Recurrence Spectra of European Temperature in Historical Climate Simulations
Abstract
:1. Introduction
2. Data
3. Methods
- Compute the observable
- Divide the series into n bins each containing m data and extract the maxima , with .
- Distribution functions like are modelled, for n sufficiently large, by the so-called generalized extreme value (GEV) distribution which depend on three parameters and such that:The parameter is called the tail index; when its value is the GEV corresponds to the Gumbel type of distribution. Indeed this is the expected distributions of recurrences, providing that we use the observable.
- Perform an Anderson and Darling [37] test to assess whether the fit is compatible with a Gumbel distribution.
4. Results
4.1. Changes in European Temperature Recurrence Spectrum
4.2. Effects of Resolution: A Regional Application
5. Discussion
6. Conclusions
- The recurrence spectra obtained by the model ensemble mean are generally consistent with those of 20CRv2c.
- The spectra biases have a strong regional dependence.
- A comparison with an ensemble of regional climate simulations shows that the resolution does not change the order of magnitude of spectral biases between models and reanalysis.
- The spread in recurrence biases is larger for cold extremes.
Author Contributions
Funding
Conflicts of Interest
References
- Cattiaux, J.; Vautard, R.; Cassou, C.; Yiou, P.; Masson-Delmotte, V.; Codron, F. Winter 2010 in Europe: A cold extreme in a warming climate. Geophys. Res. Lett. 2010, 37. [Google Scholar] [CrossRef] [Green Version]
- Prior, J.; Kendon, M. The disruptive snowfalls and very low temperatures of late 2010. Weather 2011, 66, 315–321. [Google Scholar] [CrossRef] [Green Version]
- Schär, C.; Vidale, P.L.; Lüthi, D.; Frei, C.; Häberli, C.; Liniger, M.A.; Appenzeller, C. The role of increasing temperature variability in european summer heatwaves. Nature 2004, 427, 332–336. [Google Scholar] [CrossRef]
- Ciais, P.; Reichstein, M.; Viovy, N.; Granier, A.; Ogée, J.; Allard, V.; Aubinet, M.; Buchmann, N.; Bernhofer, C.; Carrara, A.; et al. Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature 2005, 437, 529–533. [Google Scholar] [CrossRef]
- Linares, C.; Diaz, J.; Tobéas, A.; Carmona, R.; Mirén, I. Impact of heat and cold waves on circulatory-cause and respiratory-cause mortality in Spain: 1975–2008. Stoch. Environ. Res. Risk Assess. 2015, 29, 2037–2046. [Google Scholar] [CrossRef]
- Patz, J.A.; Campbell-Lendrum, D.; Holloway, T.; Foley, J.A. Impact of regional climate change on human health. Nature 2005, 438, 310–317. [Google Scholar] [CrossRef]
- Alvarez-Castro, M.C.; Faranda, D.; Yiou, P. Atmospheric Dynamics Leading to West European Summer Hot Temperatures Since 1851. Complexity 2018, 2018, 2494509. [Google Scholar] [CrossRef]
- Beniston, M.; Stephenson, D.B. Extreme climatic events and their evolution under changing climatic conditions. Glob. Planet. Chang. 2004, 44, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Brown, S.; Caesar, J.; Ferro, C.A. Global changes in extreme daily temperature since 1950. J. Geophys. Res. Atmos. (1984–2012) 2008, 113. [Google Scholar] [CrossRef] [Green Version]
- Meehl, G.A.; Tebaldi, C. More intense, more frequent, and longer lasting heat waves in the 21st century. Science 2004, 305, 994–997. [Google Scholar] [CrossRef] [PubMed]
- Zwiers, F.W.; Alexander, L.V.; Hegerl, G.C.; Knutson, T.R.; Kossin, J.P.; Naveau, P.; Nicholls, N.; Schär, C.; Seneviratne, S.I.; Zhang, X. Climate extremes: Challenges in estimating and understanding recent changes in the frequency and intensity of extreme climate and weather events. In Climate Science for Serving Society; Springer: Dordrecht, The Netherlands, 2013; pp. 339–389. [Google Scholar]
- Gleckler, P.J.; Taylor, K.E.; Doutriaux, C. Performance metrics for climate models. J. Geophys. Res. Atmos. (1984–2012) 2008, 113. [Google Scholar] [CrossRef] [Green Version]
- Hanlon, H.; Morak, S.; Hegerl, G. Detection and prediction of mean and extreme european summer temperatures with a multimodel ensemble. J. Geophys. Res. Atmos. 2013, 118, 9631–9641. [Google Scholar] [CrossRef]
- Hao, Z.; AghaKouchak, A.; Phillips, T.J. Changes in concurrent monthly precipitation and temperature extremes. Environ. Res. Lett. 2013, 8, 034014. [Google Scholar] [CrossRef] [Green Version]
- Krueger, O.; Hegerl, G.C.; Tett, S.F. Evaluation of mechanisms of hot and cold days in climate models over central europe. Environ. Res. Lett. 2015, 10, 014002. [Google Scholar] [CrossRef]
- Morak, S.; Hegerl, G.C.; Christidis, N. Detectable changes in the frequency of temperature extremes. J. Clim. 2013, 26, 1561–1574. [Google Scholar] [CrossRef]
- Phillips, T.J.; Gleckler, P.J. Evaluation of continental precipitation in 20th century climate simulations: The utility of multimodel statistics. Water Resour. Res. 2006, 42. [Google Scholar] [CrossRef] [Green Version]
- Sillmann, J.; Kharin, V.; Zhang, X.; Zwiers, F.; Bronaugh, D. Climate extremes indices in the cmip5 multimodel ensemble: Part 1. model evaluation in the present climate. J. Geophys. Res. Atmos. 2013, 118, 1716–1733. [Google Scholar] [CrossRef]
- Vautard, R.; Christidis, N.; Ciavarella, A.; Alvarez-Castro, M.C.; Bellprat, O.; Christiansen, B.; Colfescu, I.; Cowan, T.; Doblas-Reyes, F.; Eden, J. Evaluation of the HadGEM3-A simulations in view of detection and attribution of human influence on extreme events in Europe. Clim. Dyn. 2019, 52, 1187–1210. [Google Scholar] [CrossRef]
- Li, C.; Fang, Y.; Caldeira, K.; Zhang, X.; Diffenbaugh, N.S.; Michalak, A.M. Widespread persistent changes to temperature extremes occurred earlier than predicted. Sci. Rep. 2018, 8, 1007. [Google Scholar] [CrossRef] [Green Version]
- Kharin, V.V.; Zwiers, F.; Zhang, X.; Wehner, M. Changes in temperature and precipitation extremes in the cmip5 ensemble. Clim. Chang. 2013, 119, 345–357. [Google Scholar] [CrossRef]
- Cheng, L.; AghaKouchak, A.; Gilleland, E.; Katz, R.W. Non-stationary extreme value analysis in a changing climate. Clim. Chang. 2014, 127, 353–369. [Google Scholar] [CrossRef]
- Ghil, M.; Yiou, P.; Hallegatte, S.; Malamud, B.; Naveau, P.; Soloviev, A.; Friederichs, P.; Keilis-Borok, V.; Kondrashov, D.; Kossobokov, V.; et al. Extreme events: Dynamics, statistics and prediction. Nonlinear Process. Geophys. 2011, 18, 295–350. [Google Scholar] [CrossRef]
- Katz, R.W. Statistics of extremes in climate change. Clim. Chang. 2010, 100, 71–76. [Google Scholar] [CrossRef]
- Ghil, M.; Allen, M.R.; Dettinger, M.D.; Ide, K.; Kondrashov, D.; Mann, M.E.; Robertson, A.W.; Saunders, A.; Tian, Y.; Varadi, F.; et al. Advanced spectral methods for climatic time series. Rev. Geophys. 2002, 40. [Google Scholar] [CrossRef]
- Freitas, A.C.M.; Freitas, J.M.; Todd, M. Hitting time statistics and extreme value theory. Probab. Theory Relat. Fields 2010, 147, 675–710. [Google Scholar] [CrossRef]
- Lucarini, V.; Faranda, D.; Wouters, J.; Kuna, T. Towards a general theory of extremes for observables of chaotic dynamical systems. J. Stat. Phys. 2014, 154, 723–750. [Google Scholar] [CrossRef] [PubMed]
- Faranda, D.; Alvarez-Castro, M.C.; Yiou, P. Return times of hot and cold days via recurrences and extreme value theory. Clim. Dyn. 2016, 1–13. [Google Scholar] [CrossRef]
- Faranda, D.; Vaienti, S. A recurrence-based technique for detecting genuine extremes in instrumental temperature records. Geophys. Res. Lett. 2013, 40, 5782–5786. [Google Scholar] [CrossRef] [Green Version]
- Taylor, K.E.; Stouffer, R.J.; Meehl, G.A. An overview of cmip5 and the experiment design. Bull. Am. Meteorol. Soc. 2012, 93, 485–498. [Google Scholar] [CrossRef]
- Compo, G.P.; Whitaker, J.S.; Sardeshmukh, P.D.; Matsui, N.; Allan, R.J.; Yin, X.; Gleason, B.E.; Vose, R.; Rutledge, G.; Bessemoulin, P.; et al. The twentieth century reanalysis project. Q. J. R. Meteorol. Soc. 2011, 137, 1–28. [Google Scholar] [CrossRef]
- Hirahara, S.; Ishii, M.; Fukuda, Y. Centennial-scale sea surface temperature analysis and its uncertainty. J. Clim. 2017, 30. [Google Scholar] [CrossRef]
- Jacob, D.; Petersen, J.; Eggert, B.; Alias, A.; Christensen, O.B.; Bouwer, L.M.; Braun, A.; Colette, A.; Déqué, M.; Georgievski, G.; et al. EURO-CORDEX: New high-resolution climate change projections for European impact research. Reg. Environ. Chang. 2014, 14, 563–578. [Google Scholar] [CrossRef]
- Vautard, R.; Gobiet, A.; Jacob, D.; Belda, M.; Colette, A.; Déqué, M.; Fernéndez, J.; Garcéa-Déez, M.; Goergen, K.; Géttler, I.; et al. The simulation of European heat waves from an ensemble of regional climate models within the EURO-CORDEX project. Clim. Dyn. 2013, 41, 2555–2575. [Google Scholar] [CrossRef] [Green Version]
- Vrac, M.; Drobinski, P.; Merlo, A.; Herrmann, M.; Lavaysse, C.; Li, L.; Somot, S. Dynamical and statistical downscaling of the French Mediterranean climate: Uncertainty assessment. Nat. Hazards Earth Syst. Sci. 2012, 12, 2769. [Google Scholar] [CrossRef]
- Haylock, M.R.; Hofstra, N.; Tank, A.K.; Klok, E.J.; Jones, P.D.; New, M. A European daily high-resolution gridded dataset of surface temperature and precipitation. J. Geophys. Res. Atmos. 2008, 113. [Google Scholar] [CrossRef]
- Anderson, T.W.; Darling, D.A. A test of goodness of fit. J. Am. Stat. Assoc. 1954, 49, 765–769. [Google Scholar] [CrossRef]
- Lhotka, O.; Kyselé, J. Circulation-conditioned wintertime temperature bias in EURO-CORDEX regional climate models over Central Europe. J. Geophys. Res. Atmos. 2018, 123, 8661–8673. [Google Scholar] [CrossRef]
- Cattiaux, J.; Douville, H.; Peings, Y. European temperatures in cmip5: Origins of present-day biases and future uncertainties. Clim. Dyn 2013, 41, 2889–2907. [Google Scholar] [CrossRef]
- Tebaldi, C.; Knutti, R. The use of the multi-model ensemble in probabilistic climate projections. Philos. Trans. R. Soc. Lond. A. Math. Phys. Eng. Sci. 2007, 365, 2053–2075. [Google Scholar] [CrossRef] [Green Version]
No. | Model | Institution/ID | Country | Resolution |
---|---|---|---|---|
1 | CMCC-CM | Centro Euro-Mediterraneo sui Cambiamenti Climatici | Italy | 0.75 × 0.75 |
2 | CCSM4 | National Center for Atmospheric Research, NCAR | USA | 1.25 × 0.94 |
3 | CESM1-BGC | Community Earth System Model Contributors, NCAR | USA | 1.25 × 0.94 |
4 | CESM1-FASTCHEM | Community Earth System Model Contributors, NCAR | USA | 1.25 × 0.94 |
5 | EC-EARTH | Danish Meteorological Institute, DMI | Denmark | 1.125 × 1.125 |
6 | MRI-CGCM3 | Meteorological Research Institute, MRI | Japan | 1.125 × 1.125 |
7 | BCC-CSM1-M | Beijing Climate Center | China | 1.125 × 1.125 |
8 | MRI-ESM1 | Meteorological Research Institute, MRI | Japan | 1.125 × 1.125 |
9 | CNRM-CM5 | CNRM-CERFACS | France | 1.40 × 1.40 |
10 | MIROC5 | MIROC | Japan | 1.40 × 1.40 |
11 | ACCESS 1-0 | CSIRO-BOM | Australia | 1.87 × 1.25 |
12 | ACCESS1-3 | CSIRO-BOM | Australia | 1.87 × 1.25 |
13 | HadGEM2-CC | MetOffice-Hadley Centre | UK | 1.87 × 1.25 |
14 | HadGEM2-ES | MetOffice-Hadley Centre | UK | 1.87 × 1.25 |
15 | HadGEM2-AO | MetOffice-Hadley Centre | UK | 1.87 × 1.25 |
16 | INM-CM4 | Institute for Numerical Mathematics, INM | Russia | 2 × 1.5 |
17 | IPSL-CM5A-MR | Institute Pierre Simon Laplace, IPSL | France | 2.5 × 1.26 |
18 | MPI-ESM-MR | Max Planck Institute for Meteorology, MPI | Germany | 1.87 × 1.87 |
19 | CMCC-CMS | Centro Euro-Mediterraneo sui Cambiamenti Climatici | Italy | 1.87 × 1.87 |
20 | CSIRO-MK3-6-0 | CSIRO-BOM | Australia | 1.87 × 1.87 |
21 | MPI-ESM-LR | Max Planck Institute for Meteorology, MPI | Germany | 1.87 × 1.87 |
22 | MPI-ESM-P | Max Planck Institute for Meteorology, MPI | Germany | 1.87 × 1.87 |
23 | FGOALS-2 | Institute of Atmospheric Physics, Chinese Academy of Sciences | China | 2.81 × 2.81 |
24 | NorESM1-M | Norwegian Climate Center | Norway | 2.5 × 1.89 |
25 | GFDL-ESM2G | Geophysical Fluid Dynamics Laboratory, NOAA | USA | 2.5 × 2.02 |
26 | GFDL-CM3 | Geophysical Fluid Dynamics Laboratory, NOAA | USA | 2.5 × 2.02 |
27 | GFDL-ESM2M | Geophysical Fluid Dynamics Laboratory, NOAA | USA | 2.5 × 2.02 |
28 | IPSL-CM5B-LR | Institute Pierre Simon Laplace, IPSL | France | 3.75 × 1.89 |
29 | BCC-CSM1-1 | Beijing Climate Center | China | 2.81 × 2.79 |
30 | MIROC-ESM | MIROC | Japan | 2.81 × 2.79 |
31 | MIROC-ESM-CHEM | MIROC | Japan | 2.81 × 2.79 |
32 | CMCC-CESM | Centro Euro-Mediterraneo sui Cambiamenti Climatici | Italy | 3.75 × 3.75 |
No. | Model/Institution | Global | Regional | RCP Scenario |
---|---|---|---|---|
1 | CNRM -CERFACS | CNRM-CM5 | CCLM4 | 45 |
2 | CNRM -CERFACS | CNRM-CM5 | CCLM4 | 85 |
3 | ICHEC -KNMI | EC-EARTH | RACMO22E | 45 |
4 | ICHEC -KNMI | EC-EARTH | RACMO22E | 85 |
5 | IPSL -INERIS | IPSL-CM5A-MR | WRF331F | 45 |
6 | IPSL -INERIS | IPSL-CM5A-MR | WRF331F | 85 |
7 | MPI -CSC | ESM-LR-MPI | REMO2009 | 45 |
8 | MPI -CSC | ESM-LR-MPI | REMO2009 | 85 |
No. | Model | Stand. Dev. | Mean | Skewness | % Outliers | Bin Length (m) | ||||
---|---|---|---|---|---|---|---|---|---|---|
min | max | min | max | min | max | min | max | |||
1 | CMCC-CMS | 1.97 | 0.99 | −6.89 | −2.56 | 0.43 | 0.02 | 22 | 16 | 1y |
1.82 | 0.90 | −3.42 | −3.51 | −0.18 | −0.14 | 24 | 35 | 4y | ||
2 | CCSM4 | 1.47 | 0.70 | 0.28 | 0.54 | 0.83 | −0.52 | 18 | 9 | 1y |
1.86 | 0.54 | 1.96 | 0.33 | 0.24 | −0.47 | 19 | 14 | 4y | ||
3 | CESM1-BGC | 1.31 | 0.71 | 1.33 | 0.57 | 0.53 | 1.04 | 19 | 15 | 1y |
1.14 | 0.69 | 0.73 | 0.08 | 0.45 | −0.43 | 9 | 9 | 4y | ||
4 | CESM1-FASTCHEM | 1.55 | 0.66 | 1.03 | 0.96 | 0.77 | 0.19 | 32 | 10 | 1y |
1.33 | 0.50 | 0.47 | 0.47 | 0.59 | −0.06 | 8 | 17 | 4y | ||
5 | EC-EARTH | 1.55 | 0.77 | 0.21 | −3.43 | 0.01 | −1.24 | 22 | 6 | 1y |
1.32 | 0.63 | 0.32 | −3.02 | −0.22 | −0.81 | 14 | 5 | 4y | ||
6 | MRI-CGCM3 | 1.16 | 0.90 | −2.28 | −1.43 | 1.37 | 0.20 | 12 | 7 | 1y |
1.85 | 0.45 | −2.42 | −2.08 | −0.20 | 1.19 | 16 | 6 | 4y | ||
7 | BCC-CSM1-M | 2.74 | 1.20 | 0.51 | −1.71 | 0.26 | −1.13 | 16 | 3 | 1y |
2.69 | 1.06 | 1.58 | −0.21 | 0.18 | 1.17 | 4 | 1 | 4y | ||
8 | MRI-ESM1 | 1.10 | 0.84 | −2.35 | −1.34 | 1.47 | 0.25 | 16 | 5 | 1y |
1.93 | 0.49 | −2.44 | −1.75 | 0.19 | 0.24 | 18 | 9 | 4y | ||
9 | CNRM-CM5 | 1.56 | 0.83 | −2.23 | 0.77 | −0.01 | 0.52 | 20 | 7 | 1y |
1.25 | 0.62 | −1.23 | 0.88 | 0.00 | −0.51 | 19 | 7 | 4y | ||
10 | MIROC5 | 1.43 | 0.64 | −0.04 | 2.00 | 0.23 | 0.80 | 21 | 2 | 1y |
1.26 | 0.49 | 3.13 | 1.62 | 0.35 | −0.08 | 20 | 2 | 4y | ||
11 | ACCESS 1-0 | 1.41 | 0.78 | 3.06 | −1.75 | 0.70 | 0.46 | 2 | 3 | 1y |
1.82 | 0.83 | 3.44 | −0.14 | −0.52 | −0.82 | 1 | 1 | 4y | ||
12 | ACCESS1-3 | 1.28 | 1.00 | 3.92 | 0.21 | 1.15 | 0.99 | 10 | 3 | 1y |
1.56 | 1.00 | 6.90 | 1.14 | −0.67 | −0.81 | 12 | 1 | 4y | ||
13 | HadGEM2-CC | 1.37 | 0.84 | −3.70 | −0.26 | 0.23 | 0.94 | 5 | 8 | 1y |
1.49 | 0.67 | −3.73 | −0.51 | −0.24 | 0.85 | 16 | 18 | 4y | ||
14 | HadGEM2-ES | 1.44 | 0.75 | −1.44 | 0.11 | 1.35 | −0.17 | 22 | 3 | 1y |
1.14 | 0.70 | −1.13 | 0.40 | −1.04 | 1.22 | 27 | 5 | 4y | ||
15 | HadGEM2-AO | 1.22 | 0.85 | −0.57 | 0.12 | 1.04 | 0.14 | 12 | 8 | 1y |
1.10 | 0.72 | −0.59 | 0.39 | −0.14 | 0.70 | 13 | 5 | 4y | ||
16 | INM-CM4 | 2.04 | 1.27 | −3.19 | 2.46 | 1.10 | −0.28 | 19 | 4 | 1y |
1.83 | 1.12 | −3.79 | 2.06 | 0.63 | −0.34 | 14 | 2 | 4y | ||
17 | IPSL-CM5A-MR | 1.86 | 0.86 | −0.86 | −0.76 | 0.49 | 0.66 | 34 | 10 | 1y |
1.95 | 0.64 | −1.09 | −0.83 | −0.09 | 0.15 | 23 | 5 | 4y | ||
18 | MPI-ESM-MR | 1.63 | 0.83 | −1.60 | −1.97 | −0.03 | 0.52 | 25 | 10 | 1y |
1.14 | 0.61 | 0.58 | −1.65 | −0.52 | 0.27 | 16 | 6 | 4y | ||
19 | CMCC-CMS | 1.89 | 1.00 | −4.88 | −2.29 | −0.02 | 0.02 | 21 | 23 | 1y |
1.89 | 0.87 | −2.12 | −3.04 | −0.40 | 0.05 | 42 | 19 | 4y | ||
20 | CSIRO-MK3-6-0 | 4.45 | 1.09 | −5.85 | −0.37 | 0.82 | 0.20 | 42 | 8 | 1y |
3.53 | 1.20 | −2.54 | −0.45 | −0.03 | −0.67 | 33 | 12 | 4y | ||
21 | MPI-ESM-LR | 1.65 | 0.66 | −0.92 | −2.63 | 0.40 | 0.16 | 31 | 2 | 1y |
1.29 | 0.62 | 0.74 | −2.05 | −0.49 | 0.46 | 13 | 6 | 4y | ||
22 | MPI-ESM-P | 1.38 | 0.74 | −0.42 | −2.01 | 0.55 | −0.22 | 34 | 17 | 1y |
1.45 | 0.50 | 1.28 | −1.87 | 0.20 | 0.55 | 16 | 10 | 4y | ||
23 | FGOALS-2 | 2.35 | 1.02 | 0.44 | 6.20 | 0.39 | −0.67 | 35 | 7 | 1y |
2.63 | 0.82 | −2.81 | 5.54 | 0.42 | −0.10 | 24 | 4 | 4y | ||
24 | NorESM1-M | 1.31 | 0.72 | 1.03 | −1.44 | 0.52 | −0.88 | 29 | 9 | 1y |
1.35 | 0.43 | 0.24 | −1.30 | 0.31 | −0.16 | 18 | 2 | 4y | ||
25 | GFDL-ESM2G | 1.53 | 0.86 | −3.42 | −0.81 | 0.20 | −0.24 | 14 | 8 | 1y |
1.35 | 0.56 | −2.74 | 0.11 | −0.07 | 0.65 | 6 | 12 | 4y | ||
26 | GFDL-CM3 | 1.51 | 0.94 | −1.88 | −2.20 | 0.14 | −0.84 | 14 | 4 | 1y |
1.61 | 0.63 | 1.47 | −0.69 | 0.05 | −0.37 | 2 | 24 | 4y | ||
27 | GFDL-ESM2M | 1.47 | 0.82 | −2.50 | −1.72 | 0.69 | −0.03 | 8 | 2 | 1y |
1.32 | 0.64 | −0.74 | 0.45 | −0.95 | −0.32 | 4 | 10 | 4y | ||
28 | IPSL-CM5B-LR | 1.90 | 1.05 | −9.51 | −0.57 | 0.05 | −0.72 | 26 | 20 | 1y |
3.28 | 0.81 | −10.06 | −1.74 | −1.83 | −1.58 | 29 | 5 | 4y | ||
29 | BCC-CSM1-1 | 1.98 | 0.68 | 0.16 | −2.37 | 1.84 | −0.37 | 7 | 2 | 1y |
2.42 | 0.89 | 0.58 | −0.84 | 0.34 | 0.54 | 9 | 1 | 4y | ||
30 | MIROC-ESM | 1.87 | 0.77 | 2.46 | −0.32 | −0.11 | −0.42 | 16 | 16 | 1y |
1.76 | 0.67 | 5.83 | 0.08 | −0.24 | −0.05 | 6 | 1 | 4y | ||
31 | MIROC-ESM-CHEM | 1.51 | 0.80 | 2.20 | −0.19 | −0.23 | −0.07 | 14 | 9 | 1y |
1.69 | 0.80 | 5.78 | 0.28 | −0.32 | −0.25 | 4 | 3 | 4y | ||
32 | CMCC-CESM | 1.74 | 0.79 | −4.65 | −2.18 | −0.23 | −0.42 | 13 | 4 | 1y |
2.23 | 1.02 | −7.01 | −3.26 | −0.04 | −0.32 | 10 | 22 | 4y | ||
ENSEMBLE | 4.50 | 3.19 | −1.29 | −0.61 | 0.53 | −0.03 | 19 | 8 | 1y | |
5.01 | 2.98 | −0.39 | −0.46 | −0.13 | −0.01 | 15 | 9 | 4y |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alvarez-Castro, M.C.; Faranda, D.; Noël, T.; Yiou, P. Recurrence Spectra of European Temperature in Historical Climate Simulations. Atmosphere 2019, 10, 166. https://doi.org/10.3390/atmos10040166
Alvarez-Castro MC, Faranda D, Noël T, Yiou P. Recurrence Spectra of European Temperature in Historical Climate Simulations. Atmosphere. 2019; 10(4):166. https://doi.org/10.3390/atmos10040166
Chicago/Turabian StyleAlvarez-Castro, M. Carmen, Davide Faranda, Thomas Noël, and Pascal Yiou. 2019. "Recurrence Spectra of European Temperature in Historical Climate Simulations" Atmosphere 10, no. 4: 166. https://doi.org/10.3390/atmos10040166
APA StyleAlvarez-Castro, M. C., Faranda, D., Noël, T., & Yiou, P. (2019). Recurrence Spectra of European Temperature in Historical Climate Simulations. Atmosphere, 10(4), 166. https://doi.org/10.3390/atmos10040166