Analysis of Lightning and Precipitation Activities in Three Severe Convective Events Based on Doppler Radar and Microwave Radiometer over the Central China Region
Abstract
:1. Introduction
2. Data and Method
3. Case Study
3.1. Introduction of Cases
3.2. Relationship of Lightning and Precipitation
3.2.1. Temporal Distribution
3.2.2. Spatial Distribution
3.3. Correlations between Lightning Flashes and Radar Echo Intensity
3.4. Environmental Characteristics
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Doswell, C.A., III. Severe convective storms—An overview. In Meteorological Monograph; Springer Nature Switzerland AG: Basel, Switzerland, 2001; p. 3. [Google Scholar]
- Lang, T.J.; Rutledge, S.A. Relationships between Convective Storm Kinematics, Precipitation, and Lightning. Mon. Weather Rev. 2002, 130, 2492–2506. [Google Scholar] [CrossRef]
- MacGorman, D.R.; Rust, W.D.; Schuur, T.J.; Biggerstff, M.I.; Straka, J.M.; Ziegler, C.L.; Mansell, E.R.; Bruning, E.C.; Kuhlman, K.M.; Lund, N.R.; et al. TELEX the thunderstorm electrification and lightning experiment. Bull. Amer. Meteor. Soc. 2008, 89, 997–1013. [Google Scholar] [CrossRef]
- Orville, R.E.; Silver, A.C. Lightning ground flash density in the contiguous United States: 1992–1995. Mon. Weather Rev. 1997, 125, 631–638. [Google Scholar] [CrossRef]
- Brooks, H.E. Severe thunderstorms and climate change. Atmos. Res. 2013, 123, 129–138. [Google Scholar] [CrossRef]
- Reale, M.; Lionello, P. Synoptic climatology of winter intense precipitation events along the Mediterranean coasts. Nat. Hazards Earth Syst. Sci. 2013, 13, 1707–1722. [Google Scholar] [CrossRef]
- Púčik, T.; Groenemeijer, P.; Rýva, D.; Kolář, M. Proximity soundings of severe and nonsevere thunderstorms in central Europe. Mon. Weather Rev. 2015, 143, 4805–4821. [Google Scholar] [CrossRef]
- Takahashi, T.; Tetsuya, K. Different precipitation mechanisms produce heavy rain with and without lightning in Japan. J. Meteor. Soc. Jpn. 2015, 93, 245–263. [Google Scholar] [CrossRef]
- Wu, F.; Cui, X.P.; Zhang, D.L.; Qiao, L. The relationship of lightning activity and short-duration rainfall events during warm seasons over the Beijing metropolitan region. Atmos. Res. 2017, 195, 31–43. [Google Scholar] [CrossRef]
- Xia, R.; Zhang, D.L.; Wang, B. A 6-yr cloud-to-ground lightning climatology and its relationship to rainfall over central and eastern China. J. Appl. Meteor. Climatol. 2015, 54, 2443–2460. (In Chinese) [Google Scholar] [CrossRef]
- Xie, Y.R.; Wu, J.; Liu, X.T.; Zhang, T.F.; Xie, Y.J.; Xu, Y.J.; Zhao, D.M. Characteristics of cloud-to-ground lightning activity in hailstorms over Yunnan Province. J. Atmos. Sol.-Terr. Phy. 2015, 136, 2–7. [Google Scholar] [CrossRef]
- Qie, X.; Yu, Y.; Wang, H.B.; Zhang, C.H. Analyses on some features of ground flashes in Chinese inland Plateau. Plateau Meteorol. 2001, 20, 395–401. (In Chinese) [Google Scholar]
- Xu, W.; Adler, R.F.; Wang, N.Y. Combining satellite infrared and lightning information to estimate warm-season convective and stratiform rainfall. J. Appl. Meteorol. Climatol. 2014, 53, 180–199. [Google Scholar] [CrossRef]
- Xu, S.Z.; Wei, H.H. Some thoughts on the weather forecast of severe convective storms. Torrential Rain Disasters 2016, 35, 197–202. (In Chinese) [Google Scholar]
- Zhao, S.; Gao, G.; Huang, D.P. Characteristics of meteorological disaster losses in China from 2004 to 2013. J. Meteorol. Environ. 2017, 33, 101–107. [Google Scholar]
- Williams, E.R.; Boldi, B.; Matlin, A.; Weber, M.; Hodanish, S.; Sharp, D.; Goodman, S.; Raghavan, R.; Buechler, D. The behavior of total lightning activity in severe Florida thunderstorms. Atmos. Res. 1999, 51, 245–265. [Google Scholar] [CrossRef] [Green Version]
- Xu, W.; Zipser, E.J.; Liu, C.; Jiang, H. On the relationships between lightning frequency and thundercloud parameters of regional precipitation systems. J. Geophys. Res. 2010, 115, D12203. [Google Scholar] [CrossRef]
- Zhou, Y.J.; Qie, X.S.; Soula, S.A. Study of the relationship between cloud-to-ground lightning and precipitation in the convective weather system in China. Ann. Geophys. 2002, 20, 107–113. [Google Scholar] [CrossRef]
- Gungle, B.; Krider, E.P. Cloud-to-ground lightning and surface rainfall in warm-season Florida thunderstorms. J. Geophys. Res. 2006, 111. [Google Scholar] [CrossRef]
- Holle, R.L.; Watson, A.I.; López, R.E.; MacGorman, D.R.; Ortiz, R.; Otto, W.D. The life cycle of lightning and severe weather in a 3–4 June 1985 PRE-STORM mesoscale convective system. Mon. Weather Rev. 1994, 122, 1798–1808. [Google Scholar] [CrossRef]
- Makowski, J.A.; MacGorman, D.R.; Biggerstaff, M.I.; Beasley, W.H. Total lightning characteristics relative to radar and satellite observations of Oklahoma mesoscale convective systems. Mon. Weather Rev. 2013, 141, 1593–1611. [Google Scholar] [CrossRef]
- Rivas, S.L.; Pablo, F.D.; Diez, E.G. Relationship between convective precipitation and cloud-to-ground lightning in the Iberian Peninsula. Mon. Weather Rev. 2001, 129, 2998–3003. [Google Scholar]
- Piepgrass, M.V.; Krider, E.P.; Moore, C.B. Lightning and surface rainfall during Florida thunderstorms. J. Geophys. Res. 1982, 87, 11193–11201. [Google Scholar] [CrossRef]
- Wang, K.Y.; Liao, S.A. Lightning, radar reflectivity, infrared brightness temperature, and surface rainfall during the 2–4 July 2004 severe convective system over Taiwan area. J. Geophys. Res. 2006, 111, D05206. [Google Scholar] [CrossRef]
- Soula, S.; Chauzy, S. Some aspects of the correlation between lightning and rain activities in thunderstorms. Atmos. Res. 2000, 56, 355–373. [Google Scholar] [CrossRef]
- Carey, L.D.; Murphy, M.J.; McCormick, T.L.; Demetriades, N. Lightning location relative to storm structure in a leading-line, trailing-stratiform mesoscale convective system. J. Geophys. Res. 2005, 110, 1–23. [Google Scholar] [CrossRef]
- Carey, L.D.; Buffalo, K.M. Environmental control of cloud-to-ground lightning polarity in severe storms. Mon. Weather. Rev. 2007, 135, 1327–1353. [Google Scholar] [CrossRef]
- MacGorman, D.R.; Burgess, D.W. Positive cloud-to-ground lightning in tornadic storms and hailstorms. Mon. Weather Rev. 1994, 122, 1671–1697. [Google Scholar] [CrossRef]
- Rutledge, S.A.; MacGorman, D.R. Cloud-to-ground lightning activity in the 10–11 June 1985 Mesoscale convective system observed during the Oklahoma-Kansas Pre-storm project. Mon. Weather Rev. 1988, 116, 1393–1408. [Google Scholar] [CrossRef]
- Carey, L.D.; Petersen, W.A.; Rutledge, S.A. Evolution of cloud-to-ground lightning and storm structure in the Spencer, South Dakota, tornadic supercell of 30 May 1998. Mon. Weather Rev. 2003, 131, 1811–1831. [Google Scholar] [CrossRef]
- Ding, Z.Y.; Wang, N. Analyses on intensity difference and its causes of short-term heavy rainfall and hail in two squall line process. J. Meteorol. Sci. 2015, 35, 83–92. (In Chinese) [Google Scholar] [CrossRef]
- Steiger, S.M.; Orville, R.E.; Carey, L.D. Total lightning signatures of thunderstorm intensity over North Texas, PartⅡ: Mesoscale convective systems. Mon. Weather Rev. 2007, 135, 3303–3324. [Google Scholar] [CrossRef]
- Knupp, K.R.; Peach, S.; Goodman, S. Variations in cloud-to-ground lightning characteristics among three adjacent tornadic supercell storms over the Tennesee valley region. Mon. Weather Rev. 2003, 131, 172–188. [Google Scholar] [CrossRef]
- Gilmore, M.S.; Wicker, L.J. Influences of the local environment on supercell cloud-to-ground lightning, radar characteristics, and severe weather on 2 June 1995. Mon. Weather Rev. 2002, 130, 2349–2472. [Google Scholar] [CrossRef]
- Cetrone, J.; Houze, R.A. Leading and trailing anvil clouds of West African squall lines. J. Atmos. Sci. 2011, 68, 1114–1123. [Google Scholar] [CrossRef]
- Lund, N.R.; MacGorman, D.R.; Schuur, T.J.; Krehbiel, W.R.; Hamlin, T.; Straka, J.M.; Biggerstaff, M.I. Relationships between lightning location and polarimetric radar signatures in a small mesoscale convective system. Mon. Weather Rev. 2009, 137, 4151–4170. [Google Scholar] [CrossRef]
- Chan, P.W. Performance and application of a multi-wavelength, ground-based microwave radiometer in intense convective weather. Meteorol. Z. 2009, 18, 253–265. [Google Scholar] [CrossRef]
- Xu, G.; Ware, R.; Zhang, W.; Feng, G.; Liao, K.; Liu, Y. Effect of off-zenith observations on reducing the impact of precipitation on ground-based microwave radiometer measurement accuracy. Atmos. Res. 2014, 140, 85–94. [Google Scholar] [CrossRef]
- Knupp, K.; Ware, R.; Cimini, D.; Vandenberghe, F.; Vivekanandan, J.; Westwater, E.; Coleman, T. Ground-based passive microwave profiling during dynamic weather conditions. J. Atmos. Oceanic Technol. 2009, 26, 1057–1073. [Google Scholar] [CrossRef]
- Gultepe, I.; Zhou, B.; Milbrandt, J. A review on ice fog measurements and monitoring. Atmos. Res. 2015, 151, 2–19. [Google Scholar]
- Madhulatha, A.; Rajeevan, M.; Ratnam, M.V.; Bhate, J.; Naidu, C.V. Nowcasting severe convective activity over southeast India using ground-based microwave radiometer observations. J. Geophys. Res. 2013, 118, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Serke, D.; Hall, E.; Bognar, J.; Jordan, A.; Abdo, S.; Baker, K.; Seite, T.; Nelson, M.; Ware, R.; McDonough, F.; et al. Supercooled liquid water content profiling case studies with a new vibrating wire sonde compared to a ground-based microwave radiometer. Atmos. Res. 2014, 149, 77–87. [Google Scholar] [CrossRef] [Green Version]
- Xie, X.L.; Liu, L.P. Retrieval of liquid water content profiles in mixed and rainy stratus clouds by combing cloud radar and microwave radiometer. Torrential Rain Disasters 2016, 35, 1–9. (In Chinese) [Google Scholar]
- Wang, G.; Wang, L. Temporal and spatial distribution of short-time heavy rain of Beijing in summer. Torrential Rain Disasters 2013, 32, 276–279. (In Chinese) [Google Scholar]
- Crum, T.D.; Alberty, R.L.; Burgess, D.W. Recoding, Archiving, and Using WSR-88D Data. Bull. Am. Meteor. Soc. 1993, 74, 645–653. [Google Scholar] [CrossRef]
- Zhu, X.Y.; Zhu, J.J. New Generation Weather Radar Network in China. Meteor. Sci. Tech. 2004, 32, 255–257. (In Chinese) [Google Scholar]
- Schultz, C.J.; Petersen, W.A.; Carey, L.D. Preliminary development and evaluation of lightning jump algorithms for the real-time detection of severe weather. J. Appl. Meteor. Climatol. 2009, 48, 2543–2563. [Google Scholar] [CrossRef]
- Crane, R.K. Automatic cell detection and tracking. IEEE Trans. Geosci. Eletron. 1979, 17, 250–262. [Google Scholar] [CrossRef]
- Dixon, M.; Wiener, G. TITAN: Thunderstorm Identification, Tracking, Analysis, and Nowcasting—A Radar-based Methodology. J. Atmos. Ocean. Technol. 1993, 10, 785–797. [Google Scholar] [CrossRef]
- Xu, S.Z.; Liu, L.C.; Jiang, H.R. Analysis on characteristics on the calamity of severe convective storm in Hubei Province. J. Catastr. 2004, 19, 1–5. (In Chinese) [Google Scholar]
- Meteorology Glossary, American Meteorological Society Home Page. Available online: http://glossary.ametsoc.org/wiki/Convective_available_potential_energy (accessed on 2 September 2018).
- Koutroulis, A.G.; Grillakis, M.G.; Tsanis, I.K.; Kotroni, V.; Lagouvardos, K. Lightning activity, rainfall and flash flooding-occasional or interrelated events? A case study in the island of Crete. Nat. Hazards Earth Syst. Sci. 2012, 12, 881–891. [Google Scholar] [CrossRef]
- Xiao, Y.J.; Ma, Z.Y.; Li, Z.H. Advanced algorithms of ET, VIL and VIL density for the CINRAD. Torrential Rain Disasters 2009, 28, 210–214. (In Chinese) [Google Scholar]
- Saunders, C.P.R.; Keith, W.D.; Mitzeva, R.P. The effect of liquid on thunderstorm charging. J. Geophys. Res. 1991, 96, 11007–11017. [Google Scholar] [CrossRef]
- Sun, J.; Shi, Z.; Chai, J.; Xu, G.R.; Niu, B. Effects of Mixed Phase Microphysical Process on Precipitation in a Simulated Convective Cloud. Atmosphere 2016, 7, 97. [Google Scholar] [CrossRef]
- Baker, M.B.; Dash, J.G. Mechanism of charge transfer between colliding ice particles in thunderstorms. J. Geophys. Res. 1994, 99, 10621–10626. [Google Scholar] [CrossRef] [Green Version]
- Petersen, W.A.; Rutledge, S.A. Regional variability in tropical convection: Observations from TRMM. J. Clim. 2001, 14, 3566–3586. [Google Scholar] [CrossRef]
- Shi, Z.; Tan, Y.; Liu, Y.; Liu, J.; Lin, X.T.; Wang, M.Y.; Luan, J. Effects of relative humidity on electrification and lightning discharges in thunderstorms. Terr. Atmos. Ocean. Sci. 2018, 29, 695–708. [Google Scholar] [CrossRef] [Green Version]
- Xie, Y.R.; Qie, X.S.; Guo, F.X.; Marcia, B. Numerical simulation of the effect of liquid water content and ice crystal concentration on lightning flash frequency. Plateau Meteorol. 2005, 24, 588–603. (In Chinese) [Google Scholar]
- Sun, J.; Cai, R.; Chai, J.; Xu, G.R.; Gou, A.N. A preliminary study on estimation of rainfall in convective weather system by using lightning location system and ground microwave radiometers retrivals. J. Arid Meteorol. 2018, 36, 438–446. (In Chinese) [Google Scholar]
Observation Date | 24 h Accumulative Precipitation | CG Flash Amount | Ratio of +CG Flashes | CAPE | Sounding Site | |
---|---|---|---|---|---|---|
Case 1 | 14−15 May 2015 | 180 mm | 61330 | 11.8% | 2499.7 | Yichang |
Case 2 | 06–07 July 2013 | 193 mm | 3444 | 14.9% | 210.2 | Wuhan |
Case 3 | 11–12 Sep 2014 | 100.6 mm | 11850 | 4.3% | 2565.8 | Wuhan |
Radar Site | Time Window * | Thunderstorm Cells | CG Flash Numbers | Max-Ncg | TMax-Ncg | |
---|---|---|---|---|---|---|
Case 1 | Wuhan | 1930 LT–0300 LT | 14 | 610 | 199 | 0108 LT |
Case 2 | Yichang | 0900 LT–2130 LT | 5 | 167 | 55 | 2022 LT |
Case 3 | Jingzhou | 1300 LT–0300 LT | 4 | 297 | 245 | 0146 LT |
MR0 °C | MR−10 °C | MR−15 °C | MR−20 °C | MR−25 °C | MR0 °C↑ | MH18 dBZ | |
---|---|---|---|---|---|---|---|
Case 1 | 0.07 | 0.35 | 0.34 | 0.33 | 0.32 | 0.35 | 0.48 |
Case 2 | 0.05 | 0.19 | 0.277 | 0.27 | 0.3 | 0.06 | 0.44 |
Case 3 | 0.11 | 0.22 | 0.27 | 0.29 | 0.31 | 0.11 | 0.53 |
Date | Time of Precipitation Peak/LT | Time of CG Flashes Peak/LT | |
---|---|---|---|
Case 1 | 14 May 2015 | 2030 | 2300 |
Case 2 | 6 July 2013 | 1000 | 1930 |
Case 3 | 11–12 September 2014 | 1400 | 0100 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, J.; Chai, J.; Leng, L.; Xu, G. Analysis of Lightning and Precipitation Activities in Three Severe Convective Events Based on Doppler Radar and Microwave Radiometer over the Central China Region. Atmosphere 2019, 10, 298. https://doi.org/10.3390/atmos10060298
Sun J, Chai J, Leng L, Xu G. Analysis of Lightning and Precipitation Activities in Three Severe Convective Events Based on Doppler Radar and Microwave Radiometer over the Central China Region. Atmosphere. 2019; 10(6):298. https://doi.org/10.3390/atmos10060298
Chicago/Turabian StyleSun, Jing, Jian Chai, Liang Leng, and Guirong Xu. 2019. "Analysis of Lightning and Precipitation Activities in Three Severe Convective Events Based on Doppler Radar and Microwave Radiometer over the Central China Region" Atmosphere 10, no. 6: 298. https://doi.org/10.3390/atmos10060298
APA StyleSun, J., Chai, J., Leng, L., & Xu, G. (2019). Analysis of Lightning and Precipitation Activities in Three Severe Convective Events Based on Doppler Radar and Microwave Radiometer over the Central China Region. Atmosphere, 10(6), 298. https://doi.org/10.3390/atmos10060298