Mapping Modeled Exposure of Wildland Fire Smoke for Human Health Studies in California
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Mean Annual Fire-PM2.5 Concentrations
3.2. Populations At Risk by Annual Mean Fire-PM2.5 Concentration Quartiles
3.3. Fire-PM2.5 Smokewaves: Geospatial Extent and Populations At-Risk
3.4. Model Performance
4. Discussion
4.1. The Magnitude of Wildfire Smoke Exposure in California
4.2. Spatiotemporal Smoke Exposure Approaches
4.3. Strengths and Limitations
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Westerling, A.L.; Hidalgo, H.G.; Cayan, D.R.; Swetnam, T.W. Warming and Earlier Spring Increase Western U.S. Forest Wildfire Activity. Science 2006, 313, 940–943. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cascio, W.E. Wildland fire smoke and human health. Sci. Total. Environ. 2018, 624, 586–595. [Google Scholar] [CrossRef] [PubMed]
- Reid, C.E.; Maestas, M.M. Wildfire smoke exposure under climate change. Curr. Opin. Pulm. Med. 2019, 25, 179–187. [Google Scholar] [CrossRef] [PubMed]
- Reid, C.E.; Brauer, M.; Johnston, F.H.; Jerrett, M.; Balmes, J.R.; Elliott, C.T. Critical Review of Health Impacts of Wildfire Smoke Exposure. Environ. Health Perspect. 2016, 124, 1334–1343. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, J.C.; Pereira, G.; Uhl, S.A.; Bravo, M.A.; Bell, M.L. A systematic review of the physical health impacts from non-occupational exposure to wildfire smoke. Environ. Res. 2015, 136, 120–132. [Google Scholar] [CrossRef] [PubMed]
- Wettstein, Z.S.; Hoshiko, S.; Fahimi, J.; Harrison, R.J.; Cascio, W.E.; Rappold, A.G. Cardiovascular and Cerebrovascular Emergency Department Visits Associated With Wildfire Smoke Exposure in California in 2015. J. Am. Heart Assoc. 2018, 7, e007492. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thelen, B.; French, N.H.; Koziol, B.W.; Billmire, M.; Owen, R.C.; Johnson, J.; Ginsberg, M.; Loboda, T.; Wu, S. Modeling acute respiratory illness during the 2007 San Diego wildland fires using a coupled emissions-transport system and generalized additive modeling. Environ. Health 2013, 12, 94. [Google Scholar] [CrossRef] [PubMed]
- Holstius, D.M.; Reid, C.E.; Jesdale, B.M.; Morello-Frosch, R. Birth Weight following Pregnancy during the 2003 Southern California Wildfires. Environ. Health Perspect. 2012, 120, 1340–1345. [Google Scholar] [CrossRef] [PubMed]
- Haines, A.; Ebi, K. The Imperative for Climate Action to Protect Health. N. Engl. J. Med. 2019, 380, 263–273. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.C.; Wilson, A.; Mickley, L.J.; Dominici, F.; Ebisu, K.; Wang, Y.; Sulprizio, M.P.; Peng, R.D.; Yue, X.; Son, J.-Y.; et al. Wildfire-specific Fine Particulate Matter and Risk of Hospital Admissions in Urban and Rural Counties. Epidemiology 2017, 28, 77–85. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Radeloff, V.C.; Hammer, R.B.; Stewart, S.I.; Fried, J.S.; Holcomb, S.S.; McKeefry, J.F. The Wildland–urban Interface in the United States. Ecol. Appl. 2005, 15, 799–805. [Google Scholar] [CrossRef]
- Spyratos, V.; Bourgeron, P.S.; Ghil, M. Development at the wildland urban interface and the mitigation of forest-fire risk. Proc. Natl. Acad. Sci. USA 2007, 104, 14272–14276. [Google Scholar] [CrossRef]
- Gupta, P.; Doraiswamy, P.; Lévy, R.; Pikelnaya, O.; Maibach, J.; Feenstra, B.; Polidori, A.; Kiros, F.; Mills, K.C. Impact of California Fires on Local and Regional Air Quality: The Role of a Low-Cost Sensor Network and Satellite Observations. GeoHealth 2018, 2, 172–181. [Google Scholar] [CrossRef] [PubMed]
- Baker, K.; Woody, M.; Valin, L.; Szykman, J.; Yates, E.; Iraci, L.; Choi, H.; Soja, A.; Koplitz, S.; Zhou, L.; et al. Photochemical model evaluation of 2013 California wild fire air quality impacts using surface, aircraft, and satellite data. Sci. Total. Environ. 2018, 637, 1137–1149. [Google Scholar] [CrossRef] [PubMed]
- U.S. EPA. Integrated Science Assessment (ISA) for Particulate Matter. U.S. Environmental Protection Agency, Washington, DC, EPA/600/R-08/139F, 2009. Available online: https://www.epa.gov/isa (accessed on 15 April 2019).
- U.S. EPA. Integrated Science Assessment (ISA) of Ozone and Related Photochemical Oxidants (Final Report, Feb 2013). U.S. Environmental Protection Agency, Washington, DC, EPA/600/R-10/076F, 2013. Available online: https://www.epa.gov/isa (accessed on 15 April 2019).
- Air Pollution and Cardiovascular Disease: A Statement for Healthcare Professionals from the Expert Panel on Population and Prevention Science of the American Heart Association. Circulation. Available online: http://circ.ahajournals.org/content/109/21/2655 (accessed on 15 April 2019).
- Koman, P.D.; Hogan, K.A.; Sampson, N.; Mandell, R.; Coombe, C.M.; Tetteh, M.M.; Hill-Ashford, Y.R.; Wilkins, D.; Zlatnik, M.G.; Loch-Caruso, R.; et al. Examining Joint Effects of Air Pollution Exposure and Social Determinants of Health in Defining “At-Risk” Populations Under the Clean Air Act: Susceptibility of Pregnant Women to Hypertensive Disorders of Pregnancy. World Med. Health Policy 2018, 10, 7–54. [Google Scholar] [CrossRef] [PubMed]
- Woodruff, T.; Darrow, L.; Parker, J. Air Pollution and Postneonatal Infant Mortality in the United States, 1999–2002. Available online: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2199284/ (accessed on 15 April 2019).
- Woodruff, T.J.; Zota, A.R.; Schwartz, J.M. Environmental Chemicals in Pregnant Women in the United States: NHANES 2003–2004. Environ. Health Perspect. 2011, 119, 878–885. [Google Scholar] [CrossRef] [PubMed]
- ACOG Committee Opinion Exposure to Toxic Environmental Agents. Available online: http://www.acog.org/Resources_And_Publications/Committee_Opinions/Committee_on_Health_Care_for_Underserved_Women/Exposure_to_Toxic_Environmental_Agents (accessed on 15 April 2019).
- Pedersen, M.; Stayner, L.; Slama, R.; Sorensen, M.; Figueras, F.; Nieuwenhuijsen, M.J.; Raaschou-Nielsen, O.; Dadvand, P. Ambient Air Pollution and Pregnancy-Induced Hypertensive Disorders: A Systematic Review and Meta-Analysis. Hypertension 2014, 64, 494–500. [Google Scholar] [CrossRef] [PubMed]
- Thurston, G.D.; Kipen, H.; Annesi-maesano, I.; Balmes, J.; Brook, R.D.; Cromar, K.; De Matteis, S.; Forastiere, F.; Forsberg, B.; Frampton, M.W.; et al. A joint European Respiratory Society (ERS) / American Thoracic Society (ATS) policy statement: what constitutes an adverse health effect of air pollution? An analytical framework. Eur. Respir. J. 2017, 49, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.H.; Warren, S.H.; Krantz, Q.T.; King, C.; Jaskot, R.; Preston, W.T.; George, B.J.; Hays, M.D.; Landis, M.S.; Higuchi, M.; et al. Mutagenicity and Lung Toxicity of Smoldering vs. Flaming Emissions from Various Biomass Fuels: Implications for Health Effects from Wildland Fires. Environ. Health Perspect. 2018, 126, 017011. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adetona, O.; Reinhardt, T.E.; Domitrovich, J.; Broyles, G.; Adetona, A.M.; Kleinman, M.T.; Ottmar, R.D.; Naeher, L.P. Review of the health effects of wildland fire smoke on wildland firefighters and the public. Inhal. Toxicol. 2016, 28, 95–139. [Google Scholar] [CrossRef]
- Naeher, L.P.; Brauer, M.; Lipsett, M.; Zelikoff, J.T.; Simpson, C.D.; Koenig, J.Q.; Smith, K.R. Woodsmoke Health Effects: A Review. Inhal Toxicol. 2007, 19, 67–106. [Google Scholar] [CrossRef] [PubMed]
- Hime, N.J.; Marks, G.B.; Cowie, C.T. A Comparison of the Health Effects of Ambient Particulate Matter Air Pollution from Five Emission Sources. Int. J. Environ. Res. Public Health 2018, 15, 1206. [Google Scholar] [CrossRef] [PubMed]
- Navarro, K.M.; Cisneros, R.; O’Neill, S.M.; Schweizer, D.; Larkin, N.K.; Balmes, J.R. Air-Quality Impacts and Intake Fraction of PM 2.5 during the 2013 Rim Megafire. Environ. Sci. Technol. 2016, 50, 11965–11973. [Google Scholar] [CrossRef] [PubMed]
- Antonelli, J.; Schwartz, J.; Kloog, I.; Coull, B.A. Spatial Multiresolution Analysis of the Effect of PM2.5 on Birth Weights. Ann. Appl. Stat. 2017, 11, 792–807. [Google Scholar] [CrossRef] [PubMed]
- Hu, H.; Ha, S.; Roth, J.; Kearney, G.; Talbott, E.O.; Xu, X. Ambient air pollution and hypertensive disorders of pregnancy: A systematic review and meta-analysis. Atmos. Environ. 2014, 97, 336–345. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amaral, L.M.; Cunningham, M.W., Jr.; Cornelius, D.C.; Lamarca, B. Preeclampsia: long-term consequences for vascular health. Vasc. Health Risk Manag. 2015, 11, 403–415. [Google Scholar] [PubMed]
- Lykke, J.A.; Langhoff-Roos, J.; Lockwood, C.J.; Triche, E.W.; Paidas, M.J. Mortality of mothers from cardiovascular and non-cardiovascular causes following pregnancy complications in first delivery. Paediatr. Périnat. Epidemiol. 2010, 24, 323–330. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Ren, C.; Delfino, R.J.; Chung, J.; Wilhelm, M.; Ritz, B. Association between Local Traffic-Generated Air Pollution and Preeclampsia and Preterm Delivery in the South Coast Air Basin of California. Environ. Health Perspect. 2009, 117, 1773–1779. [Google Scholar] [CrossRef] [PubMed]
- Parker, J.D.; Woodruff, T.J.; Basu, R.; Schoendorf, K.C. Air Pollution and Birth Weight Among Term Infants in California. Pediatrics 2005, 115, 121–128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rappold, A.G.; Reyes, J.M.; Pouliot, G.; Cascio, W.E.; Diaz-Sanchez, D. Community vulnerability to health impacts from wildland fire smoke exposure. Environ. Sci. Technol. 2017, 51, 6674–6682. [Google Scholar] [CrossRef] [PubMed]
- Nunes, K.V.R.; Ignotti, E.; Hacon, S.D.S. Circulatory disease mortality rates in the elderly and exposure to PM2.5 generated by biomass burning in the Brazilian Amazon in 2005. Cadernos de Saúde Pública 2013, 29, 589–598. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shaposhnikov, D.; Revich, B.; Bellander, T.; Bedada, G.B.; Bottai, M.; Kharkova, T.; Kvasha, E.; Lezina, E.; Lind, T.; Semutnikova, E.; et al. Mortality Related to Air Pollution with the Moscow Heat Wave and Wildfire of 2010. Epidemiology 2014, 25, 359–364. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Resnick, A.; Woods, B.; Krapfl, H.; Toth, B. Health Outcomes Associated With Smoke Exposure in Albuquerque, New Mexico, During the 2011 Wallow Fire. J. Public Health Manag. Pract. 2015, 21, 55. [Google Scholar] [CrossRef] [PubMed]
- Deflorio-Barker, S.; Crooks, J.; Reyes, J.; Rappold, A.G. Cardiopulmonary Effects of Fine Particulate Matter Exposure among Older Adults, during Wildfire and Non-Wildfire Periods, in the United States 2008-2010. Environ. Health Perspect. 2019, 127, 037006. [Google Scholar] [CrossRef] [PubMed]
- Johnston, F.H.; Purdie, S.; Jalaludin, B.; Martin, K.L.; Henderson, S.B.; Morgan, G.G. Air pollution events from forest fires and emergency department attendances in Sydney, Australia 1996–2007: a case-crossover analysis. Environ. Health 2014, 13, 105. [Google Scholar] [CrossRef] [PubMed]
- North, M.P.; Hurteau, M.D. High-severity wildfire effects on carbon stocks and emissions in fuels treated and untreated forest. For. Ecol. Manag. 2011, 261, 1115–1120. [Google Scholar] [CrossRef]
- Byun, D.; Schere, K.L. Review of the Governing Equations, Computational Algorithms, and Other Components of the Models-3 Community Multiscale Air Quality (CMAQ) Modeling System. Appl. Mech. Rev. 2006, 59, 51–77. [Google Scholar] [CrossRef]
- Foley, K.M.; Roselle, S.J.; Appel, K.W.; Bhave, P.V.; Pleim, J.E.; Otte, T.L.; Mathur, R.; Sarwar, G.; Young, J.O.; Gilliam, R.C.; et al. Incremental testing of the Community Multiscale Air Quality (CMAQ) modeling system version 4.7. Geosci. Model Dev. 2010, 3, 205–226. [Google Scholar] [CrossRef] [Green Version]
- McMurry, P.; Shepherd, M.; Vickery, J. Particulate Matter Science for Policy Makers: A NARSTO Assessment. Available online: https://books.google.com/books?hl=en&lr=&id=1giH-mvhhw8C&oi=fnd&pg=PR20&dq=mcmurry+2004+photochemical+transport+model&ots=4FnhO5rsO6&sig=MC6AZZgp_38SGAhNpIH-ikHz2TQ (accessed on 15 April 2019).
- Baker, K.; Woody, M.; Tonnesen, G.; Hutzell, W.; Pye, H.; Beaver, M.; Pouliot, G.; Pierce, T. Contribution of regional-scale fire events to ozone and PM2.5 air quality estimated by photochemical modeling approaches. Atmos. Environ. 2016, 140, 539–554. [Google Scholar] [CrossRef]
- Baker, K.R.; Carlton, A.; Kleindienst, T.E.; Offenberg, J.H.; Beaver, M.R.; Gentner, D.R.; Goldstein, A.H.; Hayes, P.L.; Jimenez, J.L.; Gilman, J.B.; et al. Gas and aerosol carbon in California: comparison of measurements and model predictions in Pasadena and Bakersfield. Atmos. Chem. Phys. Discuss. 2015, 15, 5243–5258. [Google Scholar] [CrossRef] [Green Version]
- Larkin, N.K.; O’Neill, S.M.; Solomon, R.; Raffuse, S.; Strand, T.; Sullivan, D.C.; Krull, C.; Rorig, M.; Peterson, J.; Ferguson, S.A. The BlueSky smoke modeling framework. Int. J. Wildland Fire 2009, 18, 906–920. [Google Scholar] [CrossRef] [Green Version]
- Larkin, S.; Raffuse, S. Emissions Processing: SmartFire Details. Available online: https://www.epa.gov/sites/production/files/2015-09/documents/emissions_processing_sf2.pdf (accessed on 15 April 2019).
- Ottmar, R.D.; Sandberg, D.V.; Riccardi, C.L.; Prichard, S.J. An overview of the Fuel Characteristic Classification System — Quantifying, classifying, and creating fuelbeds for resource planningThis article is one of a selection of papers published in the Special Forum on the Fuel Characteristic Classification System. Can. J. For. Res. 2007, 37, 2383–2393. [Google Scholar] [CrossRef]
- Ottmar, R.D. Wildland fire emissions, carbon, and climate: Modeling fuel consumption. For. Ecol. Manag. 2013, 317, 41–50. [Google Scholar] [CrossRef]
- Berrocal, V.J.; Gelfand, A.E.; Holland, D.M. Space-Time Data fusion Under Error in Computer Model Output: An Application to Modeling Air Quality. Biometrics 2012, 68, 837–848. [Google Scholar] [CrossRef] [PubMed]
- US Forest Service. Weather Information Management System 2019. Available online: https://www.firelab.org/project/weather-information-management-system (accessed on 15 April 2019).
- US Forest Service. A Suite of Fire, Fuels, and Smoke Management Tools. Available online: https://www.fs.usda.gov/treesearch/pubs/all/35091 (accessed on 15 April 2019).
- Fire Emission Production Simulator (FEPS) User’s Guide. researchgate.net. Available online: https://www.researchgate.net/profile/John_Blake12/publication/279221834_Modelling_and_mitigating_dose_to_firefighters_from_inhalation_of_radionuclides_in_wildland_fire_smoke/links/56e6a91408ae68afa1139980/Modelling-and-mitigating-dose-to-firefighters-from-inhalation-of-radionuclides-in-wildland-fire-smoke.pdf (accessed on 15 April 2019).
- Done, J.; Davis, C.A.; Weisman, M. The next generation of NWP: explicit forecasts of convection using the weather research and forecasting (WRF) model. Atmos. Sci. Lett. 2004, 5, 110–117. [Google Scholar] [CrossRef]
- Updates to the Sparse Matrix Operator Kernel Emissions (SMOKE) Modeling System and Integration with Models-3. Citeseer. Available online: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.41.5939&rep=rep1&type=pdf (accessed on 15 April 2019).
- The Development and Uses of EPA’s SPECIATE Database. Available online: https://www.sciencedirect.com/science/article/pii/S1309104215305250 (accessed on 15 April 2019).
- Appel, K.W.; Napelenok, S.L.; Foley, K.M.; Pye, H.O.T.; Hogrefe, C.; Luecken, D.J.; Bash, J.O.; Roselle, S.J.; Pleim, J.E.; Foroutan, H.; et al. Description and evaluation of the Community Multiscale Air Quality (CMAQ) modeling system version 5.1. Geosci. Model Dev. 2017, 10, 1703–1732. [Google Scholar] [CrossRef] [Green Version]
- Appel, K.W.; Chemel, C.; Roselle, S.J.; Francis, X.V.; Hu, R.-M.; Sokhi, R.S.; Rao, S.T.; Galmarini, S. Examination of the Community Multiscale Air Quality (CMAQ) model performance over the North American and European domains. Atmos. Environ. 2012, 53, 142–155. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.C.; Mickley, L.J.; Sulprizio, M.P.; Dominici, F.; Yue, X.; Ebisu, K.; Anderson, G.B.; Khan, R.F.A.; Bravo, M.A.; Bell, M.L. Particulate Air Pollution from Wildfires in the Western US under Climate Change. Clim. Chang. 2016, 138, 655–666. [Google Scholar] [CrossRef]
- Wyat, A.K.; Napelenok, S.; Hogrefe, C.; Pouliot, G.; Foley, K.M.; Roselle, S.J.; Pleim, J.E.; Bash, J.; Pye, H.O.T.; Heath, N.; et al. Overview and Evaluation of the Community Multiscale Air Quality (CMAQ) Modeling System Version 5.2. In International Technical Meeting on Air Pollution Modelling and Its Application; Springer: Berlin, Germany, 2018. [Google Scholar]
- Kelly, J.T.; Parworth, C.L.; Zhang, Q.; Miller, D.J.; Sun, K.; Zondlo, M.A.; Baker, K.R.; Wisthaler, A.; Nowak, J.B.; Pusede, S.E.; et al. Modeling NH4 NO3 Over the San Joaquin Valley During the 2013 DISCOVER-AQ Campaign. J. Geophys. Res. Atmos. 2018, 123, 4727–4745. [Google Scholar] [CrossRef]
- Kaulfus, A.S.; Nair, U.; Jaffe, D.; Christopher, S.A.; Goodrick, S. Biomass Burning Smoke Climatology of the United States: Implications for Particulate Matter Air Quality. Environ. Sci. Technol. 2017, 51, 11731–11741. [Google Scholar] [CrossRef]
- California Air Resources Board. Incident Air Monitoring Section 2017 Annual Report. Available online: https://www.arb.ca.gov/aaqm/erp/erp_files/2017annualreport.pdf?_ga=2.246352199.212435366.1558300469-1963452178.1549985721 (accessed on 15 April 2019).
- Photochemical Model Estimated Fire Impacts on Ozone and Aerosol Evaluated with Field Studies and Routine Data Sources. Available online: http://adsabs.harvard.edu/abs/2017AGUFM.A41L.%2003B (accessed on 15 April 2019).
- Reid, C.E.; Jerrett, M.; Petersen, M.L.; Pfister, G.G.; Morefield, P.E.; Tager, I.B.; Raffuse, S.M.; Balmes, J.R. Spatiotemporal Prediction of Fine Particulate Matter During the 2008 Northern California Wildfires Using Machine Learning. Environ. Sci. Technol. 2015, 49, 3887–3896. [Google Scholar] [CrossRef] [PubMed]
- Fann, N.; Alman, B.; Broome, R.A.; Morgan, G.G.; Johnston, F.H.; Pouliot, G.; Rappold, A.G. The health impacts and economic value of wildland fire episodes in the U.S.: 2008–2012. Sci Total Environ. 2018, 610, 802–809. [Google Scholar] [CrossRef] [PubMed]
- Haikerwal, A.; Akram, M.; Del Monaco, A.; Smith, K.; Sim, M.R.; Meyer, M.; Tonkin, A.M.; Abramson, M.J.; Dennekamp, M. Impact of Fine Particulate Matter (PM2.5) Exposure During Wildfires on Cardiovascular Health Outcomes. J. Am. Heart Assoc. 2015, 4, e001653. [Google Scholar] [CrossRef] [PubMed]
- Alman, B.L.; Pfister, G.; Hao, H.; Stowell, J.; Hu, X.; Liu, Y.; Strickland, M.J. The association of wildfire smoke with respiratory and cardiovascular emergency department visits in Colorado in 2012: a case crossover study. Environ. Health 2016, 15, 4043. [Google Scholar] [CrossRef] [PubMed]
- Hutchinson, J.A.; Vargo, J.; Milet, M.; French, N.H.F.; Billmire, M.; Johnson, J.; Hoshiko, S. The San Diego 2007 wildfires and Medi-Cal emergency department presentations, inpatient hospitalizations, and outpatient visits: An observational study of smoke exposure periods and a bidirectional case-crossover analysis. PLoS Med. 2018, 15, e1002601. [Google Scholar] [CrossRef] [PubMed]
- Gan, R.W.; Ford, B.; Lassman, W.; Pfister, G.; Vaidyanathan, A.; Fischer, E.; Volckens, J.; Pierce, J.R.; Magzamen, S. Comparison of wildfire smoke estimation methods and associations with cardiopulmonary-related hospital admissions. GeoHealth 2017, 1, 122–136. [Google Scholar] [CrossRef] [PubMed]
- Tinling, M.A.; West, J.J.; Cascio, W.E.; Kilaru, V.; Rappold, A.G. Repeating cardiopulmonary health effects in rural North Carolina population during a second large peat wildfire. Environ. Health 2016, 15, 2224. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Li, J.; Ying, Q.; Sherman, S.; Perkins, N.; Sundaram, R.; Mendola, P.; Rajeshwari, S. Evaluation of Observation-Fused Regional Air Quality Model Results for Population Air Pollution Exposure Estimation. Sci. Total. Environ. 2014, 485, 563–574. [Google Scholar] [CrossRef]
- Özkaynak, H.; Baxter, L.K.; Dionisio, K.L.; Burke, J. Air pollution exposure prediction approaches used in air pollution epidemiology studies. J. Expo. Sci. Environ. Epidemiol. 2013, 23, 566–572. [Google Scholar] [CrossRef] [Green Version]
- Dionisio, K.L.; Baxter, L.K.; Burke, J.; Özkaynak, H. The importance of the exposure metric in air pollution epidemiology studies: When does it matter, and why? Air Qual. Atmos. Health 2016, 9, 495–502. [Google Scholar] [CrossRef]
- Xu, Y.; Ho, H.C.; Wong, M.S.; Deng, C.; Shi, Y.; Chan, T.-C.; Knudby, A. Evaluation of machine learning techniques with multiple remote sensing datasets in estimating monthly concentrations of ground-level PM2.5. Environ. Pollut. 2018, 242, 1417–1426. [Google Scholar] [CrossRef]
- Lassman, W.; Ford, B.; Gan, R.W.; Pfister, G.; Magzamen, S.; Fischer, E.V.; Pierce, J.R. Spatial and temporal estimates of population exposure to wildfire smoke during the Washington state 2012 wildfire season using blended model, satellite, and in situ data. GeoHealth 2017, 1, 106–121. [Google Scholar] [CrossRef] [Green Version]
- Yao, J.; Eyamie, J.; Henderson, S.B. Evaluation of a spatially resolved forest fire smoke model for population-based epidemiologic exposure assessment. J. Expo. Sci. Environ. Epidemiol. 2016, 26, 233–240. [Google Scholar] [CrossRef] [PubMed]
- Henderson, S.B.; Brauer, M.; Macnab, Y.C.; Kennedy, S.M. Three Measures of Forest Fire Smoke Exposure and Their Associations with Respiratory and Cardiovascular Health Outcomes in a Population-Based Cohort. Environ. Health Perspect. 2011, 119, 1266–1271. [Google Scholar] [CrossRef] [PubMed]
- Martin, R.V. Satellite remote sensing of surface air quality. Atmos Environ. Pergamon. 2008, 42, 7823–7843. [Google Scholar] [CrossRef]
- Duncan, B.N.; Prados, A.I.; Lamsal, L.N.; Liu, Y.; Streets, D.G.; Gupta, P.; Hilsenrath, E.; Kahn, R.A.; Nielsen, J.E.; Beyersdorf, A.J.; et al. Satellite data of atmospheric pollution for U.S. air quality applications: Examples of applications, summary of data end-user resources, answers to FAQs, and common mistakes to avoid. Atmos. Environ. 2014, 94, 647–662. [Google Scholar] [CrossRef] [Green Version]
- Preisler, H.K.; Schweizer, D.; Cisneros, R.; Procter, T.; Ruminski, M.; Tarnay, L. A statistical model for determining impact of wildland fires on Particulate Matter (PM2.5) in Central California aided by satellite imagery of smoke. Environ. Pollut. 2015, 205, 340–349. [Google Scholar] [CrossRef] [PubMed]
- Johnston, F.H.; Henderson, S.B.; Chen, Y.; Randerson, J.T.; Marlier, M.; DeFries, R.S.; Kinney, P.; Bowman, D.M.; Brauer, M. Estimated Global Mortality Attributable to Smoke from Landscape Fires. Environ. Health Perspect. 2012, 120, 695–701. [Google Scholar] [CrossRef]
- Prichard, S.; Larkin, N.S.; Ottmar, R.; French, N.H.; Baker, K.; Brown, T.; Clements, C.; Dickinson, M.; Hudak, A.; Kochanski, A.; et al. The Fire and Smoke Model Evaluation Experiment—A Plan for Integrated, Large Fire–Atmosphere Field Campaigns. Atmosphere 2019, 10, 66. [Google Scholar] [CrossRef]
Year | PM2.5 Mean Daily Concentration (Standard Deviation) (μg/m3) | Percent Attributable to Fire | |
---|---|---|---|
All Sources | Fire Only | ||
2007 | 4.62 (2.27) | 0.87 (1.55) | 18.9% |
2008 | 8.90 (8.76) | 4.40 (8.89) | 49.4% |
2009 | 4.77 (1.50) | 0.61 (0.91) | 12.7% |
2010 | 4.60 (1.51) | 0.31 (0.47) | 6.8% |
2011 | 3.90 (1.43) | 0.50 (0.70) | 12.8% |
2012 | 3.84 (1.51) | 0.71 (1.16) | 18.4% |
2013 | 3.74 (1.94) | 1.16 (1.89) | 30.9% |
Average | 4.91 (4.04) | 1.22 (3.78) | 24.9% |
County | PM2.5 Mean (std) (μg/m3) | Percent Attributable to Fire | |
---|---|---|---|
All Sources | Fire Only | ||
Alameda | 8.50 (5.90) | 0.84 (3.76) | 9.9% |
Alpine | 3.13 (7.63) | 1.57 (7.55) | 50.1% |
Amador | 6.21 (7.15) | 1.87 (6.78) | 30.1% |
Butte | 6.61 (13.34) | 2.63 (13.14) | 39.8% |
Calaveras | 5.46 (7.06) | 1.88 (6.79) | 34.4% |
Colusa | 5.17 (8.99) | 1.97 (8.72) | 38.1% |
Contra Costa | 11.05 (8.29) | 0.98 (4.13) | 8.9% |
Del Norte | 4.42 (12.02) | 2.74 (11.88) | 62.0% |
El Dorado | 5.37 (7.90) | 2.23 (7.70) | 41.5% |
Fresno | 5.23 (4.42) | 1.10 (3.73) | 21.1% |
Glenn | 5.25 (9.46) | 2.04 (9.21) | 38.7% |
Humboldt | 4.63 (11.22) | 2.61 (11.09) | 56.4% |
Imperial | 3.46 (1.61) | 0.26 (0.64) | 7.6% |
Inyo | 2.28 (2.19) | 0.49 (1.43) | 21.6% |
Kern | 4.81 (3.29) | 0.76 (2.41) | 15.7% |
Kings | 7.52 (6.63) | 0.93 (3.48) | 12.3% |
Lake | 4.37 (10.94) | 2.12 (10.83) | 48.4% |
Lassen | 3.30 (6.88) | 1.61 (6.78) | 48.8% |
Los Angeles | 8.41 (4.09) | 0.57 (1.68) | 6.8% |
Madera | 5.45 (4.84) | 1.31 (4.39) | 24.0% |
Marin | 4.97 (5.55) | 0.84 (3.80) | 16.9% |
Mariposa | 4.47 (8.33) | 2.08 (8.24) | 46.7% |
Mendocino | 4.31 (11.45) | 2.26 (11.35) | 52.5% |
Merced | 7.40 (6.21) | 1.10 (4.36) | 14.8% |
Modoc | 2.74 (4.36) | 1.25 (4.20) | 45.7% |
Mono | 2.32 (3.52) | 0.82 (3.32) | 35.5% |
Monterey | 3.99 (4.06) | 0.81 (3.49) | 20.3% |
Napa | 5.39 (7.85) | 1.53 (7.43) | 28.4% |
Nevada | 5.64 (10.48) | 2.25 (10.30) | 39.9% |
Orange | 12.09 (6.10) | 0.51 (1.57) | 4.2% |
Placer | 6.99 (10.87) | 2.41 (10.67) | 34.5% |
Plumas | 4.50 (11.04) | 2.43 (10.93) | 54.1% |
Riverside | 4.28 (2.18) | 0.34 (0.95) | 8.0% |
Sacramento | 11.83 (9.68) | 1.53 (6.50) | 13.0% |
San Benito | 4.12 (3.92) | 0.74 (3.12) | 17.9% |
San Bernardino | 3.42 (2.12) | 0.36 (0.96) | 10.7% |
San Diego | 5.80 (2.84) | 0.40 (1.22) | 7.0% |
San Francisco | No data | No data | - |
San Joaquin | 9.72 (7.78) | 1.16 (5.07) | 12.0% |
San Luis Obispo | 4.42 (3.47) | 0.63 (2.18) | 14.4% |
San Mateo | 6.23 (6.22) | 0.70 (3.17) | 11.3% |
Santa Barbara | 3.83 (2.87) | 0.64 (2.25) | 16.8% |
Santa Clara | 7.28 (5.37) | 0.86 (3.84) | 11.8% |
Santa Cruz | 6.43 (5.38) | 0.86 (3.62) | 13.3% |
Shasta | 4.52 (9.12) | 2.24 (9.00) | 49.4% |
Sierra | 3.84 (8.48) | 1.83 (8.36) | 47.6% |
Siskiyou | 4.24 (9.93) | 2.63 (9.87) | 62.1% |
Solano | 8.26 (7.41) | 1.25 (5.62) | 15.1% |
Sonoma | 5.37 (8.68) | 1.53 (8.32) | 28.5% |
Stanislaus | 7.52 (6.57) | 1.17 (5.11) | 15.6% |
Sutter | 9.03 (9.51) | 1.79 (7.68) | 19.9% |
Tehama | 5.17 (12.97) | 2.68 (12.88) | 51.8% |
Trinity | 5.10 (19.25) | 3.57 (19.20) | 70.1% |
Tulare | 5.11 (3.63) | 1.07 (3.06) | 21.0% |
Tuolumne | 4.46 (9.68) | 2.26 (9.65) | 50.7% |
Ventura | 4.74 (2.95) | 0.56 (1.77) | 11.8% |
Yolo | 7.30 (8.68) | 1.69 (7.76) | 23.1% |
Yuba | 7.77 (9.38) | 2.03 (8.70) | 26.2% |
County Annual Mean Fire-PM2.5 (μg/m3) | Asthma Emergency Department Visits a | Births b | Hospitalizations for Heart Attack a | Poverty: Under Twice Poverty Line (Poor or Struggling) c | Population Under 18 c | Population 65 and Over c | Total Population c |
---|---|---|---|---|---|---|---|
Total | 2908 | 591,359 | 1574 | 13.67 | 10.60 | 4.67 | 36.78 |
(0.00, 0.34] | 677 | 241,761 | 350 | 5.73 | 4.44 | 1.92 | 17.45 |
(0.34, 0.56] | 489 | 84,170 | 235 | 1.85 | 1.52 | 0.65 | 5.87 |
(0.56, 0.86] | 626 | 141,995 | 336 | 3.37 | 2.52 | 1.08 | 9.77 |
(0.86, 20.3] | 1079 | 114,496 | 634 | 2.49 | 2.02 | 0.91 | 7.87 |
Missing | 38 | 8936 | 20 | 0.22 | 0.11 | 0.11 | 0.80 |
Type of Wildland Fire Impact | Year | N (Grid Cells) | Mean Observed (μg/m3) | Mean Predicted (μg/m3) | Difference: Predicted–Observed (μg/m3) |
---|---|---|---|---|---|
Wildfire impacted organic and elemental carbon components of PM2.5 | 2007 | 463 | 4.1 | 4.5 | 0.5 |
2008 | 721 | 5.2 | 7.1 | 2.0 | |
2009 | 422 | 5.6 | 3.5 | −2.1 | |
2010 | 220 | 3.8 | 3.0 | −0.8 | |
2011 | 428 | 3.5 | 3.2 | −0.3 | |
2012 | 418 | 3.9 | 3.7 | −0.1 | |
2013 | 589 | 3.7 | 5.3 | 1.6 | |
Little or no wildfire organic and elemental carbon components of PM2.5 | 2007 | 918 | 1.6 | 1.1 | −0.5 |
2008 | 599 | 1.5 | 1.5 | −0.1 | |
2009 | 966 | 1.4 | 1.2 | −0.2 | |
2010 | 1158 | 1.4 | 1.2 | −0.2 | |
2011 | 947 | 1.3 | 1.0 | −0.4 | |
2012 | 1008 | 1.3 | 1.0 | −0.4 | |
2013 | 776 | 1.2 | 0.7 | −0.5 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Koman, P.D.; Billmire, M.; Baker, K.R.; de Majo, R.; Anderson, F.J.; Hoshiko, S.; Thelen, B.J.; French, N.H.F. Mapping Modeled Exposure of Wildland Fire Smoke for Human Health Studies in California. Atmosphere 2019, 10, 308. https://doi.org/10.3390/atmos10060308
Koman PD, Billmire M, Baker KR, de Majo R, Anderson FJ, Hoshiko S, Thelen BJ, French NHF. Mapping Modeled Exposure of Wildland Fire Smoke for Human Health Studies in California. Atmosphere. 2019; 10(6):308. https://doi.org/10.3390/atmos10060308
Chicago/Turabian StyleKoman, Patricia D., Michael Billmire, Kirk R. Baker, Ricardo de Majo, Frank J. Anderson, Sumi Hoshiko, Brian J. Thelen, and Nancy H.F. French. 2019. "Mapping Modeled Exposure of Wildland Fire Smoke for Human Health Studies in California" Atmosphere 10, no. 6: 308. https://doi.org/10.3390/atmos10060308
APA StyleKoman, P. D., Billmire, M., Baker, K. R., de Majo, R., Anderson, F. J., Hoshiko, S., Thelen, B. J., & French, N. H. F. (2019). Mapping Modeled Exposure of Wildland Fire Smoke for Human Health Studies in California. Atmosphere, 10(6), 308. https://doi.org/10.3390/atmos10060308