Emissions of a Euro 6b Diesel Passenger Car Retrofitted with a Solid Ammonia Reduction System
Abstract
:1. Introduction
2. Experiments
2.1. Vehicle
2.2. Retrofit
2.3. Chassis Dynamometer Tests
2.4. On-Road Tests
3. Results
3.1. Chassis Dynamometer Tests
3.2. On-Road Tests
4. Discussion
4.1. NOx Emission of the Donor Vehicle
4.2. NOx Reduction of the Retrofit
4.3. NH3, N2O and Particle Emissions
4.4. Comparison with the Euro 5b Retrofit
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Disclaimer
Appendix A
c_NEDC 25 °C | h_NEDC 25 °C | c_WLTC 23 °C | h_WLTC 23 °C | c_NEDC 7 °C | h_WLTC 7 °C | CADC 25 °C | |
---|---|---|---|---|---|---|---|
Urban_off | 127.3 | 114.4 | 129.8 | 109.3 | 141.0 | 124.2 | 168.4 |
Urban_on | 121.3 | 108.2 | 151.8 | 119.6 | 144.1 | 124.7 | 174.2 |
Difference | −6.0 | −6.2 | 22.0 | 10.3 | 3.1 | 0.5 | 5.8 |
Rel. diff. | −4.7% | −5.4% | 16.9% | 9.4% | 2.2% | 0.4% | 3.4% |
Total_off | 116.6 | 111.1 | 124.3 | 128.4 | 125.5 | 132.5 | 156.6 |
Total_on | 112.2 | 108.5 | 128.7 | 123.2 | 128.3 | 126.8 | 145.2 |
Difference | −4.4 | −2.6 | 4.4 | −5.2 | 2.8 | −5.7 | −11.4 |
Rel. diff. | −3.8% | −2.3% | 3.5% | −4.0% | 2.2% | −4.3% | −7.3% |
c_NEDC 25 °C | h_NEDC 25 °C | c_WLTC 23 °C | h_WLTC 23 °C | c_NEDC 7 °C | h_WLTC 7 °C | CADC 25 °C | |
---|---|---|---|---|---|---|---|
Urban_off | 144 | 73 | 229 | 171 | 398 | 365 | 460 |
Urban_on | 141 | 86 | 273 | 90 | 384 | 243 | 421 |
Difference | −3 | 13 | 45 | −81 | −15 | −122 | -39 |
Rel. diff. | 2% | −18% | −20% | 47% | 4% | 33% | 9% |
Total_off | 200 | 163 | 584 | 638 | 543 | 878 | 995 |
Total_on | 151 | 99 | 151 | 108 | 315 | 154 | 410 |
Difference | 49 | 64 | 433 | 529 | 228 | 724 | 585 |
Rel. diff. | 25% | 39% | 74% | 83% | 42% | 82% | 59% |
c_NEDC 25 °C | h_NEDC 25 °C | c_WLTC 23 °C | h_WLTC 23 °C | c_NEDC 7 °C | h_WLTC 7 °C | CADC 25 °C | |
---|---|---|---|---|---|---|---|
Urban_off | 1% | 24% | 2% | 19% | 0% | 19% | 21% |
Urban_on | 1% | 23% | 3% | 22% | 1% | 15% | 14% |
Total_off | 17% | 19% | 36% | 35% | 12% | 39% | 32% |
Total_on | 12% | 19% | 22% | 28% | 7% | 31% | 28% |
c_NEDC 25 °C | h_NEDC 25 °C | c_WLTC 23 °C | h_WLTC 23 °C | c_NEDC 7 °C | h_WLTC 7 °C | CADC 25 °C | |
---|---|---|---|---|---|---|---|
Urban_off | 17 | 14 | 19 | 14 | 22 | 17 | 20 |
Urban_on | 17 | 15 | 16 | 12 | 28 | 15 | 17 |
Difference | 0 | 1 | −3 | −2 | 6 | −2 | −3 |
Total_off | 18 | 12 | 11 | 9 | 35 | 11 | 5 |
Total_on | 18 | 19 | 19 | 18 | 33 | 29 | 11 |
Difference | 0 | 7 | 8 | 9 | -2 | 18 | 6 |
Appendix B
c_NEDC 25 °C | h_NEDC 25 °C | c_WLTC 23 °C | h_WLTC 23 °C | c_NEDC 7 °C | h_WLTC 7 °C | CADC 25 °C | |
---|---|---|---|---|---|---|---|
Urban_off | 45.7 | 0.27 | 25.2 | 0.29 | 63.8 | 3.65 | 4.59 |
Sub-23 | +16% | +25% | +12% | +21% | +105% | +3% | +43% |
Urban_on | 92.7 | 0.33 | 48.5 | 0.39 | 78.3 | 1.91 | 2.22 |
Sub-23 | +25% | +13% | +6% | +17% | +74% | 0% | +37% |
Total_off | 16.9 | 0.12 | 3.41 | 0.08 | 23.6 | 0.64 | 1.27 |
Sub-23 | +16% | +30% | +12% | +29% | +105% | +4% | +33% |
Total_on | 35.7 | 0.15 | 6.50 | 0.10 | 29.1 | 0.41 | 0.46 |
Difference | +24% | +16% | +6% | +24% | +73% | 0% | +55% |
References
- European Commission. Directive 2008/50/EC of the European Parliament and of the Council of 21 May 2008 on ambient air quality and cleaner air for Europe. Off. J. Eur. Un. 2008, L152, 1–44. [Google Scholar]
- European Commission. Directive 2016/2284/EC of the European Parliament and of the Council of 14 December 2016 on the reduction of national emissions of certain atmospheric pollutants, amending Directive 2003/35/EC and repealing Directive 2001/81/EC. Off. J. Eur. Un. 2016, L344, 1–31. [Google Scholar]
- European Environment Agency. Air quality in Europe 2018; Report No 12/2018; Publications Office of the European Union: Luxembourg, 2018.
- Commission Regulation (EU). Commission Regulation (EU) 2017/1151 of 1 June 2017 supplementing Regulation (EC) No 715/2007 of the European Parliament and of the Council on type approval of motor vehicles with respect to emissions from light passenger and commercial vehicles (Euro 5 and Euro 6) and on access to vehicle repair and maintenance information, amending Directive 2007/46/EC of the European Parliament and of the Council, Commission Regulation (EC) No 692/2008 and Commission Regulation (EU) No 1230/2012 and repealing Commission Regulation (EC) No 692/2008. Off. J. Eur. Union 2017, L175/1, 639. [Google Scholar]
- Weiss, M.; Bonnel, P.; Hummel, R.; Provenza, A.; Manfredi, U. On-road emissions of light-duty vehicles in Europe. Environ. Sci. Technol. 2011, 45, 8575–8581. [Google Scholar] [CrossRef]
- Baldino, C.; Tiegte, U.; Muncrief, R.; Bernard, Y.; Mock, P. Road Tested: Comparative Overview of Real-World Versus Type-Approval NOx and CO2 Emissions from Diesel Cars in Europe; White Paper; International Council on Clean Transportation Europe (ICCT): Berlin, Germany, September 2017. [Google Scholar]
- Commission Regulation (EU). Commission Regulation (EU) 2018/1832 of 5 November 2018 amending Directive 2007/46/EC of the European Parliament and of the Council, Commission Regulation (EC) No 692/2008 and Commission Regulation (EU) 2017/1151 for the purpose of improving the emission type approval tests and procedures for light passenger and commercial vehicles, including those for in-service conformity and real-driving emissions and introducing devices for monitoring the consumption of fuel and electric energy. Off. J. Eur. Union 2018, L301/1, 314. [Google Scholar]
- Transport and Environment. Dieselgate. Who? What? How? Transport and Environment: Brussels, Belgium, September 2016. [Google Scholar]
- Ntziachristos, L.; Papadimitriou, G.; Ligterink, N.; Hausberger, S. Implications of diesel emissions control failures to emission factors and road transport NOx evolution. Atmos. Environ. 2016, 141, 542–551. [Google Scholar] [CrossRef]
- Jonson, J.; Borken-Kleefeld, J.; Simpson, D.; Nyíri, A.; Posch, M.; Heyes, C. Impact of excess NOx emissions from diesel cars on air quality, public health and eutrophication in Europe. Environ. Res. Lett. 2017, 12, 094017. [Google Scholar] [CrossRef]
- Toenges-Schuller, N.; Schneider, C.; Niederau, A.; Vogt, R.; Hausberger, S. Modelling the effect on air quality of Euro 6 emission factor scenarios. J. Earth Sci. Geotech. Eng. 2016, 6, 227–244. [Google Scholar]
- European Commission. Research & Innovation. Horizon Prizes. Engine Retrofit for Clean Air. Available online: http://ec.europa.eu/research/horizonprize/index.cfm?prize=engine-retrofit (accessed on 11 March 2019).
- Giechaskiel, B.; Suarez-Bertoa, R.; Lahde, T.; Clairotte, M.; Carriero, M.; Bonnel, P.; Maggiore, M. Evaluation of NOx emissions of a retrofitted Euro 5 passenger car for the Horizon prize “Engine retrofit”. Environ. Res. 2018, 166, 298–309. [Google Scholar] [CrossRef]
- Bialy, A.; Jensen, P.; Blanchard, D.; Quaade, U.; Vegge, T. Solid solution barium–strontium chlorides with tunable ammonia desorption properties and superior storage capacity. J. Solid State Chem. 2015, 221, 32–36. [Google Scholar] [CrossRef]
- Guan, B.; Zhan, R.; Lin, H.; Huang, Z. Review of state of the art technologies of selective catalytic reduction of NOx from diesel engine exhaust. Appl. Therm. Eng. 2014, 66, 395–414. [Google Scholar] [CrossRef]
- United Nations. Economic Commissions for Europe, Regulation No. 83, Revision 5. Uniform Provisions Concerning the Approval of Vehicles with Regard to the Emission of Pollutants According to Engine Fuel Requirements; United Nations: Geneva, Switzerland, 2015. [Google Scholar]
- Giechaskiel, B.; Cresnoverh, M.; Jörgl, H.; Bergmann, A. Calibration and accuracy of a particle number measurement system. Meas. Sci. Technol. 2010, 21, 045102. [Google Scholar] [CrossRef]
- Heijne, V.; Kadijk, G.; Ligterink, N.; van der Mark, P.; Spreen, J.; Stelwagen, U. NOx Emissions of Fifteen Euro 6 Diesel Cars: Results of the Dutch LD Road Vehicle Emission Testing Programme 2016; TNO report 2016 R11177; TNO: Delft, The Netherlands, 2016. [Google Scholar]
- Yang, L.; Franco, V.; Campestrini, A.; German, J.; Mock, P. NOx Control Technologies for Euro 6 Diesel Passenger Cars; White Paper; International Council on Clean Transportation Europe (ICCT): Berlin, Germany, 2015. [Google Scholar]
- Deutsche Umwelthilfe. Emissionen im Verkehr. NOx and CO2 Messungen im Realen Fahrbetrieb. Available online: https://www.duh.de/fileadmin/user_upload/download/Projektinformation/Verkehr/dieselgate/EKI/2019-02-22_Tabelle_PEMS-Messungen_Ergebnisse_Maerz_2016-Feb_2019.pdf (accessed on 11 March 2019).
- Kadijk, G.; Ligterink, N.; van Mensch, P.; Smokers, R. NOx Emissions of Euro 5 and Euro 6 Diesel Passenger Cars—Test Results in the Lab and on the Road; TNO report 2016 R10083; TNO: Delft, The Netherlands, 2016. [Google Scholar]
- O’Driscoll, R.; Stettler, M.; Molden, N.; Oxley, T.; ApSimon, H. Real world CO2 and NOx emissions from 149 Euro 5 and 6 diesel, gasoline and hybrid passenger cars. Sci. Total Environ. 2018, 621, 282–290. [Google Scholar] [CrossRef] [PubMed]
- Triantafyllopoulos, G.; Dimaratos, A.; Ntziachristos, L.; Bernard, Y.; Dornoff, J.; Samaras, Z. A study on the CO2 and NOx emissions performance of Euro 6 diesel vehicles under various chassis dynamometer and on-road conditions including latest regulatory provisions. Sci. Total Environ. 2019, 666, 337–346. [Google Scholar] [CrossRef] [PubMed]
- Kwon, S.; Park, Y.; Park, J.; Kim, J.; Choi, K.-H.; Cha, J.-S. Characteristics of on-road NOx emissions from Euro 6 light-duty diesel vehicles using a portable emissions measurement system. Sci. Total Environ. 2017, 576, 70–77. [Google Scholar] [CrossRef] [PubMed]
- O’Driscoll, R.; ApSimon, H.; Oxley, T.; Molden, N.; Stettler, M.; Thiyagarajah, A. A portable emissions measurement system (PEMS) study of NOx and primary NO2 emissions from Euro 6 diesel passenger cars and comparison with COPERT emission factors. Atmos. Environ. 2016, 145, 81–91. [Google Scholar] [CrossRef]
- Jung, Y.; Shin, Y.; Pyo, Y.; Cho, C.; Jang, J.; Kim, G. NOx and N2O emissions over a urea-SCR system containing both V2O5-WO3/TiO2 and Cu-zeolite catalysts in a diesel engine. Chem. Eng. J. 2017, 326, 853–862. [Google Scholar] [CrossRef]
- Lüders, H.; Backes, R.; Hüthwoh, G.; Ketcher, D.; Horrocks, R.; Hurley, R.; Hammerle, R. An Urea Lean NOx Catalyst System for Light Duty Diesel Vehicles; SAE Technical Paper 952493; SAE: Warrendale, PA, USA, 1995. [Google Scholar] [CrossRef]
- Suarez-Bertoa, R.; Mendoza-Villafuerte, P.; Riccobono, F.; Vojtisek, M.; Pechout, M.; Perujo, A.; Astorga, C. On-road measurement of NH3 emissions from one gasoline and one diesel passenger cars during real world driving conditions. Atmos. Environ. 2017, 166, 488–497. [Google Scholar] [CrossRef]
- Triantafyllopoulos, G.; Katsaounis, D.; Karamitros, D.; Ntziachristos, L.; Samaras, Z. Experimental assessment of the potential to decrease diesel NOx emissions beyond minimum requirements for Euro 6 Real Drive Emissions (RDE) compliance. Sci. Total Environ. 2018, 618, 1400–1407. [Google Scholar] [CrossRef]
- Weiss, M.; Paffumi, E.; Clairotte, M.; Drossinos, Y.; Vlachos, T.; Bonnel, P.; Giechaskiel, B. Including Cold-Start Emissions in the Real-Driving Emissions (RDE) Test Procedure; Report EUR 28472 EN, Joint Research Centre; Publications Office of the European Union: Luxembourg, 2017. [Google Scholar]
- ICCT. China’s Stage 6 Emission Standard for New Light-Duty Vehicles (Final Rule); Policy update 2017; International Council on Clean Transportation Europe (ICCT): Berlin, Germany, 2017. [Google Scholar]
- Environmental Protection Agency. 40 CFR Parts 85, 86 and 600, Department of Transportation, National Highway Traffic Safety Administration, 49 CFR Parts 523, 531, 533-600. 2017 and later model year light-duty vehicle greenhouse gas emissions and corporate average fuel economy standards: Final rule. Fed. Regist. 2012, 77, 62623–63200. [Google Scholar]
- Vojtíšek-Lom, M.; Beránek, V.; Klír, V.; Jindra, P.; Pechout, M.; Voříšek, T. On-road and laboratory emissions of NO, NO2, NH3, N2O and CH4 from late-model EU light utility vehicles: Comparison of diesel and CNG. Sci. Total Environ. 2018, 616–617, 774–784. [Google Scholar] [CrossRef] [PubMed]
- Suarez-Bertoa, R.; Astorga, C. Impact of cold temperature on Euro 6 passenger car emissions. Environ. Pollut. 2018, 234, 318–329. [Google Scholar] [CrossRef] [PubMed]
- Pachauri, P.; Meyer, L. (Eds.) Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2014. [Google Scholar]
- Amanatidis, A.; Ntziachristos, L.; Giechaskiel, B.; Bergmann, A.; Samaras, Z. Impact of selective catalytic reduction on exhaust particle formation over excess ammonia events. Environ. Sci. Technol. 2014, 48, 11527–11534. [Google Scholar] [CrossRef]
- Kubiak, L.; Matarrese, R.; Castoldi, L.; Lietti, L.; Daturi, M.; Forzatti, P. Study of N2O formation over Rh- and Pt-based LNT catalysts. Catalysts 2016, 6, 36. [Google Scholar] [CrossRef]
- Goo, J.; Irfan, M.; Kim, S.; Hong, S. Effects of NO2 and SO2 on selective catalytic reduction of nitrogen oxides by ammonia. Chemosphere 2007, 67, 718–723. [Google Scholar] [CrossRef] [PubMed]
- Mendoza-Villafuerte, P.; Suarez-Bertoa, R.; Giechaskiel, B.; Riccobono, F.; Bulgheroni, C.; Astorga, C.; Perujo, A. NOx, NH3, N2O and PN real driving emissions from a Euro VI heavy-duty vehicle. Impact of regulatory on-road test conditions on emissions. Sci. Total Environ. 2017, 609, 546–555. [Google Scholar] [CrossRef]
- Giechaskiel, B.; Lahde, T.; Drossinos, Y. Regulating particle number measurements from the tailpipe of light-duty vehicles: The next step? Environ. Res. 2019, 172, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Giechaskiel, B.; Mamakos, A.; Andersson, J.; Dilara, P.; Martini, G.; Schindler, W.; Bergmann, A. Measurement of automotive nonvolatile particle number emissions within the European legislative framework: A review. Aerosol Sci. Technol. 2012, 46, 719–749. [Google Scholar] [CrossRef]
- Giechaskiel, B.; Munoz-Bueno, R.; Rubino, L.; Manfredi, U.; Dilara, P.; De Santi, G.; Andersson, J. Particle Measurement Programme (PMP): Particle Size and Number Emissions Before, During and After Regeneration Events of a Euro 4 DPF Equipped Light Duty Diesel Vehicle; SAE Technical Paper 2007-01-1944; SAE: Warrendale, PA, USA, 2007. [Google Scholar]
Route | Part | Distance [km] | Mean Speed [km/h] | Duration [min] | Max Altitude [m] |
---|---|---|---|---|---|
NEDC | Urban | 4.0 | 18.3 | 13.0 | (220) |
NEDC | Total | 10.9 | 33.3 | 19.7 | (220) |
WLTC | Urban | 3.1 | 18.9 | 9.8 | (220) |
WLTC | Total | 23.2 | 46.4 | 30.0 | (220) |
CADC | Urban | 4.9 | 17.7 | 16.7 | (220) |
CADC | Total | 50.9 | 58.3 | 52.4 | (220) |
Road 1 | (Cold) Urban | 33.0 | 33.0 | 60.0 | 280 |
Road 1 | Rural | 28.0 | 47.0 | 36.0 | 280 |
Road 1 | Motorway | 27.0 | 85.0 | 19.0 | 300 |
Road 2 | Urban | 20.5 | 36.0 | 34.0 | 450 |
Road 2 | Uphill | 9.0 | 32.0 | 17.0 | 1100 |
Road 2 | Downhill | 9.0 | 32.0 | 17.0 | 1100 |
Road 2 | Urban | 21.5 | 34.0 | 38.0 | 450 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Giechaskiel, B.; Suarez-Bertoa, R.; Lahde, T.; Clairotte, M.; Carriero, M.; Bonnel, P.; Maggiore, M. Emissions of a Euro 6b Diesel Passenger Car Retrofitted with a Solid Ammonia Reduction System. Atmosphere 2019, 10, 180. https://doi.org/10.3390/atmos10040180
Giechaskiel B, Suarez-Bertoa R, Lahde T, Clairotte M, Carriero M, Bonnel P, Maggiore M. Emissions of a Euro 6b Diesel Passenger Car Retrofitted with a Solid Ammonia Reduction System. Atmosphere. 2019; 10(4):180. https://doi.org/10.3390/atmos10040180
Chicago/Turabian StyleGiechaskiel, Barouch, Ricardo Suarez-Bertoa, Tero Lahde, Michael Clairotte, Massimo Carriero, Pierre Bonnel, and Maurizio Maggiore. 2019. "Emissions of a Euro 6b Diesel Passenger Car Retrofitted with a Solid Ammonia Reduction System" Atmosphere 10, no. 4: 180. https://doi.org/10.3390/atmos10040180
APA StyleGiechaskiel, B., Suarez-Bertoa, R., Lahde, T., Clairotte, M., Carriero, M., Bonnel, P., & Maggiore, M. (2019). Emissions of a Euro 6b Diesel Passenger Car Retrofitted with a Solid Ammonia Reduction System. Atmosphere, 10(4), 180. https://doi.org/10.3390/atmos10040180