Trend Analysis of Temperature and Precipitation Extremes during Winter Wheat Growth Period in the Major Winter Wheat Planting Area of China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Data
2.2. Temperature and Precipitation Data
2.3. Data Quality and Homogeneity
2.4. Indices of Extremes
2.5. Methods
2.5.1. Mann–Kendall Method
2.5.2. Trend Percentage and Stability
2.5.3. Sen’s Slope Estimator
3. Results
3.1. Trend Strengths in Extreme Temperature and Precipitation Indices
3.1.1. Percentage of the Trend Strengths
3.1.2. Spatial Distributions of Trend Strengths
3.2. Stability of Trends for the Extreme Indices
3.2.1. Stability of Trends in Extreme Temperature
3.2.2. Stability of Trends in Extreme Precipitation
3.3. Trend Magnitude
3.3.1. Trend Magnitude in Extreme Temperature
3.3.2. Trend Magnitude in Extreme Precipitation
3.4. Average Index Time Series
3.4.1. Extreme Temperature Indices
3.4.2. Extreme Precipitation Indices
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- IPCC. Climate Change 2013: The Physical Science Basis; Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T.F., Qin, D., Plattner, G.K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013. [Google Scholar]
- Easterling, D.R.; Evans, J.L.; Groisman, P.Y.; Karl, T.R.; Kunkel, K.E.; Ambenje, P. Observed variability and trends in extreme climate events: a brief review. Bull. Am. Meteor. Soc. 2000, 81, 417–426. [Google Scholar] [CrossRef]
- Ngo, N.S.; Horton, R.M. Climate change and fetal health: the impacts of exposure to extreme temperatures in New York City. Environ. Res. 2016, 144, 158–164. [Google Scholar] [CrossRef] [PubMed]
- Vogt, D.J.; Vogt, K.A.; Gmur, S.J.; Scullion, J.J.; Suntana, A.S.; Daryanto, S.; Sigurðardóttir, R. Vulnerability of tropical forest ecosystems and forest dependent communities to droughts. Environ. Res. 2016, 144, 27–38. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.X.; Fan, X.H.; Qin, Z.D.; Wang, M.B. Change trends of temperature and precipitation in the Loess Plateau Region of China, 1961–2010. Glob. Planet. Chang. 2012, 92, 138–147. [Google Scholar] [CrossRef]
- Wu, C.; Huang, G.; Yu, H.; Chen, Z.; Ma, J. Spatial and temporal distributions of trends in climate extremes of the Feilaixia catchment in the upstream area of the Beijiang River Basin, South China. Int. J. Climatol. 2014, 34, 3161–3178. [Google Scholar] [CrossRef]
- Shi, J.; Cui, L.; Wen, K.; Tian, Z.; Wei, P.; Zhang, B. Trends in the consecutive days of temperature and precipitation extremes in China during 1961–2015. Environ. Res. 2018, 161, 381–391. [Google Scholar] [CrossRef]
- Du, H.; Xia, J.; Zeng, S. Regional frequency analysis of extreme precipitation and its spatio-temporal characteristics in the Huai River Basin, China. Nat. Hazards 2014, 70, 195–215. [Google Scholar] [CrossRef]
- Fischer, T.; Gemmer, M.; Lüliu, L.; Buda, S. Temperature and precipitation trends and dryness/wetness pattern in the Zhujiang River Basin, South China, 1961–2007. Quat. Int. 2011, 244, 138–148. [Google Scholar] [CrossRef]
- Guan, Y.H.; Zhang, X.C.; Zheng, F.L.; Wang, B. Trends and variability of daily temperature extremes during 1960–2012 in the Yangtze River Basin, China. Glob. Planet. Chang. 2015, 124, 79–94. [Google Scholar] [CrossRef]
- Wang, W.; Shao, Q.; Peng, S.; Zhang, Z.; Xing, W.; An, G.; Yong, B. Spatial and temporal characteristics of changes in precipitation during 1957–2007 in the Haihe River basin, China. Stoch. Environ. Res. Risk Assess. 2011, 25, 881–895. [Google Scholar] [CrossRef]
- Wang, W.G.; Shao, Q.X.; Yang, T.; Peng, S.Z.; Yu, Z.B.; Taylor, J.; Xing, W.Q.; Zhao, C.P.; Sun, F.C. Changes in daily temperature and precipitation extremes in the Yellow River Basin, China. Stoch. Environ. Res. Risk Assess. 2013, 27, 401–421. [Google Scholar] [CrossRef]
- Zhang, Q.; Peng, J.; Xu, C.Y.; Singh, V.P. Spatiotemporal variations of precipitation regimes across Yangtze River Basin, China. Theor. Appl. Climatol 2014, 115, 703–712. [Google Scholar] [CrossRef]
- Ye, J.S. Trend and variability of China’s summer precipitation during 1955–2008. Int. J. Climatol. 2014, 34, 559–566. [Google Scholar] [CrossRef]
- Hochman, Z.; Gobbett, D.L.; Horan, H. Climate trends account for stalled wheat yields in Australia since 1990. Glob. Chang. Biol. 2017, 23, 2071–2081. [Google Scholar] [CrossRef]
- Lobell, D.B.; Hammer, G.L.; McLean, G.; Messina, C.; Roberts, M.J.; Schlenker, W. The critical role of extreme heat for maize production in the United States. Nat. Clim. Chang. 2013, 3, 497–501. [Google Scholar] [CrossRef]
- Xiao, D.; Tao, F.; Liu, Y.; Shi, W.; Wang, M.; Liu, F.; Zhang, S.; Zhu, Z. Observed changes in winter wheat phenology in the North China Plain for 1981–2009. Int. J. Biometeorol. 2013, 57, 275–285. [Google Scholar] [CrossRef]
- Högy, P.; Poll, C.; Marhan, S.; Kandeler, E.; Fangmeier, A. Impacts of temperature increase and change in precipitation pattern on crop yield and yield quality of barley. Food Chem. 2013, 136, 1470–1477. [Google Scholar] [CrossRef] [PubMed]
- Wheeler, T.R.; Craufurd, P.Q.; Ellis, R.H.; Porter, J.R.; Prasad, P.V. Temperature variability and the yield of annual crops. Agric. Ecosyst. Environ. 2000, 82, 159–167. [Google Scholar] [CrossRef]
- Rosenzweig, C.; Iglesias, A.; Yang, X.B.; Epstein, P.R.; Chivian, E. Climate change and extreme weather events; implications for food production, plant diseases, and pests. Glob. Chang. Hum. Health 2001, 2, 90–104. [Google Scholar] [CrossRef]
- Piao, S.; Ciais, P.; Huang, Y.; Shen, Z.; Peng, S.; Li, J.; Zhou, L.; Liu, H.; Ma, Y.; Ding, Y.; Friedlingstein, P.; Liu, C.; Tan, K.; Yu, Y.; Zhang, T.; Fang, J. The impacts of climate change on water resources and agriculture in China. Nature 2010, 467, 43–51. [Google Scholar] [CrossRef] [PubMed]
- Revadekar, J.V.; Preethi, B. Statistical analysis of the relationship between summer monsoon precipitation extremes and foodgrain yield over India. Int. J. Climatol. 2012, 32, 419–429. [Google Scholar] [CrossRef]
- National Bureau of Statistics of China (NBSC). China Statistical Yearbook; China Statistics Press: Beijing, China. Available online: http://www.stats.gov.cn/tjsj/ndsj/ (accessed on 20 April 2019).
- Li, S.; Tim, W.; Andrew, C.; Lin, E.; Ju, H.; Xu, Y. The observed relationships between wheat and climate in China. Agric. Forest Meteorol. 2010, 150, 1412–1419. [Google Scholar] [CrossRef]
- Qin, X.L.; Zhang, F.X.; Liu, C.; Yu, H.; Cao, B.G.; Tian, S.Q.; Liao, Y.C.; Siddique, K.H.M. Wheat yield improvements in China: Past trends and future directions. Field Crops Res. 2015, 177, 117–124. [Google Scholar] [CrossRef]
- Sein, K.K.; Chidthaisong, A.; Oo, K.L. Observed Trends and Changes in Temperature and Precipitation Extreme Indices over Myanmar. Atmosphere 2018, 9, 477. [Google Scholar] [CrossRef]
- Zhang, X.B.; Feng, Y. RClimDex (1.0) User Manual. Available online: http://etccdi.pacificclimate.org/software.shtml (accessed on 10 September 2004).
- Tian, J.Y.; Liu, J.; Wang, J.H.; Li, C.Z.; Nie, H.J.; Yu, F.L. Trend analysis of temperature and precipitation extremes inmajor grain producing area of China. Int. J. Climatol. 2017, 37, 672–687. [Google Scholar] [CrossRef]
- Wang, B.L.; Zhang, M.J.; Wei, J.L.; Wang, S.J.; Li, S.S.; Ma, Q.; Li, X.F.; Pan, S.K. Changes in extreme events of temperature and precipitation over Xinjiang, northwest China, during 1960–2009. Quat. Int. 2013, 298, 141–151. [Google Scholar] [CrossRef]
- Alexander, L.V.; Zhang, X.; Peterson, T.C.; Caesar, J.; Gleason, B.; Klein Tank, A.M.G.; Haylock, M.; Collins, D.; Trewin, B.; Rahimzadeh, F.; et al. Global observed changes in daily climate extremes of temperature and precipitation. J. Geophys. Res. 2006, 111, D05109. [Google Scholar] [CrossRef]
- Wang, X.L.; Wen, Q.H.; Wu, Y. Penalized maximal t test for detecting undocumented mean change in climate data series. J. Appl. Meteorol. Climatol. 2007, 46, 916–931. [Google Scholar] [CrossRef]
- Wang, L.X.; Feng, Y. RHtests V4 User Manual. Available online: http://etccdi.pacifcclimate.org/software.shtml (accessed on 1 July 2013).
- You, Q.; Kang, S.; Aguilar, E.; Yan, Y. Changes in daily extremes in the eastern and central Tibetan Plateau during 1961–2005. J. Geophys. Res. Atm. 2008, 113, 1–17. [Google Scholar] [CrossRef]
- Peterson, T.C.; Manton, M.J. Monitoring changes in climate extremes: a tale of international collaboration. Bull. Am. Meteorol. Soc. 2008, 89, 1266–1271. [Google Scholar] [CrossRef]
- Almazroui, M.; Islam, M.N.; Dambul, R.; Jones, P.D. Trends of temperature extremes in Saudi Arabia. Int. J. Climatol. 2014, 34, 808–826. [Google Scholar] [CrossRef]
- Casanueva, V.A.; Rodríguez, P.C.; Frías Domínguez, M.D.; González, R.N. Variability of extreme precipitation over Europe and its relationships with teleconnection patterns. Hydrol. Earth Syst. Sci. 2013, 10, 12331–12371. [Google Scholar] [CrossRef]
- Halimatou, A.T.; Kalifa, T.; Kyei-Baffour, N. Assessment of changing trends of daily precipitation and temperature extremes in Bamako and Ségou in Mali from 1961–2014. Weather Clim. Extrem. 2017, 18, 8–16. [Google Scholar] [CrossRef]
- Kendall, M.G. Rank Correlation Methods, 4th ed.; Charles Griffn: London, UK, 1975. [Google Scholar]
- Mann, H.B. Nonparametric tests against trend. Econometrica 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Sayemuzzaman, M.; Jha, M.K. Seasonal and annual precipitation time series trend analysis in North Carolina, United States. Atmos. Res. 2014, 137, 183–194. [Google Scholar] [CrossRef]
- Salman, S.A.; Shahid, S.; Ismail, T.; Chung, E.S.; Al-Abadi, A.M. Long-term trends in daily temperature extremes in iraq. Atmos. Res. 2017, 198. [Google Scholar] [CrossRef]
- Wang, L.N.; Shao, Q.X.; Chen, X.H.; Li, Y.; Wang, D.G. Flood changes during the past 50 years in Wujiang River, South China. Hydrol. Process. 2012, 26, 3561–3569. [Google Scholar] [CrossRef]
- Wang, W.; Wei, J.; Shao, Q.; Xing, W.; Yong, B.; Yu, Z.; Jiao, X. Spatial and temporal variations in hydro-climatic variables and runoff in response to climate change in the Luanhe River basin, China. Stoch. Environ. Res. Risk Assess. 2015, 29, 1117–1133. [Google Scholar] [CrossRef]
- Lupikasza, E. Spatial and temporal variability of extreme precipitation in Poland in the period 1951–2006. Int. J. Climatol. 2010, 30, 991–1007. [Google Scholar] [CrossRef]
- Rapp, J. Konzeption, Problematik und Ergebnisse Klimatologischer Trendanalysen für Europa und Deutschland (Berichte des Deutschen Wetterdienstes 212); Deutscher Wetterdienst: Offenbach, Germany, 2000; pp. 1–153. [Google Scholar]
- Sen, P.K. Estimates of the regression coefficient based on Kendall’s tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Dinpashoh, Y.; Jhajharia, D.; Fakheri-Fard, A.; Singh, V.P.; Kahya, E. Trends in reference crop evapotranspiration over Iran. J. Hydrol. 2011, 399, 422–433. [Google Scholar] [CrossRef]
- Kousari, M.R.; Asadi Zarch, M.A.; Ahani, H.; Hakimelahi, H. A survey of temporal and spatial reference crop evapotranspiration trends in Iran from 1960 to 2005. Clim. Chang. 2013, 120, 277–298. [Google Scholar] [CrossRef]
- Shan, N.; Shi, Z.; Yang, X.; Zhang, X.; Guo, H.; Zhang, B.; Zhang, Z. Trends in potential evapotranspiration from 1960 to 2013 for a desertification-prone region of China. Int. J. Climatol. 2015, 36, 3434–3445. [Google Scholar] [CrossRef]
- Asseng, S.; Foster, I.; Turner, N.C. The impact of temperature variability on wheat yields. Glob. Chang. Biol. 2011, 17, 997–1012. [Google Scholar] [CrossRef]
- Asseng, S.; Ewert, F.; Martre, P.; Rötter, R.P.; Lobell, D.B.; Cammarano, D.; Kimball, B.A.; Ottman, M.J.; Wall, G.W.; White, J.W.; et al. Rising temperatures reduce global wheat production. Nat. Clim. Chang. 2015, 5, 37–64. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2007: The Physical Science Basis; Contribution of Working Group 1 to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M., Miller, H.L., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2007. [Google Scholar]
- Li, J.; Dong, W.J.; Yang, Z.W. Changes of climate extremes of temperature and precipitation in summer in eastern China associated with changes in atmospheric circulation in East Asia during 1960–2008. Chin. Sci. Bull. 2012, 57, 1856–1861. [Google Scholar] [CrossRef] [Green Version]
- Liu, B.; Xu, M.; Henderson, M.; Qi, Y. Observed trends of precipitation amount, frequency, and intensity in China, 1960–2000. J. Geophys. Res. Atmos. 2005, 110, D08103. [Google Scholar] [CrossRef]
- Chen, A.; He, X.; Guan, H.; Zhang, X. Variability of seasonal precipitation extremes over China and their associations with large-scale ocean-atmosphere oscillations. Int. J. Climatol. 2018, 39, 613–628. [Google Scholar] [CrossRef]
- Wu, S.; Yin, Y.; Zheng, D.; Yang, Q. Moisture conditions and climate trends in China during the period 1971–2000. Int. J. Climatol. 2006, 26, 193–206. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.Q.; Zhou, L. Observed trends in extreme precipitation events in China during 1961–2001 and the associated changes in large-scale circulation. Geophys. Res. Lett. 2005, 32, L09707. [Google Scholar] [CrossRef]
- He, Y.; Ye, J.; Yang, X. Analysis of the spatio-temporal patterns of dry and wet conditions in the Huai River Basin using the standardized precipitation index. Atmos. Res. 2015, 166, 120–128. [Google Scholar] [CrossRef] [Green Version]
Indices | Name | Definitions | Units |
---|---|---|---|
Temperature | |||
FD0 | Frost days | WWGP (winter wheat growth period) count when TN (daily minimum) < 0 °C | days |
GSL | Growing season length | WWGP (1st Jan to 31st Dec in NH, 1st July to 30th June in SH) count between the first span of at least six days with TG (daily average) > 5 °C and first span after July 1 (January 1 in SH) of six days with TG < 5 °C | days |
TXx | Max Tmax | Monthly maximum value of daily maximum temp | °C |
TNn | Min Tmin | Monthly minimum value of daily minimum temp | °C |
TN10p | Cool nights | Percentage of days when TN < 10th percentile of October 1971 to May 2001 1 | % |
TX10p | Cool days | Percentage of days when TX (daily maximum) < 10th percentile of October 1971 to May 2001 | % |
TN90p | Warm nights | Percentage of days when TN > 90th percentile of October 1971 to May 2001 | % |
TX90p | Warm days | Percentage of days when TX > 90th percentile of October 1971 to May 2001 | % |
Precipitation | |||
Rx1day | Max one-day precipitation amount | Monthly maximum one-day precipitation | mm |
Rx5day | Max five-day precipitation amount | Monthly maximum consecutive five-day precipitation | mm |
SDII | Simple daily intensity index | WWGP total precipitation divided by the number of wet days (defined as RR (daily precipitation) >= 1.0mm) in the year | mm/day |
R20mm | Number of days above 20 mm | WWGP count of days when RR > = 20mm | days |
CDD | Consecutive dry days | Maximum number of consecutive days with RR < 1mm | days |
R95pTOT | Very wet days | WWGP total PRCP when RR > 95th percentile | mm |
PRCPTOT | WWGP total wet day precipitation | WWGP total PRCP in wet days | mm |
Trend Strengths | FD0 | GSL | TXx | TNn | TN10p | TX10p | TN90p | TX90p |
---|---|---|---|---|---|---|---|---|
Very Strong Upward Trends | 0(0) 1 | 13(7) | 2(5) | 35(18) | 0(0) | 0(0) | 68(41) | 48(32) |
Strong Upward Trends | 0(0) | 0(0) | 0(0) | 1(1) | 0(0) | 0(0) | 0(1) | 1(0) |
Weak Upward Trends | 0(0) | 1(1) | 2(1) | 1(3) | 0(0) | 0(0) | 0(0) | 1(0) |
Very Strong Downward Trends | 95(73) | 20(42) | 0(0) | 0(0) | 83(49) | 52(19) | 0(2) | 0(1) |
Strong Downward Trends | 0(2) | 0(0) | 0(0) | 0(0) | 2(3) | 3(0) | 0(0) | 0(0) |
Weak Downward Trends | 0(4) | 0(1) | 0(0) | 0(0) | 4(8) | 0(1) | 0(0) | 0(0) |
Insignificant Trends | 5(21) | 66(50) | 96(94) | 62(78) | 11(40) | 45(79) | 32(56) | 49(66) |
Total | 100(100) | 100(100) | 100(100) | 100(100) | 100(100) | 100(100) | 100(100) | 100(100) |
Stability of Trends | FD0 | GSL | TXx | TNn | TN10p | TX10p | TN90p | TX90p |
---|---|---|---|---|---|---|---|---|
Strongly Stable Upward Trends | 0(0) 1 | 4(3) | 2(2) | 27(10) | 0(0) | 0(0) | 48(23) | 35(13) |
Stable Upward Trends | 0(0) | 10(5) | 1(3) | 11(11) | 0(0) | 0(0) | 19(19) | 15(19) |
Strongly Stable Downward Trends | 91(63) | 16(39) | 1(0) | 0(0) | 78(41) | 35(10) | 0(1) | 0(0) |
Stable Downward Trends | 3(14) | 4(4) | 0(1) | 0(0) | 9(16) | 19(11) | 0(1) | 0(1) |
Unstable Trends | 5(23) | 66(50) | 96(94) | 62(79) | 13(42) | 45(79) | 32(56) | 49(66) |
Total | 100(100) | 100(100) | 100(100) | 100(100) | 100(100) | 100(100) | 100(100) | 100(100) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nie, H.; Qin, T.; Yang, H.; Chen, J.; He, S.; Lv, Z.; Shen, Z. Trend Analysis of Temperature and Precipitation Extremes during Winter Wheat Growth Period in the Major Winter Wheat Planting Area of China. Atmosphere 2019, 10, 240. https://doi.org/10.3390/atmos10050240
Nie H, Qin T, Yang H, Chen J, He S, Lv Z, Shen Z. Trend Analysis of Temperature and Precipitation Extremes during Winter Wheat Growth Period in the Major Winter Wheat Planting Area of China. Atmosphere. 2019; 10(5):240. https://doi.org/10.3390/atmos10050240
Chicago/Turabian StyleNie, Hanjiang, Tianling Qin, Hanbo Yang, Juan Chen, Shan He, Zhenyu Lv, and Zhenqian Shen. 2019. "Trend Analysis of Temperature and Precipitation Extremes during Winter Wheat Growth Period in the Major Winter Wheat Planting Area of China" Atmosphere 10, no. 5: 240. https://doi.org/10.3390/atmos10050240
APA StyleNie, H., Qin, T., Yang, H., Chen, J., He, S., Lv, Z., & Shen, Z. (2019). Trend Analysis of Temperature and Precipitation Extremes during Winter Wheat Growth Period in the Major Winter Wheat Planting Area of China. Atmosphere, 10(5), 240. https://doi.org/10.3390/atmos10050240