Characterization and Risk Assessment of Particulate Matter and Volatile Organic Compounds in Metro Carriage in Shanghai, China
Abstract
:1. Introduction
2. Methodology
2.1. Sampling Schedule
2.2. Analytical Methods
2.3. Data Analysis
3. Results and Discussion
3.1. Concentration of VOCs in Metro Carriages
3.2. Concentration of PM2.5 in Metro Carriages
3.3. Health Risk Assessment
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Pope, C.A.; Burnett, R.T.; Thurston, G.D.; Thun, M.J.; Calle, E.E.; Krewski, D.; Godleski, J.J. Cardiovascular mortality and long-term exposure to particulate air pollution: Epidemiological evidence of general pathophysiological pathways of disease. Circulation 2004, 109, 71–77. [Google Scholar] [CrossRef] [PubMed]
- Tagiyeva, N.; Sheikh, A. Domestic exposure to volatile organic compounds in relation to asthma and allergy in children and adults. Expert Rev. Clin. Immunol. 2014, 10, 1611–1639. [Google Scholar] [CrossRef] [PubMed]
- Reche, C.; Moreno, T.; Martins, V.; Minguillón, M.C.; Jones, T.; de Miguel, E.; Capdevila, M.; Centelles, S.; Querol, X. Factors controlling particle number concentration and size at metro stations. Atmos. Environ. 2017, 156, 169–181. [Google Scholar] [CrossRef]
- Kim, M.J.; Braatz, R.D.; Kim, J.T.; Yoo, C.K. Economical control of indoor air quality in underground metro station using an iterative dynamic programming-based ventilation system. Indoor Built Environ. 2016, 25, 949–961. [Google Scholar] [CrossRef]
- Hwang, S.H.; Jang, S.; Park, W.M.; Park, J.B. Concentrations and identification of culturable airborne fungi in underground stations of the Seoul metro. Environ. Sci. Pollut. Res. 2016, 23, 20680–20686. [Google Scholar] [CrossRef] [PubMed]
- Chan, C.-C.; Spengler, J.D.; Özkaynak, H.; Lefkopoulou, M. Commuter exposures to VOCs in Boston, Massachusetts. J. Air Waste Manag. Assoc. 1991, 41, 1594–1600. [Google Scholar] [CrossRef]
- Chan, L.Y.; Lau, W.L.; Wang, X.M.; Tang, J.H. Preliminary measurements of aromatic VOCs in public transportation modes in Guangzhou, China. Environ. Int. 2003, 29, 429–435. [Google Scholar] [CrossRef]
- Gómez-Perales, J.E.; Colvile, R.N.; Fernández-Bremauntz, A.A.; Gutiérrez-Avedoy, V.; Páramo-Figueroa, V.H.; Blanco-Jiménez, S.; Bueno-López, E.; Bernabé-Cabanillas, R.; Mandujano, F.; Hidalgo-Navarro, M.; et al. Bus, minibus, metro inter-comparison of commuters’ exposure to air pollution in Mexico City. Atmos. Environ. 2007, 41, 890–901. [Google Scholar] [CrossRef]
- Lau, W.L.; Chan, L.Y. Commuter exposure to aromatic VOCs in public transportation modes in Hong Kong. Sci. Total Environ. 2003, 308, 143–155. [Google Scholar] [CrossRef]
- Pang, X.; Mu, Y. Characteristics of carbonyl compounds in public vehicles of Beijing city: Concentrations, sources, and personal exposures. Atmos. Environ. 2007, 41, 1819–1824. [Google Scholar] [CrossRef]
- Xu, B.; Hao, J. Air quality inside subway metro indoor environment worldwide: A review. Environ. Int. 2017, 107, 33–46. [Google Scholar] [CrossRef]
- Shiohara, N.; Fernández-Bremauntz, A.A.; Blanco Jiménez, S.; Yanagisawa, Y. The commuters’ exposure to volatile chemicals and carcinogenic risk in Mexico City. Atmos. Environ. 2005, 39, 3481–3489. [Google Scholar] [CrossRef]
- Qiu, Z.; Song, J.; Xu, X.; Luo, Y.; Zhao, R.; Zhou, W.; Xiang, B.; Hao, Y. Commuter exposure to particulate matter for different transportation modes in Xi’an, China. Atmos. Pollut. Res. 2017, 8, 940–948. [Google Scholar] [CrossRef]
- Adams, H.S.; Nieuwenhuijsen, M.J.; Colvile, R.N.; McMullen, M.A.S.; Khandelwal, P. Fine particle (PM2.5) personal exposure levels in transport microenvironments, London, UK. Sci. Total Environ. 2001, 279, 29–44. [Google Scholar] [CrossRef]
- Aarnio, P.; Yli-Tuomi, T.; Kousa, A.; Mäkelä, T.; Hirsikko, A.; Hämeri, K.; Räisänen, M.; Hillamo, R.; Koskentalo, T.; Jantunen, M. The concentrations and composition of and exposure to fine particles (PM2.5) in the Helsinki subway system. Atmos. Environ. 2005, 39, 5059–5066. [Google Scholar] [CrossRef]
- Chillrud, S.N.; Epstein, D.; Ross, J.M.; Sax, S.N.; Pederson, D.; Spengler, J.D.; Kinney, P.L. Elevated airborne exposures of teenagers to manganese, chromium, and iron from steel dust and New York City’s subway system. Environ. Sci. Technol. 2004, 38, 732–737. [Google Scholar] [CrossRef]
- Li, T.T.; Bai, Y.-H.; Liu, Z.R.; Liu, J.F.; Zhang, G.S.; Li, J.L. Air quality in passenger cars of the ground railway transit system in Beijing, China. Sci. Total Environ. 2006, 367, 89–95. [Google Scholar] [CrossRef]
- Chan, L.Y.; Lau, W.L.; Lee, S.C.; Chan, C.Y. Commuter exposure to particulate matter in public transportation modes in Hong Kong. Atmos. Environ. 2002, 36, 3363–3373. [Google Scholar] [CrossRef]
- Chan, L.Y.; Lau, W.L.; Zou, S.C.; Cao, Z.X.; Lai, S.C. Exposure level of carbon monoxide and respirable suspended particulate in public transportation modes while commuting in urban area of Guangzhou, China. Atmos. Environ. 2002, 36, 5831–5840. [Google Scholar] [CrossRef]
- Gómez-Perales, J.E.; Colvile, R.N.; Nieuwenhuijsen, M.J.; Fernández-Bremauntz, A.; Gutiérrez-Avedoy, V.J.; Páramo-Figueroa, V.H.; Blanco-Jiménez, S.; Bueno-López, E.; Mandujano, F.; Bernabé-Cabanillas, R.; et al. Commuters’ exposure to PM2.5, CO, and benzene in public transport in the metropolitan area of Mexico City. Atmos. Environ. 2004, 38, 1219–1229. [Google Scholar] [CrossRef]
- Xu, B.; Yu, X.; Gu, H.; Miao, B.; Wang, M.; Huang, H. Commuters’ exposure to PM2.5 and CO2 in metro carriages of Shanghai metro system. Transp. Res. Part D Transp. Environ. 2016, 47, 162–170. [Google Scholar] [CrossRef]
- Seaton, A.; Cherrie, J.; Dennekamp, M.; Donaldson, K.; Hurley, J.F.; Tran, C.L. The London underground: Dust and hazards to health. Occup. Environ. Med. 2005, 62, 355–362. [Google Scholar] [CrossRef] [PubMed]
- Yang, F.; Kaul, D.; Wong, K.C.; Westerdahl, D.; Sun, L.; Ho, K.-f.; Tian, L.; Brimblecombe, P.; Ning, Z. Heterogeneity of passenger exposure to air pollutants in public transport microenvironments. Atmos. Environ. 2015, 109, 42–51. [Google Scholar] [CrossRef] [Green Version]
- Yan, C.; Zheng, M.; Yang, Q.; Zhang, Q.; Qiu, X.; Zhang, Y.; Fu, H.; Li, X.; Zhu, T.; Zhu, Y. Commuter exposure to particulate matter and particle-bound PAHs in three transportation modes in Beijing, China. Environ. Pollut. 2015, 204, 199–206. [Google Scholar] [CrossRef]
- Moreno, T.; Reche, C.; Rivas, I.; Cruz Minguillon, M.; Martins, V.; Vargas, C.; Buonanno, G.; Parga, J.; Pandolfi, M.; Brines, M.; et al. Urban air quality comparison for bus, tram, subway and pedestrian commutes in Barcelona. Environ. Res. 2015, 142, 495–510. [Google Scholar] [CrossRef]
- Liu, W.T.; Ma, C.M.; Liu, I.J.; Han, B.C.; Chuang, H.C.; Chuang, K.J. Effects of commuting mode on air pollution exposure and cardiovascular health among young adults in Taipei, Taiwan. Int. J. Hyg. Environ. Health 2015, 218, 319–323. [Google Scholar] [CrossRef] [PubMed]
- Suarez, L.; Mesias, S.; Iglesias, V.; Silva, C.; Caceres, D.D.; Ruiz-Rudolph, P. Personal exposure to particulate matter in commuters using different transport modes (bus, bicycle, car and subway) in an assigned route in downtown Santiago, Chile. Environ. Sci. Process. Impacts 2014, 16, 1309–1317. [Google Scholar] [CrossRef] [PubMed]
- Lu, S.; Liu, D.; Zhang, W.; Liu, P.; Fei, Y.; Gu, Y.; Wu, M.; Yu, S.; Yonemochi, S.; Wang, X.; et al. Physico-chemical characterization of PM2.5 in the microenvironment of Shanghai subway. Atmos. Res. 2015, 153, 543–552. [Google Scholar] [CrossRef]
- Cusack, M.; Talbot, N.; Ondráček, J.; Minguillón, M.C.; Martins, V.; Klouda, K.; Schwarz, J.; Ždímal, V. Variability of aerosols and chemical composition of PM10, PM2.5 and PM1 on a platform of the Prague underground metro. Atmos. Environ. 2015, 118, 176–183. [Google Scholar] [CrossRef]
- Byeon, S.H.; Willis, R.; Peters, T.M. Chemical characterization of outdoor and subway fine (PM(2.5-1.0)) and coarse (PM(10-2.5)) particulate matter in Seoul (Korea) by computer-controlled scanning electron microscopy (CCSEM). Int. J. Environ. Res. Public Health 2015, 12, 2090–2104. [Google Scholar] [CrossRef]
- Feng, Y.; Mu, C.; Zhai, J.; Li, J.; Zou, T. Characteristics and personal exposures of carbonyl compounds in the subway stations and in-subway trains of Shanghai, China. J. Hazard. Mater. 2010, 183, 574–582. [Google Scholar] [CrossRef]
- Barmparesos, N.; Assimakopoulos, V.D.; Niki Assimakopoulos, M.; Tsairidi, E. Particulate matter levels and comfort conditions in the trains and platforms of the Athens underground metro. AIMS Environ. Sci. 2016, 3, 199–219. [Google Scholar] [CrossRef]
- Li, Z.; Che, W.; Frey, H.C.; Lau, A.K.H.; Lin, C. Characterization of PM2.5 exposure concentration in transport microenvironments using portable monitors. Environ. Pollut. 2017, 228, 433–442. [Google Scholar] [CrossRef]
- Ras, M.R.; Borrull, F.; Marcé, R.M. Sampling and preconcentration techniques for determination of volatile organic compounds in air samples. TrAC Trends Anal. Chem. 2009, 28, 347–361. [Google Scholar] [CrossRef]
- Gong, Y.; Wei, Y.; Cheng, J.; Jiang, T.; Chen, L.; Xu, B. Health risk assessment and personal exposure to Volatile Organic Compounds (VOCs) in metro carriages—A case study in Shanghai, China. Sci. Total Environ. 2017, 574, 1432–1438. [Google Scholar] [CrossRef]
- US EPA. Guidelines Exposure Assessment. 1992. Available online: https://www.epa.gov/risk/guidelines-exposure-assessment (accessed on 30 November 2016).
- Miekisch, W.; Kischkel, S.; Sawacki, A.; Liebau, T.; Mieth, M.; Schubert, J.K. Impact of sampling procedures on the results of breath analysis. J. Breath Res. 2008, 2, 026007. [Google Scholar] [CrossRef]
- Li, J.; Feng, Y.L.; Xie, C.J.; Huang, J.; Yu, J.Z.; Feng, J.L.; Sheng, G.Y.; Fu, J.M.; Wu, M.H. Determination of gaseous carbonyl compounds by their pentafluorophenyl hydrazones with gas chromatography/mass spectrometry. Anal. Chim. Acta 2009, 635, 84–93. [Google Scholar] [CrossRef] [PubMed]
- Xu, B.; Wu, Y.; Cui, P. Semi-analytical and computational investigation of different dust loading structures affecting the performance of a fibrous air filter. Particuology 2014, 13, 60–65. [Google Scholar] [CrossRef]
- Kam, W.; Cheung, K.; Daher, N.; Sioutas, C. Particulate matter (PM) concentrations in underground and ground-level rail systems of the Los Angeles metro. Atmos. Environ. 2011, 45, 1506–1516. [Google Scholar] [CrossRef]
- Shanghai Environmental Monitoring Center (SEMC), China. Available online: http://www.semc.gov.cn/aqi/home/English.aspx (accessed on 20 November 2016).
- Xu, B.; Cui, P.; Xu, H.; Chen, H.; Lin, Y. Commuter exposure to particle matter and carbon dioxide inside high-speed rail carriages. Transp. Res. Part D Transp. Environ. 2013, 20, 1–6. [Google Scholar] [CrossRef]
- Martins, V.; Moreno, T.; Mendes, L.; Eleftheriadis, K.; Diapouli, E.; Alves, C.A.; Duarte, M.; de Miguel, E.; Capdevila, M.; Querol, X.; et al. Factors controlling air quality in different European subway systems. Environ. Res. 2016, 146, 35–46. [Google Scholar] [CrossRef] [Green Version]
- Praml, G.; Schierl, R. Dust exposure in Munich public transportation: A comprehensive 4-year survey in buses and trams. Int. Arch. Occup. Environ. Health 2000, 73, 209–214. [Google Scholar] [CrossRef]
Sample Line | Characteristics | Sample Routes | PM2.5 Concentration (mean ± S.D. μg·m−3) | |
---|---|---|---|---|
Stations | Outdoor | |||
Line 1 | Old metro train | South Shanxi Rd to Laoximen | 123 ± 5 | 145 ± 5 |
Line 10 | New metro train | South Shanxi Rd to Shanghai Library | 45 ± 4 | 60 ± 4 |
Line 4 | Above-ground | West Yan’an Rd to Hongqiao Rd | 125 ± 9 | 135 ± 5 |
Line 4 | Underground | Damuqiao to Dongan Rd | 54 ± 5 | 70 ± 4 |
VOCs | New Carriage | Old Carriage | Above-Ground Track | Under-Ground Track | ||||
---|---|---|---|---|---|---|---|---|
2015 | 2016 | 2015 | 2016 | 2015 | 2016 | 2015 | 2016 | |
Benzene | 5.04 ± 1.2 | 4.99 ± 1.5 | 16.1 ± 1.6 | 6.8 ± 1.6 | 34.1 ± 1.2 | 10.7 ± 1.2 | 28.2 ± 1.2 | 6.1 ± 1.3 |
Toluene | 6.43 ± 1.3 | 4.46 ± 1.4 | 13.3 ± 1.3 | 13.2 ± 1.3 | 63.4 ± 1.3 | 20.3 ± 1.2 | 50.9 ± 1.3 | 12.7 ± 1.3 |
Ethylbenzene | 1.26 ± 1.5 | 1.73 ± 1.6 | 3.9 ± 1.5 | 5.8 ± 1.5 | 10.5 ± 1.5 | 8 ± 1.6 | 9.1 ± 1.4 | 5.3 ± 1.3 |
Xylene | 0.94 ± 0.7 | 1.88 ± 0.8 | 2.4 ± 0.7 | 6.1 ± 0.7 | 7.2 ± 0.7 | 8.6 ± 0.7 | 6.6 ± 0.5 | 5.8 ± 0.8 |
Styrene | 0.61 ± 0.7 | 0.44 ± 0.3 | 1.1 ± 0.7 | 0.9 ± 0.7 | 3.6 ± 0.7 | 6.8 ± 0.8 | 3.9 ± 0.7 | 3.5 ± 0.7 |
Formaldehyde | 26.9 ± 0.5 | 4.46 ± 0.6 | 27.0 ± 0.5 | 6.2 ± 0.5 | 18.4 ± 0.5 | 4.6 ± 0.8 | 17.4 ± 0.3 | 2.4 ± 0.5 |
Acetaldehyde | 11.2 ± 0.5 | 5.31 ± 0.4 | 16.2 ± 0.5 | 6.5 ± 0.7 | 10.6 ± 0.5 | 5.7 ± 0.4 | 9.8 ± 0.5 | 3.8 ± 0.6 |
A & A | 10.5 ± 0.5 | 10.9 ± 0.7 | 8.3 ± 0.5 | 11.3 ± 0.9 | 8.2 ± 0.5 | 8.3 ± 0.5 | 8.3 ± 0.5 | 8.2 ± 0.8 |
Environmental Parameters | New Carriage | Old Carriage | Above-Ground Track | Underground Track | ||||
---|---|---|---|---|---|---|---|---|
2015 | 2016 | 2015 | 2016 | 2015 | 2016 | 2015 | 2016 | |
CO2 (ppm) | 926 ± 41 | 976 ± 35 | 951 ± 46 | 967 ± 36 | 958 ± 67 | 938 ± 75 | 931 ± 67 | 962 ± 87 |
CO (ppm) | 1.7 ± 0.3 | 1.6 ± 0.3 | 1.9 ± 0.4 | 2.1 ± 0.4 | 1.3 ± 0.3 | 1.1 ± 0.3 | 1.4 ± 0.2 | 1.1 ± 0.2 |
RH (%) | 61.7 ± 1.3 | 51.7 ± 1.3 | 48.7 ± 0.8 | 49.6 ± 0.8 | 49.7 ± 0.9 | 50.7 ± 0.8 | 52.2 ± 1.2 | 53.4 ± 1.3 |
Air T (°C) | 24.1 ± 0.2 | 23.1 ± 0.2 | 25.5 ± 0.2 | 24.5 ± 0.2 | 23.3 ± 0.5 | 24.1 ± 0.5 | 22.0 ± 0.2 | 23.0 ± 0.2 |
VOCs | Benzene | Toluene | Ethylbenzene | Xylene | Styrene | Formaldehyde | Acetaldehyde | A&A |
---|---|---|---|---|---|---|---|---|
Benzene | 1 | |||||||
Toluene | 0.815 ** | 1 | ||||||
Ethylbenzene | 0.892 ** | 0.853 ** | 1 | |||||
Xylene | 0.859 ** | 0.895 ** | 0.987 ** | 1 | ||||
Styrene | 0.888 ** | 0.784 ** | 0.749 ** | 0.851 ** | 1 | |||
Formaldehyde | 0.552 | 0.454 | 0.510 | 0.545 | −0.377 | 1 | ||
Acetaldehyde | 0.456 | 0.272 | 0.507 | 0.473 | −0.210 | 0.809* | 1 | |
A&A | 0.370 | −0.134 | 0.334 | 0.200 | −0.371 | 0.384 | 0.302 | 1 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gong, Y.; Zhou, T.; Zhao, Y.; Xu, B. Characterization and Risk Assessment of Particulate Matter and Volatile Organic Compounds in Metro Carriage in Shanghai, China. Atmosphere 2019, 10, 302. https://doi.org/10.3390/atmos10060302
Gong Y, Zhou T, Zhao Y, Xu B. Characterization and Risk Assessment of Particulate Matter and Volatile Organic Compounds in Metro Carriage in Shanghai, China. Atmosphere. 2019; 10(6):302. https://doi.org/10.3390/atmos10060302
Chicago/Turabian StyleGong, Yu, Tao Zhou, Youcai Zhao, and Bin Xu. 2019. "Characterization and Risk Assessment of Particulate Matter and Volatile Organic Compounds in Metro Carriage in Shanghai, China" Atmosphere 10, no. 6: 302. https://doi.org/10.3390/atmos10060302
APA StyleGong, Y., Zhou, T., Zhao, Y., & Xu, B. (2019). Characterization and Risk Assessment of Particulate Matter and Volatile Organic Compounds in Metro Carriage in Shanghai, China. Atmosphere, 10(6), 302. https://doi.org/10.3390/atmos10060302