Physics Parameterization Selection in RCM and ESM Simulations Revisited: New Supporting Approach Based on Empirical Copulas
Abstract
:1. Introduction
2. Material and Methods
2.1. Data
2.2. Empirical P and T Copula
2.3. Selection of Physics Parameterization Combination
2.4. Performance Evaluation
3. Results
3.1. Joint P and T Distribution for Different WRF Parameterization Simulations
3.2. Selection of a Suitable WRF Parameter Combination
3.3. MOS Impact on Different WRF Parameterization Simulations
4. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Oettli, P.; Sultan, B.; Baron, C.; Vrac, M. Are regional climate models relevant for crop yield prediction in West Africa? Environ. Res. Lett. 2011, 6, 014008. [Google Scholar] [CrossRef]
- Bronstert, A.; Kolokotronis, V.; Schwandt, D.; Straub, H. Comparison and evaluation of regional climate scenarios for hydrological impact analysis: General scheme and application example. Int. J. Climatol. 2007, 27, 1579–1594. [Google Scholar] [CrossRef]
- Maraun, D.; Wetterhall, F.; Ireson, A.M.; Chandler, R.E.; Kendon, E.J.; Widmann, M.; Brienen, S.; Rust, H.W.; Sauter, T.; Themel, M.; et al. Precipitation downscaling under climate change: Recent developments to bridge the gap between dynamical models and the end user. Rev. Geophys. 2010, 48. [Google Scholar] [CrossRef]
- Berg, P.; Moseley, C.; Haerter, J.O. Strong increase in convective precipitation in response to higher temperatures. Nat. Geosci. 2013, 6, 181–185. [Google Scholar] [CrossRef]
- Trenberth, K.E.; Shea, D.J. Relationships between precipitation and surface temperature. Geophys. Res. Lett. 2005, 32, 1–4. [Google Scholar] [CrossRef]
- Qiao, F.; Liang, X.-Z. Effects of cumulus parameterization closures on simulations of summer precipitation over the continental United States. J. Adv. Model. Earth Syst. 2016, 8, 764–785. [Google Scholar] [CrossRef]
- Rasmussen, D.J.; Holloway, T.; Nemet, G.F. Opportunities and challenges in assessing climate change impacts on wind energy—A critical comparison of wind speed projections in California. Environ. Res. Lett. 2011, 6, 024008. [Google Scholar] [CrossRef]
- Van Oldenborgh, G.; Doblas Reyes, F.; Drijfhout, S.; Hawkins, E. Reliability of regional climate model trends. Environ. Res. Lett. 2013, 8, 7. [Google Scholar] [CrossRef]
- Evans, J.P.; Ekström, M.; Ji, F. Evaluating the performance of a WRF physics ensemble over South-East Australia. Clim. Dyn. 2012, 39, 1241–1258. [Google Scholar] [CrossRef]
- Jerez, S.; Montavez, J.P.; Gomez-Navarro, J.J.; Lorente-Plazas, R.; Garcia-Valero, J.A.; Jimenez-Guerrero, P. A multi-physics ensemble of regional climate change projections over the Iberian Peninsula. Clim. Dyn. 2013, 41, 1749–1768. [Google Scholar] [CrossRef]
- Laux, P.; Lorenz, C.; Thuc, T.; Ribbe, L.; Kunstmann, H. Setting up regional climate simulations for Southeast Asia. In High Performance Computing in Science and Engineering ’12; Springer: Berlin/Heidelberg, Germany, 2013; pp. 391–406. [Google Scholar]
- Casanueva, A.; Herrera, S.; Fernández, J.; Frías, M.D.; Gutiérrez, J.M. Evaluation and projection of daily temperature percentiles from statistical and dynamical downscaling methods. Nat. Hazards Earth Syst. Sci. 2013, 13, 2089–2099. [Google Scholar] [CrossRef]
- Solman, S.A.; Pessacg, N.L. Regional climate simulations over South America: Sensitivity to model physics and to the treatment of lateral boundary conditions using the MM5 model. Clim. Dyn. 2012, 38, 281–300. [Google Scholar] [CrossRef]
- Katragkou, E.; Garciá-Diéz, M.; Vautard, R.; Sobolowski, S.; Zanis, P.; Alexandri, G.; Cardoso, R.M.; Colette, A.; Fernandez, J.; Gobiet, A.; et al. Regional climate hindcast simulations within EURO-CORDEX: Evaluation of a WRF multi-physics ensemble. Geosci. Model Dev. 2015, 8, 603–618. [Google Scholar] [CrossRef]
- Ehret, U.; Zehe, E.; Wulfmeyer, V.; Warrach-Sagi, K.; Liebert, J. HESS Opinions “Should we apply bias correction to global and regional climate model data?”. Hydrol. Earth Syst. Sci. 2012, 16, 3391–3404. [Google Scholar] [CrossRef]
- Ramirez-Villegas, J.; Challinor, A.J.; Thornton, P.K.; Jarvis, A. Implications of regional improvement in global climate models for agricultural impact research. Environ. Res. Lett. 2013, 8, 024018. [Google Scholar] [CrossRef]
- Pohl, B.; Crétat, J.; Camberlin, P. Testing WRF capability in simulating the atmospheric water cycle over Equatorial East Africa. Clim. Dyn. 2011, 37, 1357–1379. [Google Scholar] [CrossRef]
- Endris, H.S.; Omondi, P.; Jain, S.; Lennard, C.; Hewitson, B.; Chang’a, L.; Awange, J.L.; Dosio, A.; Ketiem, P.; Nikulin, G.; et al. Assessment of the performance of CORDEX regional climate models in simulating East African rainfall. J. Clim. 2013, 26, 8453–8475. [Google Scholar] [CrossRef]
- Kerandi, N.M.; Laux, P.; Arnault, J.; Kunstmann, H. Performance of the WRF model to simulate the seasonal and interannual variability of hydrometeorological variables in East Africa: A case study for the Tana River basin in Kenya. Theor. Appl. Climatol. 2016, 130, 401–418. [Google Scholar] [CrossRef]
- Zittis, G.; Hadjinicolaou, P.; Lelieveld, J. Comparison of WRF Model Physics Parameterizations over the MENA-CORDEX Domain. Am. J. Clim. Chang. 2014, 3, 490–511. [Google Scholar] [CrossRef]
- Zittis, G.; Hadjinicolaou, P. The effect of radiation parameterization schemes on surface temperature in regional climate simulations over the MENA-CORDEX domain. Int. J. Climatol. 2017, 37, 3847–3862. [Google Scholar] [CrossRef]
- Kerandi, N.M.; Arnault, J.; Laux, P.; Wagner, S.; Laux, P.; Kitheka, J.; Kunstmann, H. Joint atmospheric–terrestrial water balances for East Africa: A WRF-Hydro case study for the upper Tana River basin. Theor. Appl. Climatol. 2017. [Google Scholar] [CrossRef]
- Betts, A.K. A new convective adjustment scheme. Part I: Observational and theoretical basis. Q. J. R. Meteorol. Soc. 1984, 112, 693–709. [Google Scholar]
- Lin, Y.-L.; Farley, R.D.; Orville, H.D. Bulk Parametrization of the Snow Field in a Cloud Model. J. Appl. Meteorol. 1983, 22, 1065–1092. [Google Scholar] [CrossRef]
- Pleim, J.E. A combined local and nonlocal closure model for the atmospheric boundary layer. Part I: Model description and testing. J. Appl. Meteorol. Climatol. 2007, 46, 1383–1395. [Google Scholar] [CrossRef]
- Grell, G.A.; Freitas, S.R. A scale and aerosol aware stochastic convective parameterization for weather and air quality modeling. Atmos. Chem. Phys. 2014, 14, 5233–5250. [Google Scholar] [CrossRef]
- Hong, S.; Lim, J. The WRF single-moment 6-class microphysics scheme (WSM6). J. Korean Meteor. Soc. 2006, 42, 129–151. [Google Scholar]
- Kain, J.S.; Fritsch, J.M. A One-Dimensional Entraining Detraining Plume Model and Its Application in Convective Parameterization. J. Atmos. Sci. 1990, 47, 2784–2802. [Google Scholar] [CrossRef]
- Van Den Berg, M.J.; Vandenberghe, S.; De Baets, B.; Verhoest, N.E.C. Copula-based downscaling of spatial rainfall: A proof of concept. Hydrol. Earth Syst. Sci. 2011, 15, 1445–1457. [Google Scholar] [CrossRef]
- Mao, G.; Vogl, S.; Laux, P.; Wagner, S.; Kunstmann, H. Stochastic bias correction of dynamically downscaled precipitation fields for Germany through copula-based integration of gridded observation data. Hydrol. Earth Syst. Sci. 2015, 11, 7189–7227. [Google Scholar] [CrossRef]
- Laux, P.; Vogl, S.; Qiu, W.; Knoche, H.R.; Kunstmann, H. Copula-based statistical refinement of precipitation in RCM simulations over complex terrain. Hydrol. Earth Syst. Sci. 2011, 15, 2401–2419. [Google Scholar] [CrossRef]
- Vogl, S.; Laux, P.; Qiu, W.; Mao, G.; Kunstmann, H. Copula-based assimilation of radar and gauge information to derive bias-corrected precipitation fields. Hydrol. Earth Syst. Sci. 2012, 16, 2311–2328. [Google Scholar] [CrossRef]
- Lorenz, C.; Montzka, C.; Jagdhuber, T.; Laux, P.; Kunstmann, H. Long-term and high-resolution global time series of brightness temperature from copula-based fusion of SMAP enhanced and SMOS data. Remote Sens. 2018, 10, 1842. [Google Scholar] [CrossRef]
- Nelsen, R.B. An Introduction to Copulas; Springer: New York, NY, USA, 1999. [Google Scholar]
- Sklar, A. Fonctions de Répartition à n Dimensions et Leurs Marges. In Publications de l’Institut Statistique de l’Université de Paris; Institut Henri Poincaré: Paris, France, 1959; Volume 8, pp. 229–231. [Google Scholar]
- Deheuvels, P. Point processes and multivariate extreme values. J. Multivar. Anal. 1983, 13, 257–272. [Google Scholar] [CrossRef]
- Genest, C.; Rémillard, B.; Beaudoin, D. Goodness-of-fit tests for copulas: A review and a power study. Insur. Math. Econ. 2009, 44, 199–213. [Google Scholar] [CrossRef]
- Wilks, D. Statistical Methods in the Atmospheric Sciences, 2nd ed.; Academic Press: Cambridge, MA, USA, 2011; p. 467. [Google Scholar]
- Leander, R.; Buishand, T.A. Resampling of regional climate model output for the simulation of extreme river flows. J. Hydrol. 2007, 332, 487–496. [Google Scholar] [CrossRef]
- Schmidli, J.; Frei, C.; Vidale, P.L. Downscaling from GCM precipitation: A benchmark for dynamical and statistical downscaling methods. Int. J. Climatol. 2006, 26, 679–689. [Google Scholar] [CrossRef]
- Argüeso, D.; Hidalgo-Muñoz, J.M.; Gámiz-Fortis, S.R.; Esteban-Parra, M.J.; Dudhia, J.; Castro-Díez, Y. Evaluation of WRF parameterizations for climate studies over southern Spain using a multistep regionalization. J. Clim. 2011, 24, 5633–5651. [Google Scholar] [CrossRef]
- García-Díez, M.; Fernández, J.; Fita, L.; Yagüe, C. Seasonal dependence of WRF model biases and sensitivity to PBL schemes over Europe. Q. J. R. Meteorol. Soc. 2013, 139, 501–514. [Google Scholar] [CrossRef]
- Di Luca, A.; Flaounas, E.; Drobinski, P.; Brossier, C.L. The atmospheric component of the Mediterranean Sea water budget in a WRF multi-physics ensemble and observations. Clim. Dyn. 2014, 43, 2349–2375. [Google Scholar] [CrossRef]
- Piani, C.; Haerter, J.O. Two dimensional bias correction of temperature and precipitation copulas in climate models. Geophys. Res. Lett. 2012, 39, 6. [Google Scholar] [CrossRef]
Abbreviation | WRF Physics Parametrization Combination |
---|---|
BLA | Betts–Miller–Janjic [23], Lin scheme [24], ACM [25] |
GWA | Grell–Freitas [26], WRF Single Moment 6-class [27], ACM |
KLA | Kain–Fritsch [28], Lin scheme, ACM |
KWA | Kain–Fritsch, WRF Single Moment 6-class, ACM |
MERU | LAMU | ||||||||
---|---|---|---|---|---|---|---|---|---|
BLA | GWA | KLA | KWA | BLA | GWA | KLA | KWA | ||
5 | 0.76 | 0.60 | 0.37 | 0.35 | 0.05 | 0.58 | 0.23 | 0.22 | |
(267.72) | (263.31) | (292.41) | (339.60) | (208.06) | (226.25) | (257.92) | (247.50) | ||
7 | 0.20 | 0.14 | 0.13 | 2 × 10−3 | 0.36 | 0.54 | 0.60 | 0.43 | |
296.0 | 326.92 | 315.42 | (377.61) | (302.46) | (402.70) | (495.81) | (480.68) | ||
9 | 0.46 | 0.07 | 0.05 | 0.01 | 4 × 10−3 | 0.04 | 0.35 | 0.62 | |
(248.7) | (308.61) | (327.66) | (298.67) | (261.36) | (421.15) | (503.63) | (445.94) | ||
11 | 0.37 | 0.13 | 0.87 | 1.9 × 10−5 | 0.35 | 0.34 | 0.74 | 0.30 | |
(215.47) | (232.53) | (165.83) | (277.34) | (166.12) | (299.18) | (323.21) | (342.73) |
LAMU | BLA | GWA | KLA | KWA | |
MAE | w/o BC | 14.54 (2.30) | 12.45 (2.74) | 12.26 (2.31) | 12.83 (2.91) |
BC | 15.25 (5.48) | 13.70 (4.36) | 17.05 (4.77) | 15.62 (4.85) | |
MSE | w/o BC | 901.03 (7.55) | 660.26 (9.71) | 607.32 (6.93) | 641.13 (10.32) |
BC | 856.57 (45.51) | 638.67 (34.38) | 809.99 (37.71) | 745.14 (16.57) | |
RMSE | w/o BC | 30.02 (2.75) | 25.70 (3.12) | 24.64 (2.63) | 25.32 (3.21) |
BC | 29.27 (6.75) | 25.27 (5.86) | 28.46 (6.14) | 27.30 (6.20) | |
LAMU | BLA | GWA | KLA | KWA | |
MAE | w/o BC | 9.20 (2.94) | 8.05 (3.34) | 10.84 (3.29) | 12.01 (2.01) |
BC | 10.26 (0.86) | 8.01 (0.88) | 8.11 (0.86) | 9.01 (0.84) | |
MSE | w/o BC | 233.67 (9.70) | 353.18 (12.22) | 300.87 (11.72) | 400.17 (4.85) |
BC | 277.96 (1.18) | 265.70 (1.22) | 179.64 (1.16) | 244.89 (1.12) | |
RMSE | w/o BC | 15.29 (3.11) | 18.79 (3.50) | 17.35 (3.42) | 20.00 (2.20) |
BC | 16.67 (1.09) | 16.30 (1.11) | 13.40 (1.08) | 15.65 (1.06) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Laux, P.; Kerandi, N.; Kunstmann, H. Physics Parameterization Selection in RCM and ESM Simulations Revisited: New Supporting Approach Based on Empirical Copulas. Atmosphere 2019, 10, 150. https://doi.org/10.3390/atmos10030150
Laux P, Kerandi N, Kunstmann H. Physics Parameterization Selection in RCM and ESM Simulations Revisited: New Supporting Approach Based on Empirical Copulas. Atmosphere. 2019; 10(3):150. https://doi.org/10.3390/atmos10030150
Chicago/Turabian StyleLaux, Patrick, Noah Kerandi, and Harald Kunstmann. 2019. "Physics Parameterization Selection in RCM and ESM Simulations Revisited: New Supporting Approach Based on Empirical Copulas" Atmosphere 10, no. 3: 150. https://doi.org/10.3390/atmos10030150
APA StyleLaux, P., Kerandi, N., & Kunstmann, H. (2019). Physics Parameterization Selection in RCM and ESM Simulations Revisited: New Supporting Approach Based on Empirical Copulas. Atmosphere, 10(3), 150. https://doi.org/10.3390/atmos10030150