid cities: The case of Phoenix, Arizona and Las Vegas, Nevada. ISPRS J. Photogramm. Remote Sens. 2018, 141, 59–71. [Google Scholar] [CrossRef]
- Hawkins, T.W.; Brazel, A.J.; Stefanov, W.L.; Bigler, W.; Saffell, E.M. The role of rural variability in urban heat island determination for Phoenix, Arizona. J. Appl. Meteorol. 2004, 43, 476–486. [Google Scholar] [CrossRef]
- Scott Sheridan Website. Available online: http://sheridan.geog.kent.edu/ssc.html (accessed on 1 November 2019).
- Brazel, A.; Gober, P.; Lee, S.-J.; Grossman-Clarke, S.; Zehnder, J.; Hedquist, B.; Comparri, E. Determinants of changes in the regional urban heat island in metropolitan Phoenix (Arizona, USA) between 1990 and 2004. Clim. Res. 2007, 33, 171–182. [Google Scholar] [CrossRef] [Green Version]
- Stone Jr, B. Short Communication Urban and rural temperature trends in proximity to large US cities: 1951–2000. Int. J. Clim. 2007, 27, 1801–1807. [Google Scholar] [CrossRef]
- Gall, R.; Young, K.; Schotland, R.; Schmitz, J. The recent maximum temperature anomalies in Tucson: Are they real or an instrumental problem? J. Clim. 1992, 5, 657–665. [Google Scholar] [CrossRef] [Green Version]
- Roth, M. Review of urban climate research in (Sub) tropical regions. Int. J. Clim. 2007, 27, 1859–1873. [Google Scholar] [CrossRef]
- Brazel, A.J.; Selover, N.; Vose, R.; Heisler, G. Tale of two climates—Baltimore and Phoenix urban LTER sites. Clim. Res. 2000, 15, 123–135. [Google Scholar] [CrossRef]
- Stewart, I.D.; Oke, T.R.; Krayenhoff, E.S. Evaluation of the ‘local climate zone’ scheme using temperature observations and model simulations. Int. J. Clim. 2014, 34, 1062–1080. [Google Scholar] [CrossRef]
- Karl, T.R.; Arguez, A.; Huang, B.; Lawrimore, J.H.; McMahon, J.R.; Menne, M.J.; Peterson, T.C.; Vose, R.S.; Zhang, H.-M. Possible artifacts of data biases in the recent global surface warming hiatus. Science 2015, aaa5632. [Google Scholar] [CrossRef] [Green Version]
- Chow, W.T.L.; Chuang, W.-C.; Gober, P. Vulnerability to Extreme Heat in Metropolitan Phoenix: Spatial, Temporal, and Demographic Dimensions. Prof. Geogr. 2012, 64, 286–302. [Google Scholar] [CrossRef]
- Chow, W.T.L.; Brazel, A.J. Assessing xeriscaping as a sustainable heat island mitigation approach for a desert city. Build. Environ. 2012, 47, 170–181. [Google Scholar] [CrossRef]
- City of Phoenix, 2008: Sustainable Development in A Desert Climate. Downtown Phoenix Plan, City of Phoenix. 2008. Available online: http://phoenix.gov/urbanformproject/dtplan.html (accessed on 1 November 2019).
- City of Phoenix, the Tree and Shade Master Plan. Available online: https://resilientwest.org/case-study/phoenix-az-tree-and-shade-master-plan/ (accessed on 1 November 2019).
- Habeeb, D.; Jason Vargo, J.; Stone, B., Jr. Rising heat wave trends in large US cities. Nat. Hazards 2015, 76, 1651–1665. [Google Scholar] [CrossRef]
- Stone, B.; Vargo, J.; Habeeb, D. Managing climate change in cities: Will climate actions plans work? Landsc. Urban Plan. 2012, 107, 263–271. [Google Scholar] [CrossRef]
- Stoker, P.; Chang, H.; Wentz, E.; Crow-Miller, B.; Jehle, G.; Bonnette, M. Building Water-Efficient Cities. J. Am. Plan. Assoc. 2019. [Google Scholar] [CrossRef]
- Krayenhoff, E.S.; Moustaoui, M.; Broadbent, A.; Gupta, V.; Georgescu, M. Diurnal interaction between urban expansion, climate change and adaptation in US cities. Nat. Clim. Chang 2018, 8, 1097–1103. [Google Scholar] [CrossRef]
- Chuang, W.-C.; Karner, A.; Selover, N.; Hondula, D.; Chhetri, N.; Middel, A.M.; Roach, M.; Dufour, N. Arizona Extreme Weather, Climate and Health Profile Report; Arizona State University Press: Tempe, AZ, USA, 2015. [Google Scholar]
STATION ID | NAME | MAP CODE | LATITUDE (°) | LONGITUDE (°) | ELEVATION (m) |
---|---|---|---|---|---|
ARIZONA | |||||
USC00020287 | ANVIL RANCH | 1 | 31.979 | −111.384 | 841 |
USC00020949 | BOUSE | 2 | 33.943 | −114.024 | 282 |
USC00021314 | CASA GRANDE NM | 3 | 32.995 | −111.537 | 433 |
USW00093026 | DOUGLAS BISBEE INT AP | 4 | 31.458 | −109.606 | 1251 |
USC00024829 | LAVEEN 3 SSE | 5 | 33.337 | −112.147 | 346 |
USC00025924 | NOGALES 6 N | 6 | 31.455 | −110.968 | 1055 |
USC00026132 | ORGAN PIPE CACTUS NM | 7 | 31.956 | −112.800 | 512 |
USW00023183 | PHOENIX AIRPORT | 8 | 33.428 | −112.004 | 337 |
USC00027390 | SAFFORD AG CENTER | 9 | 32.815 | −109.681 | 900 |
USC00028499 | TEMPE ASU | 10 | 33.426 | −111.922 | 356 |
USC00028619 | TOMBSTONE | 11 | 31.712 | −110.069 | 1420 |
USW00023160 | TUCSON INT AP | 12 | 32.131 | −110.955 | 777 |
USC00029334 | WILLCOX | 13 | 32.255 | −109.837 | 1271 |
USW00003145 | YUMA MCAS | 14 | 32.650 | −114.617 | 65 |
USW00003125 | YUMA PROVING GROUND | 15 | 32.836 | −114.394 | 99 |
CALIFORNIA | |||||
USW00023158 | BLYTHE ASOS | 16 | 33.619 | −114.714 | 120 |
USW00023161 | BARSTOW DAGGETT AP | 17 | 34.854 | −116.786 | 584 |
USC00042319 | DEATH VALLEY | 18 | 36.462 | −116.867 | −59 |
USC00043855 | HAYFIELD PUMPING PLANT | 19 | 33.704 | −115.629 | 418 |
USC00044223 | IMPERIAL | 20 | 32.849 | −115.567 | −20 |
USW00023179 | NEEDLES AIRPORT | 21 | 34.768 | −114.619 | 271 |
USC00049099 | TWENTYNINE PALMS | 22 | 34.128 | −116.037 | 602 |
NEVADA | |||||
USC00262243 | DESERT NATIONAL WILDLIFE RANGE | 23 | 36.438 | −115.360 | 888 |
USW00023169 | LAS VEGAS INT AP | 24 | 36.072 | −115.163 | 665 |
USC00267369 | SEARCHLIGHT | 25 | 35.466 | −114.922 | 1079 |
Mean 1950–2018 | DM | DT | |||||
---|---|---|---|---|---|---|---|
Division | Tmax °C | r * | sig * | °C/year | N years change (°C) | r ** | r ** |
AZ-5 | 38.8 | 0.42 | 0.000 | 0.033 | 2.28 | −0.81 | 0.55 |
AZ-6 | 38.3 | 0.36 | 0.002 | 0.025 | 1.73 | −0.61 | 0.27 |
AZ-7 | 34.7 | 0.43 | 0.000 | 0.028 | 1.93 | −0.68 | 0.41 |
CA-7 | 34.4 | 0.40 | 0.001 | 0.035 | 2.42 | −0.67 | 0.73 |
NV-4 | 34.8 | 0.39 | 0.001 | 0.034 | 2.35 | −0.75 | 0.82 |
Division | Tmin °C | r * | sig * | °C/year | N years change (°C) | r ** | r ** |
AZ-5 | 21.1 | 0.46 | 0.000 | 0.034 | 2.35 | −0.69 | 0.33 |
AZ-6 | 20.2 | 0.52 | 0.000 | 0.042 | 2.90 | −0.54 | −0.03 |
AZ-7 | 16.5 | 0.45 | 0.003 | 0.033 | 2.28 | −0.57 | 0.03 |
sCA-7 | 18.1 | 0.50 | 0.000 | 0.037 | 2.55 | −0.65 | 0.70 |
NV-4 | 19.0 | 0.61 | 0.000 | 0.048 | 3.31 | −0.51 | 0.71 |
ARIZONA | MAP CODE # | r * | Sig * | Tmax/Year (°C) | r * | Sig * | Tmin/Year (°C) |
---|---|---|---|---|---|---|---|
ANVIL RANCH | 1 | 0.20 | 0.13 | −0.013 | 0.23 | 0.08 | 0.021 |
BOUSE | 2 | 0.26 | 0.05 | 0.021 | 0.64 | 0.00 | 0.059 |
CASA GRANDE NM | 3 | 0.14 | 0.27 | 0.010 | 0.55 | 0.00 | 0.058 |
DOUGLAS BISBEE INT AP | 4 | 0.49 | 0.00 | 0.035 | 0.37 | 0.00 | 0.026 |
LAVEEN 3 SSE | 5 | 0.55 | 0.00 | 0.047 | 0.61 | 0.00 | 0.075 |
NOGALES 6 N | 6 | 0.43 | 0.00 | 0.035 | 0.32 | 0.01 | 0.033 |
ORGAN PIPE CACTUS NM | 7 | 0.34 | 0.01 | 0.026 | 0.49 | 0.00 | 0.048 |
PHOENIX INT AP | 8 | 0.48 | 0.00 | 0.038 | 0.79 | 0.00 | 0.113 |
SAFFORD AG CENTER | 9 | 0.38 | 0.00 | 0.026 | 0.58 | 0.00 | 0.054 |
TEMPE ASU | 10 | 0.12 | 0.36 | 0.009 | 0.65 | 0.00 | 0.099 |
TOMBSTONE | 11 | 0.30 | 0.01 | 0.024 | 0.54 | 0.00 | 0.043 |
TUCSON INT AP | 12 | 0.56 | 0.00 | 0.043 | 0.58 | 0.00 | 0.049 |
WILLCOX | 13 | 0.39 | 0.00 | 0.026 | 0.62 | 0.00 | 0.076 |
YUMA MCAS AP | 14 | 0.20 | 0.11 | 0.016 | 0.58 | 0.00 | 0.045 |
YUMA PROVING GROUND | 15 | 0.36 | 0.01 | 0.033 | 0.35 | 0.00 | 0.027 |
CALIFORNIA | |||||||
BLYTHE ASOS AP | 16 | 0.27 | 0.03 | 0.031 | 0.16 | 0.18 | 0.012 |
BARSTOW DAGGETT AP | 17 | 0.42 | 0.00 | 0.040 | 0.48 | 0.00 | 0.043 |
DEATH VALLEY | 18 | 0.45 | 0.00 | 0.040 | 0.27 | 0.03 | 0.027 |
HAYFIELD PUMPING PLANT | 19 | 0.40 | 0.00 | 0.036 | 0.15 | 0.22 | 0.011 |
IMPERIAL | 20 | 0.31 | 0.01 | 0.025 | 0.24 | 0.05 | 0.019 |
NEEDLES AIRPORT | 21 | 0.49 | 0.00 | 0.044 | 0.57 | 0.00 | 0.048 |
TWENTYNINE PALMS | 22 | 0.12 | 0.15 | 0.016 | 0.53 | 0.00 | 0.052 |
NEVADA | |||||||
DESERT NATIONAL WILDLIFE RANGE | 23 | 0.26 | 0.04 | 0.020 | 0.45 | 0.00 | 0.037 |
LAS VEGAS INT AP | 24 | 0.29 | 0.01 | 0.026 | 0.81 | 0.00 | 0.096 |
SEARCHLIGHT | 25 | 0.27 | 0.04 | 0.023 | 0.41 | 0.00 | 0.034 |
ELEV | Tmax | Tmin | Tmax/Year | Tmin/Year | LAT | LONG | % Shrub | % Crop | % dev | BI | |
---|---|---|---|---|---|---|---|---|---|---|---|
ELEV | 1 | −0.89 | −0.77 | −0.14 | −0.05 | −0.26 | 0.56 | −0.01 | 0.04 | −0.00 | −0.14 |
Tmax | 1 | 0.76 | 0.10 | 0.16 | 0.18 | −0.30 | −0.03 | −0.02 | 0.04 | 0.11 | |
Tmin | 1 | 0.36 | 0.16 | 0.43 | −0.52 | −0.12 | −0.18 | 0.25 | 0.25 | ||
Tmax/year | 1 | 0.01 | 0.14 | −0.13 | 0.00 | −0.24 | 0.16 | −0.08 | |||
Tmin/year | 1 | 0.14 | 0.21 | −0.61 | −0.14 | 0.74 | 0.76 | ||||
LAT | 1 | −0.74 | 0.06 | −0.14 | 0.03 | 0.08 | |||||
LONG | 1 | −0.29 | 0.24 | 0.15 | 0.08 | ||||||
% shrub | 1 | −0.24 | −0.79 | −0.68 | |||||||
% crop | 1 | −0.26 | −0.18 | ||||||||
% dev | 1 | 0.83 | |||||||||
BI | 1 |
UHI Estimates (TU-R) | 1950–2018 | 1950–2018 | Sig Level | 1950–2018 | 2010–2018 |
---|---|---|---|---|---|
Urban Area Airports | Mean TU-R (°C) | r of TU-R vs. Year | of r. | TU-R/Year Rate | Mean TU-R (°C) |
LasVegas TmaxU-R (24–23) | 0.20 | 0.05 | 0.709 | 0.001 | 0.90 |
LasVegas TminU-R (24–23) | 4.79 | 0.80 | 0.000 | 0.057 | 6.50 |
Phoenix TmaxU-R (8–3) | −0.59 | 0.48 | 0.000 | 0.028 | −0.15 |
Phoenix TminU-R (8–3) | 4.64 | 0.62 | 0.000 | 0.054 | 4.33 |
Tucson TmaxU-R (12–17) | −0.21 | 0.81 | 0.000 | 0.058 | 4.08 |
Tucson TminU-R (12–17) | 3.16 | 0.56 | 0.000 | 0.031 | 1.02 |
Yuma TmaxU-R (14–15) | −0.03 | 0.44 | 0.001 | −0.013 | 0.23 |
Yuma TminU-R (14–15) | −0.03 | 0.52 | 0.000 | 0.017 | 0.20 |
Yuma—Yuma Valley Max | 1.10 | 0.70 | 0.000 | 0.073 | n/a |
Yuma—Yuma Valley Min | 3.79 | 0.77 | 0.000 | 0.067 | n/a |
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brazel, A. June Temperature Trends in the Southwest Deserts of the USA (1950–2018) and Implications for Our Urban Areas. Atmosphere 2019, 10, 800. https://doi.org/10.3390/atmos10120800
Brazel A. June Temperature Trends in the Southwest Deserts of the USA (1950–2018) and Implications for Our Urban Areas. Atmosphere. 2019; 10(12):800. https://doi.org/10.3390/atmos10120800
Chicago/Turabian StyleBrazel, Anthony. 2019. "June Temperature Trends in the Southwest Deserts of the USA (1950–2018) and Implications for Our Urban Areas" Atmosphere 10, no. 12: 800. https://doi.org/10.3390/atmos10120800
APA StyleBrazel, A. (2019). June Temperature Trends in the Southwest Deserts of the USA (1950–2018) and Implications for Our Urban Areas. Atmosphere, 10(12), 800. https://doi.org/10.3390/atmos10120800