Characterizing Emissions from Agricultural Diesel Pumps in the Terai Region of Nepal
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Emissions Measurement
2.3. EF Calculations
3. Results and Discussions
3.1. Pump Characteristics
3.2. PM2.5 and BC Emission Factors
3.3. Gaseous EF and Modified Combustion Efficiency
3.4. Comparison of EF for Diesel Pumps in Different Emission Inventories
4. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Siebert, S.; Burke, J.; Faures, J.M.; Frenken, K.; Hoogeveen, J.; Döll, P.; Portmann, F.T. Groundwater use for irrigation—A global inventory. Hydrol. Earth Syst. Sci. 2010, 14, 1863–1880. [Google Scholar] [CrossRef]
- FAO. Irrigation in Southern and Eastern Asia in Figures; FAO: Rome, Italy, 2011; ISBN 9789251072820. [Google Scholar]
- Shah, T.; Singh, O.P.; Mukherji, A. Some aspects of South Asia’s groundwater irrigation economy: Analyses from a survey in India, Pakistan, Nepal Terai and Bangladesh. Hydrogeol. J. 2006, 14, 286–309. [Google Scholar] [CrossRef]
- Karimi, P.; Qureshi, A.S.; Bahramloo, R.; Molden, D. Reducing carbon emissions through improved irrigation and groundwater management: A case study from Iran. Agric. Water Manag. 2012, 108, 52–60. [Google Scholar] [CrossRef]
- Paliwal, U.; Sharma, M.; Burkhart, J.F. Monthly and spatially resolved black carbon emission inventory of India: Uncertainty analysis. Atmos. Chem. Phys. 2016, 16, 12457–12476. [Google Scholar] [CrossRef]
- Qureshi, A.S.; Shah, T.; Akhtar, M. The Groundwater Economy of Pakistan; IWMI: Lahore, Pakistan, 2003. [Google Scholar]
- Mukherji, A.; Rawat, S.; Shah, T. Major Insights from India’s Minor Irrigation. Econ. Political Wkly. 2013, 48, 115–124. [Google Scholar]
- Shah, T. Climate change and groundwater: India’s opportunities for mitigation and adaptation. Environ. Res. Lett. 2009, 4. [Google Scholar] [CrossRef]
- Shah, T.; Scott, C.; Kishore, A.; Sharma, A. Energy—Irrigation Nexus in South Asia: Improving; CAB Interntional: Oxfordshire, UK, 2007. [Google Scholar]
- Jayarathne, T.; Stockwell, C.E.; Bhave, P.V.; Praveen, P.S.; Rathnayake, C.M.; Islam, M.R.; Panday, A.K.; Adhikari, S.; Maharjan, R.; Goetz, J.D.; et al. Nepal Ambient Monitoring and Source Testing Experiment (NAMaSTE): Emissions of particulate matter from wood- and dung-fueled cooking fires, garbage and crop residue burning, brick kilns, and other sources. Atmos. Chem. Phys. 2018, 18, 2259–2286. [Google Scholar] [CrossRef]
- Stockwell, C.E.; Christian, T.J.; Goetz, J.D.; Jayarathne, T.; Bhave, P.V.; Praveen, P.S.; Adhikari, S.; Maharjan, R.; DeCarlo, P.F.; Stone, E.A.; et al. Nepal Ambient Monitoring and Source Testing Experiment (NAMaSTE): Emissions of trace gases and light-absorbing carbon from wood and dung cooking fires, garbage and crop residue burning, brick kilns, and other sources. Atmos. Chem. Phys. 2016, 16, 11043–11081. [Google Scholar] [CrossRef]
- Bhandari, H.; Pandey, S. Economics of groundwater irrigation in Nepal: Some farm-level evidences. J. Agric. Appl. Econ. 2006, 38, 185–199. [Google Scholar] [CrossRef]
- MacDonald, A.; Bonsor, H.; Taylor, R.; Shamsudduha, M.; Burgess, W.G.; Ahmed, K.M.; Mukherjee, A.; Zahid, A.; Lapworth, D.; Gopal, K.; et al. Groundwater Resources in the Indo-Gangetic Basin: Resilience to Climate Change and Abstraction; Open Report, OR/15/047; NERC: Atlanta, GA, USA, 2015. [Google Scholar] [CrossRef]
- Town, F. Efficient Groundwater-Based Irrigation in India: Compilation of Experiences with Implementing Irrigation Efficiency. 2010. Available online: http://iei-asia.org/IEI-Bangalore-EfficientGWIrrigation-Compilation-Report.pdf (accessed on 21 December 2018).
- Nelson, G.C.; Robertson, R.; Msangi, S.; Zhu, T.; Liao, X.; Jawajar, P. Greenhouse Gas Mitigation: Issues for Indian Agriculture; International Food Policy Research Institute: Washington, DC, USA, 2009; Volume 48. [Google Scholar]
- Schwartz, J.; Dockery, D.W.; Neas, L.M. Is Daily Mortality Associated Specifically with Fine Particles? J. Air Waste Manag. Assoc. 1996, 46, 927–939. [Google Scholar] [CrossRef] [Green Version]
- Sioutas, C.; Delfino, R.J.; Singh, M. Exposure assessment for atmospheric Ultrafine Particles (UFPs) and implications in epidemiologic research. Environ. Health Perspect. 2005, 113, 947–955. [Google Scholar] [CrossRef] [PubMed]
- IARC Diesel and gasoline engine exhausts. IARC Monogr. Eval. Carcinog. Risks Hum. 2012, 46, 41–185.
- Wallack, J.S.; Ramanathan, V. The Other Climate Changers, Why Black Carbon and Ozone Also Matters. Foreign Affairs 2009, 88, 105–113. [Google Scholar]
- Lawrence, M.G.; Lelieveld, J. Atmospheric pollutant outflow from southern Asia: A review. Atmos. Chem. Phys. 2010, 10, 11017–11096. [Google Scholar] [CrossRef]
- Tubiello, F.N.; Salvatore, M.; Cóndor Golec, R.D.; Ferrara, A.; Rossi, S.; Biancalani, R.; Federici, S.; Jacobs, H.; Flammini, A. Agriculture, Forestry and Other Land Use Emissions by Sources and Removals by Sinks. ESS Work. Pap. 2014, 2, 4–89. [Google Scholar] [CrossRef]
- Mues, A.; Lauer, A.; Lupascu, A.; Rupakheti, M.; Kuik, F.; Lawrence, M.G. WRF and WRF-Chem v3.5.1 simulations of meteorology and black carbon concentrations in the Kathmandu Valley. Geosci. Model Dev. 2018, 11, 2067–2091. [Google Scholar] [CrossRef]
- Valley, K.; Zhong, M.; Saikawa, E.; Avramov, A.; Chen, C.; Sun, B.; Ye, W.; Keene, W.C.; Yokelson, R.J.; Jayarathne, T.; et al. Nepal Ambient Monitoring and Source Testing Experiment (NAMaSTE): Emissions of particulate matter and sulfur dioxide from vehicles and brick kilns and their impacts on air quality in the Kathmandu Valley, Nepal. Atmos. Chem. Phys. Discuss 2018, 8, 1–34. [Google Scholar] [CrossRef]
- Bond, T.C.; Streets, D.G.; Yarber, K.F.; Nelson, S.M.; Woo, J.H.; Klimont, Z. A technology-based global inventory of black and organic carbon emissions from combustion. J. Geophys. Res. Atmos. 2004, 109, 1–43. [Google Scholar] [CrossRef]
- Ito, A.; Penner, J.E. Historical emissions of carbonaceous aerosols from biomass and fossil fuel burning for the period 1870-2000. Glob. Biogeochem. Cycles 2005, 19, 1–14. [Google Scholar] [CrossRef]
- Lal, R. Carbon emission from farm operations. Environ. Int. 2004, 30, 981–990. [Google Scholar] [CrossRef]
- Zou, X.; Li, Y.; Li, K.; Cremades, R.; Gao, Q.; Wan, Y.; Qin, X. Greenhouse gas emissions from agricultural irrigation in China. Mitig. Adapt. Strateg. Glob. Chang. 2013, 20, 295–315. [Google Scholar] [CrossRef] [Green Version]
- Qureshi, A.S. Reducing carbon emissions through improved irrigation management: A case study from pakistan. Irrig. Drain. 2014, 63, 132–138. [Google Scholar] [CrossRef]
- Central Bureau of Statistics (CBS). National Sample Census of Agriculture Nepal. 2013; 114p. Available online: http://www.fao.org/fileadmin/templates/ess/ess_test_folder/World_Census_Agriculture/Country_info_2010/Reports/Reports_5/NPL_EN_REP_2011-12.pdf (accessed on 21 December 2018).
- Engineering, M.A. Ratnoze1 User Guide, Mountain Air Engineering, Updated August 18, 2016. Available online: http://www.mtnaireng.com/Ratnoze1_User_Guide_v8.pdf (accessed on 21 December 2018).
- Pavilonis, B.T.; Anthony, T.R.; O’Shaughnessy, P.T.; Humann, M.J.; Merchant, J.A.; Moore, G.; Thorne, P.S.; Weisel, C.P.; Sanderson, W.T. Indoor and outdoor particulate matter and endotoxin concentrations in an intensely agricultural county. J. Expo. Sci. Environ. Epidemiol. 2013. [Google Scholar] [CrossRef] [PubMed]
- Tripathee, L.; Kang, S.; Rupakheti, D.; Cong, Z.; Zhang, Q.; Huang, J. Chemical characteristics of soluble aerosols over the central Himalayas: Insights into spatiotemporal variations and sources. Environ. Sci. Pollut. Res. 2017. [Google Scholar] [CrossRef] [PubMed]
- Mahapatra, P.S.; Panda, S.; Walvekar, P.P.; Kumar, R.; Das, T.; Gurjar, B.R. Seasonal trends, meteorological impacts, and associated health risks with atmospheric concentrations of gaseous pollutants at an Indian coastal city. Environ. Sci. Pollut. Res. 2014, 21, 11418–11432. [Google Scholar] [CrossRef] [PubMed]
- Shen, G.; Yang, Y.; Wang, W.; Tao, S.; Zhu, C.; Min, Y.; Xue, M.; Ding, J.; Wang, B.; Wang, R.; et al. Emission factors of particulate matter and elemental carbon for crop residues and coals burned in typical household stoves in China. Environ. Sci. Technol. 2010. [Google Scholar] [CrossRef]
- Kirchstetter, T.W.; Harley, R.A.; Kreisberg, N.M.; Stolzenburg, M.R.; Hering, S.V. On-road measurement of fine particle and nitrogen oxide emissions from light- and heavy-duty motor vehicles. Atmos. Environ. 1999, 33, 2955–2968. [Google Scholar] [CrossRef]
- Bom, G.J.; van Raalten, D.; Majundar, S.; Duali, R.J.; Majumder, B.N. Improved fuel efficiency of diesel irrigation pumpsets in India. Energy Sustain. Dev. 2001, 5, 32–40. [Google Scholar] [CrossRef]
- Ward, D.E.; Radke, L.F. Emissions Measurements from Vegetation Fires: A Comparative Evaluation of Methods and Results. In Fire in the Environment: The Ecological, Atmospheric, and Climatic Importance of Vegetation Fires; Crutzen, P.J., Goldammer, J.G., Eds.; Jolm Wiley & Sons Ltd: Hoboken, NJ, USA, 1993; pp. 53–76. ISBN 0-471-93604-9. [Google Scholar]
- McMeeking, G.R.; Kreidenweis, S.M.; Baker, S.; Carrico, C.M.; Chow, J.C.; Collett, J.L.; Hao, W.M.; Holden, A.S.; Kirchstetter, T.W.; Malm, W.C.; et al. Emissions of trace gases and aerosols during the open combustion of biomass in the laboratory. J. Geophys. Res. Atmos. 2009, 114, 1–20. [Google Scholar] [CrossRef]
- Yokelson, R.J.; Christian, T.J.; Karl, T.G.; Guenther, A. The tropical forest and fire emissions experiment: Laboratory fire measurements and synthesis of campaign data. Atmos. Chem. Phys. 2008. [Google Scholar] [CrossRef]
- Cai, H.; Wang, M.Q. Estimation of Emission of Particulate Black Carbon and Organic Carbon and Organic Carbon from Stationary, Mobile, and Non-Point Sources in the United States for Incorporate into GREET; Argonne National Laboratory, US Department of Energy, Illinoise: Washington, DC, USA, 2014. Available online: https://www.osti.gov/biblio/1155133 (accessed on 21 December 2018).
- Bond, T.C.; Doherty, S.J.; Fahey, D.W.; Forster, P.M.; Berntsen, T.; Deangelo, B.J.; Flanner, M.G.; Ghan, S.; Kärcher, B.; Koch, D.; et al. Bounding the role of black carbon in the climate system: A scientific assessment. J. Geophys. Res. Atmos. 2013, 118, 5380–5552. [Google Scholar] [CrossRef] [Green Version]
- Ohara, T.; Akimoto, H.; Kurokawa, J.; Horii, N.; Yamaji, K.; Yan, X.; Hayasaka, T. An Asian emission inventory of anthropogenic emission sources for the period 1980-2020. Atmos. Chem. Phys. 2007, 7, 4419–4444. [Google Scholar] [CrossRef]
- Streets, D.G.; Bond, T.C.; Lee, T.; Jang, C. On the future of carbonaceous aerosol emissions. J. Geophys. Res. D Atmos. 2004, 109, 1–19. [Google Scholar] [CrossRef]
- Bond, T.C.; Bhardwaj, E.; Dong, R.; Jogani, R.; Jung, S.; Roden, C.; Streets, D.G.; Trautmann, N.M. Historical emissions of black and organic carbon aerosol from energy-related combustion, 1850-2000. Glob. Biogeochem. Cycles 2007, 21, 1–16. [Google Scholar] [CrossRef]
- Shrestha, R.M.; Thi, N.; Oanh, K.; Shrestha, R.P.; Ruphakheti, M.; Rajbhandari, S.; Permadi, D.A.; Kanabkaew, T. Atmospheric Brown Cloud (ABC) Emission Inventory Manual; United Nations Environment Programme: Nairobi, Kenya, 2012; Available online: http://www.rrcap.ait.asia/Publications/ABC Emission Inventory Manual.pdf (accessed on 21 December 2018).
Pump ID | Depth of Boring (m) | Sampling Date | Pump Manufacturer | Pump Power (kW) | Age of Pump (year) | Fuel Consumption Rate (L/h) | Hours of Operation |
---|---|---|---|---|---|---|---|
Pump 1 | 32 | 6-Jul-17 | CD Bharat No1 | 3.73 | 1 | 1.0 | 200 |
Pump 2 | 32 | 6-Jul-17 | CD Bharat No1 | 3.73 | 1.5 | 1.0 | 150 |
Pump 3 | 34 | 7-Jul-17 | Kirloskar | 2.98 | 6 | 0.5 | 240 |
Pump 4 | 34 | 7-Jul-17 | Kirloskar | 3.73 | >10 | 1.5 | 167 |
Pump 5 | 30 | 8-Jul-17 | CD Bharat No1 | 3.73 | 2 | 1.0 | 150 |
Pump 6 | 30 | 8-Jul-17 | Birla Power Supply | 2.98 | 5 | 0.5 | 300 |
Pump 7 | 30 | 9-Jul-17 | Krishiplus China | 3.36 | 6 | 1.0 | 150 |
Pump 8 | 34 | 10-Jul-17 | Usha Delux | 4.10 | 9 | 1.0 | 100 |
Pump 9 | 32 | 11-Jul-17 | Super Manokamana Delux | 2.24 | 2 | 0.5 | 300 |
Pump ID | Fuel Used | EFCO2 (g/L) | EFCO (g/L) | EFPM2.5 (g/L) | EFBC (g/L) | MCE (%) |
---|---|---|---|---|---|---|
Pump 1 | Diesel | 2592 | 39.1 | 3.72 | 0.46 | 99.6 |
Pump 2 | Diesel | 2359 | 183.0 | 58.51 | 4.46 | 98.7 |
Pump 3 | Diesel | 2462 | 121.4 | 5.06 | 0.96 | 98.6 |
Pump 4 | Diesel | 2145 | 317.4 | 80.33 | 5.86 | 97.2 |
Pump 5 | Diesel | 2506 | 93.1 | 4.09 | 1.05 | 99.2 |
Pump 6 | Diesel mixed with gasoline and kerosene | 424 | 1418.9 | 2.67 | 0.24 | 52.0 |
Pump 7 | Diesel | 2523 | 82.4 | 10.08 | 0.97 | 99.2 |
Pump 8 | Diesel | 2481 | 106.8 | 6.46 | 3.11 | 99.1 |
Pump 9 | Diesel | 2471 | 110.0 | 28.06 | 5.76 | 99.2 |
Studies | EFCO2 (g/L) | EF CO2 (g/kg) | EFCO (g/L) | EFPM2.5 (g/L) | EFPM2.5 (g/kWh) | EFBC (g/L) | MCE (%) | CO2 (g/kW) |
---|---|---|---|---|---|---|---|---|
Present study | 2218 | 2666 | 274 | 22.1 | 6.58 | 2.5 | 93.6 | 694 |
Jayarathne et al. 2017 | - | - | - | 5.9 | - | - | - | - |
Kauret al. 2016 | - | - | - | - | - | - | - | 406 |
Stockwell et al. 2016 | 2606 | - | - | - | - | 4.7 | 99.20 | - |
Cai and Wang, 2014 (EF used for NONROAD model for base year 2013) | - | - | - | - | 0.14 | - | - | - |
Zou et al. 2013 | - | 3300 | - | - | - | - | - | - |
Ito and Penner, 2005 | - | - | - | - | - | 2.7 | - | - |
Bond et al. 2004 | - | - | - | - | - | 3.3 | - | - |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adhikari, S.; Mahapatra, P.S.; Sapkota, V.; Puppala, S.P. Characterizing Emissions from Agricultural Diesel Pumps in the Terai Region of Nepal. Atmosphere 2019, 10, 56. https://doi.org/10.3390/atmos10020056
Adhikari S, Mahapatra PS, Sapkota V, Puppala SP. Characterizing Emissions from Agricultural Diesel Pumps in the Terai Region of Nepal. Atmosphere. 2019; 10(2):56. https://doi.org/10.3390/atmos10020056
Chicago/Turabian StyleAdhikari, Sagar, Parth Sarathi Mahapatra, Vikrant Sapkota, and Siva Praveen Puppala. 2019. "Characterizing Emissions from Agricultural Diesel Pumps in the Terai Region of Nepal" Atmosphere 10, no. 2: 56. https://doi.org/10.3390/atmos10020056
APA StyleAdhikari, S., Mahapatra, P. S., Sapkota, V., & Puppala, S. P. (2019). Characterizing Emissions from Agricultural Diesel Pumps in the Terai Region of Nepal. Atmosphere, 10(2), 56. https://doi.org/10.3390/atmos10020056