Vehicle Ammonia Emissions Measured in An Urban Environment in Sydney, Australia, Using Open Path Fourier Transform Infra-Red Spectroscopy
Abstract
:1. Introduction
2. Experiment
2.1. Site
Vehicle Fleet Statistics
2.2. Instrumentation
2.2.1. Open Path Infrared Fourier Transform (OP-FTIR) Spectrometer
2.2.2. In situ Trace Gas Analyser
2.2.3. Mobile Air Quality Station (MAQ station)
2.2.4. Meteorological Data
3. Results and Discussion
3.1. Meteorological Data
3.2. Uncertainty Analysis OP-FTIR Data
3.3. Validation of OP-FTIR Data
3.4. Measured Mole-Fractions
3.5. Ratio to CO
3.6. Emission Factor
3.7. Comparison to GMR2008 Emissions Inventory
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Industrial Sources of NH3, NOx and CO
Summer | CO2:CO ppmv:ppbv | Intercept ppmv | r2 | N |
---|---|---|---|---|
all | 0.172 ± 0.001 | 387.7 ± 0.1 | 0.66 | 2260 |
AM | 0.168 ± 0.002 | 387.9± 0.2 | 0.76 | 461 |
PM | 0.101 ± 0.002 | 391.0 ± 0.2 | 0.66 | 533 |
NE | 0.083 ± 0.004 | 393.7 ± 0.6 | 0.46 | 488 |
SE | 0.082 ± 0.002 | 394 ± 0.3 | 0.55 | 988 |
SW | 0.123 ± 0.004 | 394.3 ± 0.8 | 0.65 | 473 |
NW | 0.117 ± 0.005 | 394.2 ± 1.0 | 0.65 | 380 |
Weekend | 0.217 ± 0.003 | 384.1 ± 0.2 | 0.65 | 640 |
Weekday | 0.159 ± 0.001 | 388.8 ± 0.1 | 0.66 | 1620 |
Winter | ||||
all | 0.108 ± 0.0005 | 396.1 ± 0.1 | 0.84 | 1971 |
AM | 0.103 ± 0.0010 | 399.0 ± 0.2 | 0.82 | 448 |
PM | 0.0769 ± 0.0015 | 397.0 ± 0.2 | 0.88 | 374 |
NE | 0.0503 ± 0.0059 | 403.5 ± 1.2 | 0.47 | 84 |
SE | 0.0487 ± 0.0038 | 400.2 ± 0.5 | 0.49 | 170 |
SW | 0.0786 ± 0.0013 | 400.5 ± 0.5 | 0.83 | 687 |
NW | 0.0831 ± 0.0012 | 400.1 ± 0.4 | 0.82 | 966 |
Weekend | 0.109 ± 0.001 | 395.0 ± 0.1 | 0.81 | 552 |
Weekday | 0.108 ± 0.001 | 396.5 ± 0.1 | 0.86 | 1419 |
References
- Jalaludin, B.; Mannes, T.; Morgan, G.; Lincoln, D.; Sheppeard, V.; Corbett, S. Impact of ambient air pollution on gestational age is modified by season in Sydney, Australia. Environ. Health A Glob. Access Sci. Source 2007, 6, 16. [Google Scholar] [CrossRef] [PubMed]
- Denison, L. Literature Review on the State of Knowledge of the Health and Environmental Impacts of Ambient Air Pollution in Australia; Pacific Environment Limited: South Brisbane, Australia, 2015. [Google Scholar]
- Marino, E.; Caruso, M.; Campagna, D.; Polosa, R. Impact of air quality on lung health: Myth or reality? Ther. Adv. Chronic Dis. 2015, 6, 286–298. [Google Scholar] [CrossRef]
- Beer, T. Air quality as a meteorological hazard. Nat. Hazards 2001, 23, 157–169. [Google Scholar] [CrossRef]
- Broome, R.A.; Fann, N.; Cristina, T.J.N.; Fulcher, C.; Duc, H.; Morgan, G.G. The health benefits of reducing air pollution in Sydney, Australia. Environ. Res. 2015, 143, 19–25. [Google Scholar] [CrossRef] [PubMed]
- Crawford, J.; Chambers, S.; Cohen, D.D.; Williams, A.; Griffiths, A.; Stelcer, E.; Dyer, L. Impact of meteorology on fine aerosols at Lucas Heights, Australia. Atmos. Environ. 2016, 145, 135–146. [Google Scholar] [CrossRef]
- Toro, R.A.; Canales, M.; Flocchini, R.G.; Morales, R.G.E.; Leiva, G.M.A. Urban atmospheric ammonia in Santiago city, Chile. Aerosol Air Qual. Res. 2014, 14, 33–44. [Google Scholar] [CrossRef]
- Behera, S.N.; Sharma, M. Investigating the potential role of ammonia in ion chemistry of fine particulate matter formation for an urban environment. Sci. Total Environ. 2010, 408, 3569–3575. [Google Scholar] [CrossRef] [PubMed]
- Nowak, J.B.; Neuman, J.A.; Bahreini, R.; Middlebrook, A.M.; Holloway, J.S.; McKeen, S.A.; Parrish, D.D.; Ryerson, T.B.; Trainer, M. Ammonia sources in the California South Coast Air Basin and their impact on ammonium nitrate formation. Geophys. Res. Lett. 2012, 39. [Google Scholar] [CrossRef]
- Livingston, C.; Rieger, P.; Winer, A. Ammonia emissions from a representative in-use fleet of light and medium-duty vehicles in the California South Coast Air Basin. Atmos. Environ. 2009, 43, 3326–3333. [Google Scholar] [CrossRef]
- Suarez-Bertoa, R.; Zardini, A.A.; Astorga, C. Ammonia exhaust emissions from spark ignition vehicles over the New European Driving Cycle. Atmos. Environ. 2014, 97, 43–53. [Google Scholar] [CrossRef]
- Baum, M.M.; Kiyomiya, E.S.; Kumar, S.; Lappas, A.M.; Lord, H.C. Multicomponent Remote Sensing of Vehicle Exhaust by Dispersive Absorption Spectroscopy. 1. Effect of Fuel Type and Catalyst Performance. Environ. Sci. Technol. 2000, 34, 2851–2858. [Google Scholar] [CrossRef]
- Fraser, M.P.; Cass, G.R. Detection of Excess Ammonia Emissions from In-Use Vehicles and the Implications for Fine Particle Control. Environ. Sci. Technol. 1998, 32, 1053–1057. [Google Scholar] [CrossRef]
- Mejía-Centeno, I.; Castillo, S.; Fuentes, G.A. Enhanced emissions of NH3, N2O and H2 from a Pd-only TWC and supported Pd model catalysts: Light-off and sulfur level studies. Appl. Catal. B Environ. 2012, 119–120, 234–240. [Google Scholar]
- Sun, K.; Tao, L.; Miller, D.J.; Pan, D.; Golston, L.M.; Zondlo, M.A.; Griffin, R.J.; Wallace, H.W.; Leong, Y.J.; Yang, M.M.; et al. Vehicle Emissions as an Important Urban Ammonia Source in the United States and China. Environ. Sci. Technol. 2017, 51, 2472–2481. [Google Scholar] [CrossRef] [PubMed]
- Heeb, N.V.; Zimmerli, Y.; Czerwinski, J.; Schmid, P.; Zennegg, M.; Haag, R.; Seiler, C.; Wichser, A.; Ulrich, A.; Honegger, P.; et al. Reactive nitrogen compounds (RNCs) in exhaust of advanced PM-NOx abatement technologies for future diesel applications. Atmos. Environ. 2011, 45, 3203–3209. [Google Scholar] [CrossRef]
- Heeb, N.V.; Forss, A.-M.; Brühlmann, S.; Lüscher, R.; Saxer, C.J.; Hug, P. Three-way catalyst-induced formation of ammonia—velocity- and acceleration-dependent emission factors. Atmos. Environ. 2006, 40, 5986–5997. [Google Scholar] [CrossRef]
- Sun, K.; Tao, L.; Miller, D.J.; Khan, M.A.; Zondlo, M.A. On-road ammonia emissions characterized by mobile, open-path measurements. Environ. Sci. Technol. 2014, 48, 3943–3950. [Google Scholar] [CrossRef]
- You, Y.; Staebler, R.M.; Moussa, S.G.; Su, Y.; Munoz, T.; Stroud, C.; Zhang, J.; Moran, M.D. Long-path measurements of pollutants and micrometeorology over Highway 401 in Toronto. Atmos. Chem. Phys. 2017, 17, 14119–14143. [Google Scholar] [CrossRef] [Green Version]
- Kean, A.J.; Littlejohn, D.; Ban-Weiss, G.A.; Harley, R.A.; Kirchstetter, T.W.; Lunden, M.M. Trends in on-road vehicle emissions of ammonia. Atmos. Environ. 2009, 43, 1565–1570. [Google Scholar] [CrossRef] [Green Version]
- Nowak, J.B.; Neuman, J.A.; Bahreini, R.; Brock, C.A.; Middlebrook, A.M.; Wollny, A.G.; Holloway, J.S.; Peischl, J.; Ryerson, T.B.; Fehsenfeld, F.C. Airborne observations of ammonia and ammonium nitrate formation over Houston, Texas. J. Geophys. Res. Atmos. 2010, 115. [Google Scholar] [CrossRef] [Green Version]
- Perrino, C.; Catrambone, M.; Di Menno Di Bucchianico, A.; Allegrini, I. Gaseous ammonia in the urban area of Rome, Italy and its relationship with traffic emissions. Atmos. Environ. 2002, 36, 5385–5394. [Google Scholar] [CrossRef]
- Fountoukis, C.; Nenes, A.; Sullivan, A.; Weber, R.; Van Reken, T.; Fischer, M.; MatÃas, E.; Moya, M.; Farmer, D.; Cohen, R.C. Thermodynamic characterization of Mexico City aerosol during MILAGRO 2006. Atmos. Chem. Phys. 2009, 9, 15. [Google Scholar] [CrossRef]
- Baldauf, R.; Thoma, E.; Hays, M.; Shores, R.; Kinsey, J.; Gullett, B.; Kimbrough, S.; Isakov, V.; Long, T.; Snow, R.; et al. Traffic and Meteorological Impacts on Near-Road Air Quality: Summary of Methods and Trends from the Raleigh Near-Road Study. J. Air Waste Manag. Assoc. 2008, 58, 865–878. [Google Scholar] [CrossRef]
- Bradley, K.S.; Brooks, K.B.; Hubbard, L.K.; Popp, P.J.; Stedman, D.H. Motor Vehicle Fleet Emissions by OP-FTIR. Environ. Sci. Technol. 2000, 34, 897–899. [Google Scholar] [CrossRef]
- Australian Commonwealth Government. Vehicle Emissions Discussion Paper. Available online: https://infrastructure.gov.au/roads/environment/forum/index.aspx (accessed on 12 September 2018).
- Bishop, G.A.; Stedman, D.H. Reactive Nitrogen Species Emission Trends in Three Light-/Medium-Duty United States Fleets. Environ. Sci. Technol. 2015, 49, 11234–11240. [Google Scholar] [CrossRef]
- Phillips, F.; Naylor, T.; Paton-Walsh, C.; Gunashanhar, G.; Kirkwood, J.; Griffith, D.W.T.; Riley, M.; Scorgie, Y.; Guérette, E.-A. Measurements of Trace Gases Relevant to Air Quality in Western Sydney, Australia, from May 2016 to September 2017 as Part of the Western Air Shed and Particulate Study for Sydney (WASPSS); PANGAEA: Bremen, Germany, 2017; Available online: https://doi.org/10.1594/PANGAEA.884317 (accessed on 15 October 2018).
- Australian Bureau of Statistics. Motor Vehicle Census. Available online: https://www.abs.gov.au/ausstats/[email protected]/mf/9309.0 (accessed on 28 March 2019).
- NSW Government, R.M.S. Traffic Volume Viewer. Available online: www.rms.nsw.gov.au (accessed on 15 December 2018).
- Wiedemann, S.G.; Phillips, F.A.; Naylor, T.A.; McGahan, E.J.; Keane, O.B.; Warren, B.R.; Murphy, C.M. Nitrous oxide, ammonia and methane from Australian meat chicken houses measured under commercial operating conditions and with mitigation strategies applied. Anim. Prod. Sci. 2016, 56, 1404–1417. [Google Scholar] [CrossRef]
- Phillips, F.A.; Wiedemann, S.G.; Naylor, T.A.; McGahan, E.J.; Warren, B.R.; Murphy, C.M.; Parkes, S.; Wilson, J. Methane, nitrous oxide and ammonia emissions from pigs housed on litter and from stockpiling of spent litter. Anim. Prod. Sci. 2016, 56, 1390–1403. [Google Scholar] [CrossRef]
- Naylor, T.A.; Wiedemann, S.G.; Phillips, F.A.; Warren, B.; McGahan, E.J.; Murphy, C.M. Emissions of nitrous oxide, ammonia and methane from Australian layer-hen manure storage with a mitigation strategy applied. Anim. Prod. Sci. 2016, 56, 1367–1375. [Google Scholar] [CrossRef]
- McGahan, E.J.; Phillips, F.A.; Wiedemann, S.G.; Naylor, T.A.; Warren, B.; Murphy, C.M.; Griffith, D.W.T.; Desservettaz, M. Methane, nitrous oxide and ammonia emissions from an Australian piggery with short and long hydraulic retention-time effluent storage. Anim. Prod. Sci. 2016, 56, 1376–1389. [Google Scholar] [CrossRef]
- Bai, M.; Griffith, D.W.T.; Phillips, F.A.; Naylor, T.; Muir, S.K.; McGinn, S.M.; Chen, D. Correlations of methane and carbon dioxide concentrations from feedlot cattle as a predictor of methane emissions. Anim. Prod. Sci. 2016, 56, 108–115. [Google Scholar] [CrossRef]
- Laubach, J.; Bai, M.; Pinares-Patiño, C.S.; Phillips, F.A.; Naylor, T.A.; Molano, G.; Cárdenas Rocha, E.A.; Griffith, D.W.T. Accuracy of micrometeorological techniques for detecting a change in methane emissions from a herd of cattle. Agric. For. Meteorol. 2013, 176, 50–63. [Google Scholar] [CrossRef] [Green Version]
- Jones, F.M.; Phillips, F.A.; Naylor, T.; Mercer, N.B. Methane emissions from grazing Angus beef cows selected for divergent residual feed intake. Anim. Feed Sci. Technol. 2011, 166–167, 302–307. [Google Scholar] [CrossRef]
- Feitz, A.; Schroder, I.; Phillips, F.; Coates, T.; Negandhi, K.; Day, S.; Luhar, A.; Bhatia, S.; Edwards, G.; Hrabar, S.; et al. The Ginninderra CH4 and CO2 release experiment: An evaluation of gas detection and quantification techniques. Int. J. Greenh. Gas Control 2018, 70, 202–224. [Google Scholar] [CrossRef]
- Paton-Walsh, C.; Smith, T.E.L.; Young, E.L.; Griffith, D.W.T.; Guarette, E.A. New emission factors for Australian vegetation fires measured using open-path Fourier transform infrared spectroscopy—Part 1: Methods and Australian temperate forest fires. Atmos. Chem. Phys. 2014, 14, 24. [Google Scholar] [CrossRef]
- Guerette, E.-A.; Paton-Walsh, C.; Desservettaz, M.; Smith, T.E.L.; Volkova, L.; Weston, C.J.; Meyer, C.P. Emissions of trace gases from Australian temperate forest fires: Emission factors and dependence on modified combustion efficiency. Atmos. Chem. Phys. 2018, 18, 19. [Google Scholar] [CrossRef]
- Griffith, D.W.T. Synthetic Calibration and Quantitative Analysis of Gas-Phase FT-IR Spectra. Appl. Spectrosc. 1996, 50, 59–70. [Google Scholar] [CrossRef]
- Griffith, D.W.T.; Deutscher, N.M.; Caldow, C.G.R.; Kettlewell, G.; Riggenbach, M.; Hammer, S. A Fourier transform infrared trace gas analyser for atmospheric applications. Atmos. Meas. Tech. Discuss. 2012, 5, 3717–3769. [Google Scholar] [CrossRef]
- Griffith, D.W.T.; Pöhler, D.; Schmitt, S.; Hammer, S.; Vardag, S.N.; Platt, U. Long open-path measurements of greenhouse gases in air using near-infrared Fourier transform spectroscopy. Atmos. Meas. Tech. 2018, 18, 14. [Google Scholar] [CrossRef]
- Rothman, L.S.; Jacquemart, D.; Barbe, A.; Chris Benner, D.; Birk, M.; Brown, L.R.; Carleer, M.R.; Chackerian, J.C.; Chance, K.; Coudert, L.H.; et al. The HITRAN 2004 molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transf. 2005, 96, 139–204. [Google Scholar] [CrossRef] [Green Version]
- Desservettaz, M.; Phillips, F.; Naylor, T.; Paton-Walsh, C.; Price, O.; Kirkwood, J. Air quality impacts of smoke from hazard reduction burns and domestic wood heating in western Sydney. Atmosphere 2019. Submitted. [Google Scholar]
- Simmons, J.; Paton-Walsh, C.; Phillips, F.; Naylor, T.; Guerette, É.-A.; Graham, J.; Keatley, T.; Burden, S.; Dominick, D.; Kirkwood, J.; et al. Understanding Spatial Variability of Air Quality in Sydney: Part 1—A Suburban Balcony Case Study. Atmosphere 2019, 10, 181. [Google Scholar] [CrossRef]
- Smith, T.E.L.; Wooster, M.J.; Tattaris, M.; Griffith, D.W.T. Absolute accuracy evaluation and sensitivity analysis of OP-FTIR NLS retrievals of CO2, CH4 and CO over concentrations ranging from those of ambient atmospheres to highly polluted plumes. Atmos. Meas. Tech. 2011, 4, 97–116. [Google Scholar] [CrossRef]
- CSIRO. Cape Grim Greenhouse Gas Data. Available online: www.csiro.au/en/Research/OandA/Areas/Assessing-our-climate/Greenhouse-gas-data (accessed on 15 March 2019).
- Kelly, B.F.; Iverach, C.P.; Lowry, D.; Fisher, R.E.; Frances, J.L.; Nisbet, E.G. Fugitive methane emissions from natural, urban, agricultural and energy-production landscapes of eastern Australia. In Proceedings of the EGU General Assembly 2015, Vienna, Austria, 12–17 April 2017. Geophysical Research Abstracts. [Google Scholar]
- Carroll, R.J.; Ruppert, D. The Use and Misuse of Orthogonal Regression in Linear Errors-in-Variables Models. Am. Stat. 1996, 50, 1–6. [Google Scholar]
- Wu, C.; Yu, J.Z. Evaluation of linear regression techniques for atmospheric applications: The importance of appropriate weighting. Atmos. Meas. Tech. 2018, 11, 1233–1250. [Google Scholar] [CrossRef]
- EPA. Wood Smoke Isn’t Good Smoke. Available online: https://www.epa.nsw.gov.au/your-environment/air/reducing-wood-smoke-emissions (accessed on 20 March 2019).
- Environment Protection Authority. Technical Report 1. Air Emissions Inventory for the Greater Metropolitan Region in NSW 2008; Environment Protection Authority: Sydney, Australia, 2012.
- Department of Environment and Energy, Australian Government. National Pollution Inventory; Australian Government: Canberra, Australia, 2018. Available online: www.npi.gov.au/npi-data (accessed on 12 October 2018).
- Elser, M.; El-Haddad, I.; Maasikmets, M.; Bozzetti, C.; Wolf, R.; Ciarelli, G.; Slowik, J.G.; Richter, R.; Teinemaa, E.; Hüglin, C.; et al. High contributions of vehicular emissions to ammonia in three European cities derived from mobile measurements. Atmos. Environ. 2018, 175, 210–220. [Google Scholar] [CrossRef]
- Bishop, G.A.; Peddle, A.M.; Stedman, D.H.; Zhan, T. On-Road Emission Measurements of Reactive Nitrogen Compounds from Three California Cities. Environ. Sci. Technol. 2010, 44, 3616–3620. [Google Scholar] [CrossRef]
- Transport NSW. Sydney Trains 2013 Standard Working Timetable, Rail Freight Services; Books 4&5; State Government NSW: Sydney, Australia, 2013.
- Abraham, J. Emissions from Ships Operating in the Sydney Greater Metropolitan Area; NSW Environment Protection Authority: Sydney, Australia, 2015. [Google Scholar]
Light Vehicles | Heavy Vehicles | Total Light | Total Heavy | |||
---|---|---|---|---|---|---|
North or East | South or West | North or East | South or West | |||
Week days | ||||||
* A6 | 19,779 | 19,779 | 2193 | 2193 | 39,558 | 4386 |
A44 | 149,760 | 155,226 | 15,676 | 18,541 | 304,986 | 34,217 |
** M4 | 67,702 | 64,908 | 8544 | 7493 | 132,609 | 16,037 |
Weekend | ||||||
* A6 | 18,037 | 18,037 | 712 | 712 | 36,074 | 1424 |
A44 | 118,203 | 141,734 | 3811 | 5464 | 259,937 | 9275 |
** M4 | 56,244 | 63,102 | 2970 | 2385 | 119,346 | 5355 |
Total Trips | ||||||
Week days | 237,241 | 239,913 | 26,413 | 28,227 | 477,153 | 266,325 |
Weekend | 192,484 | 222,873 | 7493 | 8561 | 415,357 | 16,054 |
Target Gas Species | Micro-Window Wavelength Limits (cm−1) | Interfering Species |
---|---|---|
* NH3 | 900–945, 955–995 | H2O |
CO, CO2, N2O | 2150–2280 | H2O |
CH4 | 3001–3140 | H2O |
Species | Instrument | Reference |
---|---|---|
NOx, NO2, NO | Teledyne T204 analyser | Teldyne API, San Diego, CA, USA |
CO | Teledyne T300 | Teldyne API, San Diego, CA, USA |
SO2 | Teldyne Model 100T | Teldyne API, San Diego, CA, USA |
PM2.5, PM10 | ThermoFisher 1405-DF TEOM | Thermofisher Scientific, Waltham, MA, USA 02451 |
Neph 450, 635, total | Ecotech, AURORA 3000 Integrated Nepholometer | Knoxfield Vic 3180, Australia |
Wind speed, direction | Met-One MET505 | Met-One, Grants Pass or 97526, USA |
Temperature, Humidity | Vaisala HMP155 | Vaisala, Helsinki, Finland |
Error Source | Relative Error (%) | |||||||
---|---|---|---|---|---|---|---|---|
CO2 | CO | CH4 | NH3 | |||||
Sys | Rand | Sys | Rand | Sys | Rand | Sys | Rand | |
Pressure (2 hPa) | 0.2 | 0.05 | 0.4 | 0.1 | 0.2 | 0.05 | 0.3 | 0.1 |
Temperature (3 °C) | 0.3 | 0.03 | 1.4 | 0.1 | 0.9 | 0.1 | 0.7 | 0.1 |
polynomial | 0.9 * | - | 0 * | - | 1.0 * | - | 1.0 | - |
FOV | 1.8 * | - | 5.4 * | - | 1.2 * | - | 1.4 | - |
Path-length | 0.25 | - | 0.25 | - | 0.25 | - | 0.25 | - |
HITRAN | 5 | - | 2 | - | 5 | - | 5 | - |
Spectrum fit | 0.30 | 1.0 | 1.0 | 13 | ||||
Total | 5.4 | 0.31 | 5.9 | 1.0 | 5.3 | 1.0 | 5.4 | 12.9 |
Target Gas Species | Background | RMS Noise | ** % Background | * Detection Limit |
---|---|---|---|---|
CO2 (ppmv) | ~400 | 0.7 | 0.2 | 2 ppmv |
CO (ppbv) | ~50 | ~2 | 4 | 6 ppbv |
CH4 (ppbv) | ~1820 | ~2 | 0.1 | 6 ppbv |
NH3 (ppbv) | ~2 | 0.3 | 15 | 1 ppbv |
Summer | NH3:CO ppbv:ppbv | r2 | N | NOx:CO ppbv:ppbv | r2 | N |
---|---|---|---|---|---|---|
all | 0.0197 ± 0.0002 | 0.63 | 2260 | 0.120 ± 0.001 | 0.73 | 1573 |
AM | 0.0180 ± 0.0003 | 0.68 | 461 | 0.154 ± 0.003 | 0.83 | 334 |
PM | 0.0219 ± 0.0004 | 0.62 | 533 | 0.0941 ± 0.0021 | 0.67 | 386 |
NE | 0.0167 ± 0.0007 | 0.51 | 488 | 0.147 ± 0.003 | 0.80 | 720 |
SE | 0.0146 ± 0.0004 | 0.60 | 988 | 0.100 ± 0.005 | 0.53 | 366 |
SW | 0.0112 ± 0.0004 | 0.57 | 473 | 0.101 ± 0.003 | 0.60 | 638 |
NW | 0.0109 ± 0.0005 | 0.53 | 380 | 0.127 ± 0.004 | 0.75 | 311 |
Weekend | 0.0213 ± 0.0004 | 0.55 | 640 | 0.0700 ± 0.0018 | 0.54 | 327 |
Weekdays | 0.0193 ± 0.0002 | 0.64 | 1620 | 0.125 ± 0.001 | 0.75 | 1246 |
Winter | ||||||
all | 0.0111 ± 0.0001 | 0.60 | 1971 | 0.132 ± 0.001 | 0.71 | 1650 |
AM | 0.0087 ± 0.0001 | 0.51 | 448 | 0.140 ± 0.002 | 0.69 | 390 |
PM | 0.0200 ± 0.0004 | 0.79 | 374 | 0.129 ± 0.003 | 0.82 | 344 |
NE | 0.0207 ± 0.0018 | 0.62 | 84 | 0.163 ± 0.016 | 0.58 | 78 |
SE | 0.0138 ± 0.0006 | 0.73 | 170 | 0.060 ± 0.008 | 0.32 | 132 |
SW | 0.0074 ± 0.0002 | 0.70 | 687 | 0.121 ± 0.003 | 0.77 | 585 |
NW | 0.0066 ± 0.0002 | 0.54 | 966 | 0.120 ± 0.003 | 0.66 | 858 |
Weekend | 0.0086 ± 0.0001 | 0.57 | 552 | 0.0984 ± 0.0013 | 0.7 | 514 |
Weekdays | 0.0122 ± 0.0001 | 0.63 | 1419 | 0.158 ± 0.001 | 0.78 | 1136 |
Location | Reference | Method; Duration | NH3:CO ppbv/ppbv | NH3:CO2 ppbv/ppmv | EF g kg−1 Fuel |
---|---|---|---|---|---|
Auburn | This work | OP-FTIR 34 weeks | 0.018–0.022 | 0.23 | 0.25 |
Auburn | [53] | GMR2008 Inventory | 0.015 | ||
Toronto | [19] | OP-FTIR over highway; 2 weeks | 0.023 | ||
San Francisco | [18] | On-road, roadside, QCL, days | 0.031 ± 0.005 | 0.49 ± 0.06 | |
Los Angeles | [18] | On-road, QCL, 3 days | 0.027 | 0.49 ± 0.06 | |
Princeton | [18] | On-road, roadside, QCL, 3 days | 0.029 ± 0.007 | ||
Californian South Coast Basin | [9] | Airborne | 0.031–0.038 | ||
California | [10] | Tailpipe | 0.46 | ||
Zurich, Switzerland | [55] | CRDS, On-road, 1 week | 0.212 | ||
Tartu, Estonia | [55] | CRDS, On-road, 1 week | 0.415 | ||
Tallinn, Estonia | [55] | CRDS, On-road, 1 week | 0.199 | ||
Houston | [15] | On-road 18 h Tunnel City Wide | 0.33 ± 0.05 0.27 ± 0.05 0.35 ± 0.04 | ||
Denver | [15] | On-road. Open path sensor 17 h | 0.40 ± 0.06 | ||
Beijing | [15] | On-road Open path sensor 53 h | 0.36 ± 0.05 | ||
Baoding China | [15] | On-road Open path sensor 11 h 2013 On-road 2014 | 0.51 ± 0.08 0.43 ± 0.07 | ||
Shijiazhuang | [15] | On-road, Open path sensor 7 h 2013 On-road 2014 | 0.48 ± 0.07 0.56 ± 0.08 | ||
Los Angeles | [27] | roadside | 0.49 ± 0.02 | ||
Denver | [27] | roadside | 0.38 ± 0.08 | ||
West Los Angeles | [56] | tailpipe | 0.061 | ||
San Francisco | [20] | road tunnel 1999 road tunnel 2006 | 0.34 ± 0.02 | 0.64 ± 0.04 0.40 ± 0.02 |
Summer | NH3:CO2 ppb:ppm | r2 | N |
---|---|---|---|
all | 0.088 ± 0.002 | 0.56 | 2664 |
WS > 0.5 | 0.094 ± 0.002 | 0.52 | 1866 |
AM | 0.091 ± 0.003 | 0.73 | 353 |
PM | 0.211 ± 0.012 | 0.52 | 307 |
Weekend | 0.082 ± 0.004 | 0.45 | 556 |
Weekday | 0.095 ± 0.002 | 0.53 | 1310 |
Weekend AM | 0.084 ± 0.004 | 0.78 | 108 |
Weekday AM | 0.09 ± 0.004 | 0.70 | 245 |
Winter | NH3:CO2 ppb:ppm | r2 | N |
all | 0.094 ± 0.002 | 0.56 | 2482 |
WS > 0.5 | 0.076 ± 0.002 | 0.51 | 1971 |
AM | 0.067 ± 0.003 | 0.53 | 448 |
PM | 0.213 ± 0.01 | 0.69 | 223 |
Weekend | 0.071 ± 0.003 | 0.52 | 552 |
Weekday | 0.077 ± 0.002 | 0.51 | 1419 |
Weekend AM | 0.06 ± 0.005 | 0.52 | 125 |
Weekday AM | 0.066 ± 0.003 | 0.53 | 323 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Phillips, F.A.; Naylor, T.; Forehead, H.; Griffith, D.W.T.; Kirkwood, J.; Paton-Walsh, C. Vehicle Ammonia Emissions Measured in An Urban Environment in Sydney, Australia, Using Open Path Fourier Transform Infra-Red Spectroscopy. Atmosphere 2019, 10, 208. https://doi.org/10.3390/atmos10040208
Phillips FA, Naylor T, Forehead H, Griffith DWT, Kirkwood J, Paton-Walsh C. Vehicle Ammonia Emissions Measured in An Urban Environment in Sydney, Australia, Using Open Path Fourier Transform Infra-Red Spectroscopy. Atmosphere. 2019; 10(4):208. https://doi.org/10.3390/atmos10040208
Chicago/Turabian StylePhillips, Frances A., Travis Naylor, Hugh Forehead, David W. T. Griffith, John Kirkwood, and Clare Paton-Walsh. 2019. "Vehicle Ammonia Emissions Measured in An Urban Environment in Sydney, Australia, Using Open Path Fourier Transform Infra-Red Spectroscopy" Atmosphere 10, no. 4: 208. https://doi.org/10.3390/atmos10040208
APA StylePhillips, F. A., Naylor, T., Forehead, H., Griffith, D. W. T., Kirkwood, J., & Paton-Walsh, C. (2019). Vehicle Ammonia Emissions Measured in An Urban Environment in Sydney, Australia, Using Open Path Fourier Transform Infra-Red Spectroscopy. Atmosphere, 10(4), 208. https://doi.org/10.3390/atmos10040208